IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received April 19, 2020, accepted April 25, 2020, date of publication April 28, 2020, date of current version May 7, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2991099

Strength Check of Aircraft Parts Based on
Multi-GPU Clusters for Fast Calculation

of Sparse Linear Equations

YUHUA ZHANG' AND BINXING HU"“2

1'School of Computer Science and Technology, Baoji University of Arts and Sciences, Baoji 721016, China

2 Aerospace System Engineering Shanghai, Shanghai 201109, China
Corresponding author: Binxing Hu (376898978 @qq.com)

This work was supported in part by the Special Scientific Research Project of Shaanxi Provincial Education Department ‘Research on
Software Testing Service in Cloud Computing Environment” under Grant 17JK0044, and in part by the Key Projects of School Level
Scientific Research Plan of Baoji University of Arts and Sciences ‘“‘Research on Privacy Protection in Big Data Environment” under

Grant ZK2018097.

ABSTRACT In order to improve the cost-effectiveness ratio, the next-generation vehicle needs to meet the
requirements of reuse, while adopting a lighter structural weight, so it is necessary to realize the strength
calculation and condition monitoring of key components in the digital twin. Most of the current monitoring
methods are based on the characteristics of various data acquisition systems, but they need the support of a
large number of flight data. The disadvantages of the above strategy can be avoided by reducing the structure
of aircraft components to a finite element model and quickly checking the key components in the health
management system. In order to solve the problem of fast calculation of the finite element model of the key
components of the aircraft, a parallel algorithm and framework of large-scale sparse matrix preprocessing
conjugate gradient method based on CUDA(Compute Unified Device Architecture) technology is proposed
in the multi GPU(Graphics Processing Unit) workstation cluster environment. Once the sparse matrix is
too large to be processed in a single workstation, this paper discusses how to realize the optimized data
segmentation in the distributed multi-GPU computing environment. For the problem of iterative solution
of matrix preprocessing, two preprocessing strategies of matrix bandwidth reduction parallelization and
incomplete Cholesky decomposition are proposed, and asynchronous task concurrency and load balancing
strategies are designed on the architecture. The calculation of some examples in the standard sparse matrix
database shows that the algorithm and architecture proposed in this paper have the ability to solve large-scale
sparse matrix quickly and efficiently, and can complete the fast strength verification of vehicle components.

INDEX TERMS Sparse matrix, CUDA, RCM, PCG, architecture.

I. INTRODUCTION

With the gradual reduction of the weight ratio of the aircraft,
and the transformation from a slender body to a composite
body and a lifting body, the vibration of the aircraft during
flight has an increasingly significant impact on its dynamic
characteristics [1]. Due to the reduced stiffness of the aircraft,
real-time calculation of the downlink structural strength data
is of great significance to ensure flight safety under time-
varying conditions [2]. Digital twin system is the basis for the
system-level fault tolerance of aircraft. For the fault detection
and instruction reconstruction that may occur in the flight

The associate editor coordinating the review of this manuscript and

approving it for publication was Seok-Bum Ko

77188

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

process, the computer on the rocket cannot carry out com-
plex calculation due to the limitation of hardware resources.
The common method is to send the sensor data back to the
ground, and make complex and accurate judgment through
the workstation with stronger computing power of the ground
system. At present, the spacecraft’s health management sys-
tem is mainly aimed at the two modules of heat protection
and engine, and has achieved very good results. In terms of
thermal protection, the bending and buckling of Integrated
Thermal Protection System (ITPS) are usually considered [3].
The fatigue damage caused by temperature gradient is mainly
considered for the possible failure of engine in operation.
For the above two kinds of stress-strain problems, the finite
element method is usually used to calculate [4]-[6]. It can

VOLUME 8, 2020

https://orcid.org/0000-0003-3576-4839
https://orcid.org/0000-0002-9287-317X

Y. Zhang, B. Hu: Strength Check of Aircraft Parts Based on Multi-GPU Clusters for Fast Calculation

IEEE Access

be seen that the finite element modeling of key components
and the rapid solution of corresponding statics equations are
the focus of the aircraft health management system. In order
to ensure the real-time performance of computation, parallel
computing is bound to be adopted. With the development
of computer technology, the number of transistors in GPU
(graphics processing units) is increasing rapidly, which has
realized the computing power far beyond that of multi-core
CPUs. While the bottleneck of multi-core CPU can’t be
solved due to the temperature wall and power wall, GPU’s
computing power develops rapidly due to the continuous
progress of semiconductor technology. At the same time,
the concept of GPGPU (general purpose computing on graph-
ics processing units) and the CUDA released by NVIDIA
make it more convenient to use GPU for high-performance
computing, and become an important branch in the field of
high-performance computing. Programmers can take advan-
tage of the C/C++ interface provided by NVDIA for parallel
programming and achieve several times the performance of
the CPU on some applications [7], [8].

Many scholars have done related research on the paral-
lel calculation of element stiffness matrix [8]-[10]. At the
same time, for the solution of sparse linear equations,
GPU parallel solving algorithms based on acoustics [11],
electromagnetics [12], and fluid mechanics [13] based on
finite element or finite volume methods have also been
applied. Basermann et al. [14] elaborated the implementa-
tion strategy of sparse matrix preprocessing conjugate gra-
dient method on large-scale parallel machine in 1995, and
discussed the data storage and segmentation problems in
detail. In 2003, Bolz et al. [15] and others realized the
solver design of conjugate gradient method on GPU, that is
to say, the iterative solution of large-scale linear equation
was realized by using image API before the general calcu-
lation of GPU. However, CUDA appeared in 2008, Bell and
Garland [16] and others completed the algorithm design
of sparse matrix vector multiplication (SpMV), which is
the most important algorithm in the application of iter-
ative method. Zaharovits et al. [17] designed a shared
memory parallel conjugate gradient method solver for
the topology optimization of the finite element method.
Amorim et al. [18] proposed the Meshless Local Petrov
Galerkin Method (MLPG) algorithm to assemble the element
stiffness matrix in 2019, and compared the speed difference
between the BICG method and related methods of the con-
jugate gradient method family. Previous research experience
shows that if the dimensions of the sparse equations consid-
ered are small, using a GPU has no obvious advantage over
the CPU. Due to the data transmission and instruction sending
between the CPU and the GPU, running the direct method on
the CPU is even faster than implementing the iterative method
on the GPU in this scenario. When the matrix dimension
is large, the direct solution takes a non-linear increase in
time and requires too much CPU memory. At this time, the
advantages of the GPU become obvious. In this situation,

VOLUME 8, 2020

the iterative solver becomes the only choice. However, it is
worth noting that in order to use GPU with many threads to
work in parallel, the data must be stored in GPU memory.
In order to ensure the validity of the results, the strength
check calculations involved in this paper usually use dou-
ble precision floating point arithmetic. Generally, the Tesla
series GPU is used as a computing card, and its graphics
memory ranges from 8G (P4) to 32G (V100). Compared to
the fact that the workstation motherboard can hold hundreds
of GB, the amount of graphics memory is not enough to
accommodate all the data involved in large-scale computing.
Therefore, in order to avoid memory overflow, the matrix is
usually decomposed into several sub-matrices and transferred
to a GPU for calculation in batches. Most previous studies
on accelerated FEM or sparse linear solvers have focused on
algorithms designed on a single GPU, without considering the
large-scale calculations where the dimensions of the matrix
exceed the graphics memory. The computing environment
of this paper is two workstation clusters with multi-core
CPU and dual GPU, which is regarded as a hybrid Symmet-
rical Multi-Processing (SMP)/ distributed memory system.
Because the distributed characteristics of GPU computing
are similar to cluster computing, but there are significant
differences in computing environment, so we need to design
different communication, distribution and synchronization
strategies for the two architectures.

This paper discusses the problem of sparse linear algebra
solution based on GPU accelerated finite element model of
aircraft. Based on the two most important libraries released
by NVIDIA, cuBLAS [19] and cuSPARSE [20], focusing
on the most time-consuming iterative solution steps of finite
element matrix, including the overall analysis of bandwidth
optimization and iterative solution of large sparse matrix.
Since the conjugate gradient method has been studied deeply
in the related literature, the bandwidth optimization and data
segmentation based on GPU are described in detail here.
The bandwidth optimization of sparse matrix can not only
reduce the number of iterations of conjugate gradient method
to reduce the computation, but also decrease the block of
sparse matrix, so as to minimize the communication between
computing nodes.

Il. DESIGN OF PARALLEL EIGENVALUE SOLVING
ALGORITHM FOR LARGE SPARSE MATRIX

Both the analysis of aero-elastic coupling of aircraft and the
calculation of yield strength after component damage are
essentially eigenvalue problems of linear equations:

Ax =b 1

A € R™™ b € R", x is the position vector. The solution x(!
can be obtained by the equivalent equation Mx = b, where
M is the approximation of A. It can be deduced that the error
Ax between the above formula and the original equation is:

Ax —xDy=b — AxD)

77189

IEEE Access

Y. Zhang, B. Hu: Strength Check of Aircraft Parts Based on Multi-GPU Clusters for Fast Calculation

Since the direct method is difficult to solve, it can be con-
verted into approximate equation:

MAx =b — AxD (3)

An approximate correction amount Ax is obtained, so the
corrected approximate solution is:

x@ =xV 4+ Ax =xV + M7'(B — Ax) 4

Repeat the above steps if the accuracy requirements are not
met. This gives the general formula for the iterative method:

x®© = 3D M B - AxED) k=23, (5

If M = I, the famous Richardson iteration will be obtained
after standard splitting:

x® =p 4 (@ —A)x®D = k=D =D ()

where r®—D = p — Ax*~D is the residual of the previous
step. As mentioned in the previous chapter, in large-scale
numerical simulation calculation, the solution of sparse linear
system occupies a considerable part of calculation time and
resources, so higher requirements are imposed on the solution
speed of sparse linear system. The following instruction will
be divided into two parts to describe the parallel design of
RCM algorithm. The first part is the introduction of RCM
algorithm and pseudo peripheral vertex. The second part
is the parallel design of CUDA algorithm based on linear
algebra.

A. DESIGN OF PARALLEL BANDWIDTH OPTIMIZATION
ALGORITHM FOR LARGE SPARSE MATRIX

Section II.LA is divided into two parts in the revised
manuscript. The first part is the introduction of the RCM algo-
rithm and the calculation process of pseudo-peripheral vertex.
The second part is the design of CUDA parallel algorithm
based on linear algebra.

1) DEFINITIONS AND NOTATIONS

In the stress and strain analysis of the refined analysis and
flight simulation of large spacecraft, the number of elements
and nodes is constantly changing due to the fuel consumption
and the separation of each component, so the equations need
to be renumbered and reorganized for calculation [21]. As far
as the strength check calculation is concerned, the linear
algebra calculation needs to be completed every few hundred
milliseconds, so the timeliness of calculation is very high.
Bandwidth reduction can significantly reduce the amount of
calculation, enhance the stability of the calculation, and speed
up the iterative method [22]. Related research is done on
parallel computing of bandwidth optimization problems. For
the finite element model of the aircraft, the stiffness matrix
is a symmetric matrix, and the bandwidth reduction is to find
the displacement matrix PT, which makes PAPT bandwidth
smaller. At present, the essential algorithms include Cuthill-
McKee (CM) [23], Reverse Cuthill-McKee (RCM) [24],
Approximate Minimum Degree (AMD) [25], [26] etc.

77190

Algorithm 1 RCM Algorithm
1. Initialize the empty queue r, v; < r
2. Doie€[l,n]
3. Find all unidentified neighbors of the vertex v;
4. The remaining vertex marked in increasing order of
degree
End Do
6. The RCM ordering is obtained, and the resulting queue
is a feasible solution for bandwidth reduction

W

As a variant of the CM algorithm, the RCM algorithm is con-
sidered to be one of the most promising low-cost heuristics for
reducing bandwidth. RCM algorithm transforms matrix into
adjacency matrix and node undirected graph from graph the-
ory. The pseudo-vertex is used as the root node, the vertices
in the graph are labeled in increasing order, and the vertices
with the same distance from the pseudo-vertex are divided
into one layer. The structural nodes are divided into several
layers to form a tree structure, as shown in Algorithm 1.
Previously, Oliveira and Abreu [27] compared 7 search meth-
ods for pseudo-peripheral vertices, and verified by examples
that George and Liu [28] algorithm is more suitable for sym-
metric sparse matrices. Nascimento Rodrigues et al. [29] real-
ized the RCM algorithm of sparse matrix reordering by using
OpenMP technology, and obtained up to 50% acceleration on
the small matrix of millisecond time scale. Azad et al. [24]
and Nascimento Rodrigues et al. [29] has done related
work on distributed computing of RCM algorithms in the
MPI-OpenMP environment. This section draws on previ-
ous research results and designs RCM algorithm applicable
to heterogeneous computing platforms in combination with
CUDA.

The dimension of symmetric matrix A is n, and f; (A) is
the first non-zero element in row i, which is:

i (A) = min{j| a;; # 0},

Due to the symmetry of matrix A, the bandwidth of each row
is Bi(A) = i—f; (A), so the matrix bandwidth can be expressed
as a formula:

O<i,j<n—1 @)

Bi(A) =i —f;i (A) (®)
The set of all non-zero elements is:
EmvA) = {{i,j}|I0 <j—i< Bi(A),0<i,j<n—1} (9)

The undirected graph of A is expressed as G(A) = (V, E),
where V is the set of vertices, E is the set of edges. Denote
the number of vertices by n = |V|, m = |E| is the number of
edges. Let d (v, w) be the distance between any two vertices
v and w, the farthest path between the two points in the graph
is represented as [/ (v) = max{d (v, w)|w € V}. The root
hierarchy of the vertex v € V that V satisfies the partition
of L (v):

L) ={Lo», L), Lipy)} (10)

VOLUME 8, 2020

Y. Zhang, B. Hu: Strength Check of Aircraft Parts Based on Multi-GPU Clusters for Fast Calculation

IEEE Access

where Lo (v) = {v}, Li () = Adj (Li-1) \Li—2 (v) i = 2,
3,...1(v), so the length of L (v) equal to [(v).

RCM repeatedly marks all adjacent nodes of the current
vertex, as shown in Algorithm 1. It is essentially a breadth-
first-search (BFS) algorithm, makes the tree deep enough to
reduce the number of nodes in each layer in a disguised way,
so as to reduce the bandwidth of the matrix [30], [31]. It is
based on the CM method to sort the nodes in reverse order
and take the smaller of the sum of the column heights in the
positive order and the reverse order.

How to select pseudo-peripheral vertex is the focus of
RCM algorithm. Previous experience shows that the first
vertex has a significant impact on the effectiveness of band-
width optimization, and it is advisable to choose a vertex
with the longest path and a deeper one. Because it costs a
lot to find the most peripheral vertex, so there is a so-called
pseudo peripheral vertex instead: the longest path depth of the
pseudo peripheral vertex should be as close to the diameter
of the graph as possible. Usually, any vertex is found as the
root node in the vertex set V, and the corresponding tree
structure is calculated to obtain the deepest vertex. This vertex
is selected as the root node and the tree graph is reconstructed
until the maximum depth no longer changes, which is used as
the convergence judgment condition. The whole process is as
Algorithm 2.

Algorithm 2 Pseudo Peripheral Vertex r Calculation Process

1. Select any vertex r € V

2. Get root level list

{Lo(r), Ly (r), ... Ligy (r)}

Record the current number of layers nlvl<« [(r) — 1

4. Do Determine if the number of new layers is greater

than the number of previous layers.

If the condition is met, assign a new record to nlvl

6. Select the minimum degree of freedom vertex v from
Ly (r)

7. Calculate primary level list £ (v), replace r by v

8. End Do

L(r) =

e

d

2) THE DESIGN OF CUDA PARALLEL ALGORITHM

BASED ON LINEAR ALGEBRA

Combined with CPU-GPU architecture, the sorting algorithm
and pseudo peripheral vertex index algorithm in RCM are
redesigned, and the parallel design of RCM algorithm is
completed by using the idea of linear algebra, as shown in
Algorithm 3. Take the sparse matrix A and the pseudo-
peripheral vertex r as inputs, and return the dense matrix R
to represent the ranking of the RCM algorithm. The first step
is to initialize the element in R to —1 and modify it after
accessing the ith vertex. L, and L,y are vertex sets at the
current and next BFS levels respectively, where L, is called
the BFS boundary of the current active vertex. The algorithm
first marks the pseudo peripheral vertex R and inserts it
into L, .In the loop iteration, each time iterates through the
nodes L., that L., has not visited and marks the vertices in

VOLUME 8, 2020

Algorithm 3 RCM Algorithm Based on Linear Algebra

1. A vector that stores the order of all vertices, R < —1
2. Assign values to current and next level BFS layers
Lewr < A{rh,Lpexs < @
. Initialize the current vertex count R [r] <— 0, nv < 1
4. While Judge whether the element in the current level is
empty Leur # ¢ Do
5. Obtain the BFS boundary of the current active vertex

(O8]

Leyr < SetDenV (Leyr, R)
6. Access the adjacent units of the boundary layer
Luext < SpMV (A, Leur, SR = (select2nd, min))
7. Obtain the set of unreachable vertices
Liext < SelectSpV (Lyexs, R, R = -1)

8. Sort the vertices on the next boundary in ascending
order to obtain the sparse vector

Ruext < SortPerm(Ley, deg ree)

9. Update verteX Ryexs <— Rpext + nv
10. Update total vertex count nv <— nv + nnz (Rpext)
11. Set new vertex order to be accessed

R < SetDenV (R, R, ext)

12. Skip to the next level and go back to step 4
13. End While

1
Current
2/@\3 tonter 131 2] T[]
@ @ / abcdefgh

a X X [a

b |x X X b

Va c X |~ 3] c

d | x Lt |4

Next e | +x1 X x| x 2] e

° ° frontier f/ X nk
g g

h []n

a)

FIGURE 1. Matrix multiplication diagram based on (select2nd, min).

b)

Lnext» and explores all the vertices in a layer-by-layer iterative
manner until the boundary L., is empty.

At beginning of the algorithm loop, sparse vector Ly
is assigned as the vertex label. Then, L,y is obtained by
multiplication of the current boundary layer L., and the
adjacency matrix A within a radius(select2nd, min). The
overloaded multiply operation select2nd passes the parent
class label to the child class, and the overloaded min function
ensures that each vertex in L. becomes the child node
of the smallest numbered vertex in L.,.. FIGURE 1 is an
example of how to mark the parent vertex number of the
next level vertex in the form of SpMV (Sparse Matrix-Vector

77191

IEEE Access

Y. Zhang, B. Hu: Strength Check of Aircraft Parts Based on Multi-GPU Clusters for Fast Calculation

Multiplication). FIGURE 1a) is a BES tree with root node a,
the current level is the set {b, d}, and the level of the par-
ent node to be calculated is the set {c, e, f}. FIGURE 1b)
shows the SpMV corresponding to the tree view, and the right
is the output vector, and the value in the element represents
the number of the parent vertex. SpMV traverses the sparse
vector to get the value corresponding to the non-zero value
in the gray column and writes the parent node number in this
position. After the record is completed, (select2nd, min) func-
tion ensure that any vertex can find its parent vertex number
and keep the minimum value. For example, On the right in
FIGURE 1, the current layer node e has two parent nodes with
numbers of 3 and 2 respectively. Function (select2nd, min)
ensures that the corresponding position is recorded as 2 when
output. Once finding the point of the next level, the previously
marked vertex is removed from it for the next iteration. Due
to the existence of SpMYV step, compared with the traditional
BFS algorithm, the RCM algorithm based on linear algebra
hides its complexity and is smooth to parallelization.

After obtaining the next level vertex set through SpMV
function, the previously marked vertices have been excluded
from L,y . The sorting of vertices in L,y is performed by
the SortPerm function, which is based on the criteria of the
parent vertex number and its own degrees of freedom. The
vertices with the smaller parent vertex number are sorted
first. Once the parent vertex numbers are the same, they
are sorted according to their own positions. For example,
in the figure above, the vertices e and f should be ranked
first because of the parent vertex number, and they should
be placed before c. And e is in front of f, so the sort of this
layer after SortPerm function is {e, f, c}. This operation can
adopt the idea of bucket sort, it can decompose the extremely
time-consuming global sorting task into several small sorting
tasks, so it is very easy to realize the parallel acceleration of
CUDA when the matrix is large enough.

Buluc and madduri [30] and Azad et al. [24] and others
pointed out in the relevant literature that SpMV(select2nd,
min) and SortPerm are the most time-consuming two steps
in the RCM algorithm, while the SpMV operation correlation
library provided by CUDA has no relevant API function, so it
needs to be specially designed for RCM.

The storage format of large sparse matrices has been intro-
duced in the previous chapter. In view of the symmetry of
the matrices generated by the finite element model, the CSR
format and the CSC format are consistent, so the popular
and easy to calculate CSR format is selected here. There are
two ways of parallelization: in the calculation as shown in
FIGURE 1, one method is to calculate the columns in the
sparse vector for each thread. Due to the symmetry of the
matrix, only the matrix data of the current row needs to be
taken and put into the global output vector. The calculation
steps of this method in each thread are relatively simple, but
if each thread writes to the same position in the output vector,
it will cause errors in the calculation results. Therefore, it can
either be solved by atomic operation, or after each thread
completes the calculation, an additional kernel function is

77192

called to achieve the calculation of the minimum value on
each row (column). Another strategy is to calculate a row in
matrix A for each thread. After obtaining the column index,
judge whether the position is a non-zero number in the input
sparse vector x; if it is a non-zero number, call the Min
function or the ternary number judgment once, that is, each
thread gets an element of the output vector. The disadvantage
of this strategy is that each thread needs to determine whether
the corresponding position in the input sparse vector x is
non-zero after getting an element in A. In the unsatisfactory
case, each thread needs to perform a log2nnzA judgment and
address operation, which may cause bandwidth congestion
due to the disordered access of each thread. However, because
of the use of CSR format storage, the input sparse vector x is
to be copied to each machine, and the adjacency matrix A can
be split to each machine. After the output vector calculation
of each computer point is completed, it can be summed up
to one computing node for data combination, which is more
suitable for Multi-machine and Multi-GPU architecture.

B. PARALLEL DESIGN OF PREPROCESSING CONJUGATE
GRADIENT METHOD BASED ON INCOMPLETE

CHOLESKY DECOMPOSITION

Incomplete decomposition is a more general preprocess-
ing method, which is suitable for matrices with diagonally
dominant [32]. The Cholesky decomposition is applied to the
preprocessing equation of CG method. The standard prepro-
cessing processes such as Algorithm 4. M is a nonsingular
matrix of approximate A, which is called preprocessing
matrix. The addition of the matrix changes the spectral prop-
erties of the original matrix, reduces the condition, ensures
the aggregation of eigenvalues, and improves the convergence
speed of the iterative method.

If M= 1, PCG method degenerates to CG method. When
the residual vector ¥ 1 = b — Ax'*1 meets the termination
criteria of CG method, the iteration can be terminated. From
the basic steps, it can be known that each iteration of the
PCG method consists of one-time solution of the linear equa-
tions (step 3), two-time inner products (steps 4, 6), one-time
SpMYV (step 6), three-time triplet operations (step 5, 7, 8), and
two-time scalar division operations (steps 4,6). Compared
with the CG method, there is one more operation for solving
the system of equations, that is, step 3. If the preprocessing
matrix M is not selected properly in this step, solving the
extra equations is also time-consuming. Even if the number
of iterations is reduced, but the time of each iteration of PCG
method is much longer than that of CG method, it can not
guarantee that the total solution time of PCG method is less
than that of CG method. Therefore, at the beginning of the
construction of M, it should be clearly realized that the use
of this preprocessing technology is only meaningful if it can
reduce the number of iteration steps.

M is constructed by the incomplete Cholesky decom-
position of symmetric positive definite matrix A, that is
A~ M =LL". However, the Cholesky decomposition of
symmetric positive definite matrix A will introduce a large

VOLUME 8, 2020

Y. Zhang, B. Hu: Strength Check of Aircraft Parts Based on Multi-GPU Clusters for Fast Calculation

IEEE Access

number of non-zero elements, making the sparsity of L worse
than that of A. Under the premise of ensuring the symmetric
positive definiteness of L~'AL™ the sparsity of L is used to
force the elements at some positions to be 0, so that there is a
formula:

A=M+R=LDL" +R (11)

where R is the error matrix introduced by incomplete decom-
position, L is the unit lower triangular matrix, and D is
the diagonal matrix. Proper adjustment makes more zero
elements in R to ensure that LLT is close to A. If M= LDLT
is selected here, the corresponding pretreatment CG method
is called Incomplete Cholesky decomposition conjugate gra-
dient method, which is abbreviated as ICCG (Incomplete
Cholesky conjugate gradient method).

Ly="r
LT =D 'y =y* (12)

The incomplete decomposition of the vectorization operation
is only calculated once and can be completed before iteration.
In the dynamic analysis of elastic vehicle, L and D can be
stored in memory according to the same storage format as A.
According to Algorithm 4, PCG parallel algorithm is mainly
composed of SpMYV, vector dot multiplication and vector
arithmetic. The above three kinds of calculation can realize
GPU acceleration by calling API functions [19], [20] such as
cusparseDcsrmv, cublasDdot and cublasDaxpy. Considering
that NVIDIA has provided a wealth of GPU internal parallel
libraries, and the efficiency is usually higher than that of
handwritten kernel functions, the memory level and basic
algorithms of GPU are not introduced here. This paper mainly
describes the design idea of the software from the perspective
of the mixed parallel strategy within the node and the highly
scalable multi-node communication architecture.

Algorithm 4 PCG Parallel Computing

1. Selectx9 € R" and calculatep® =0 =b — AxYj =0
Bo=0

2. Doj=0,1,...judge if convergence

3. Solving linear algebra Mz/ = ¥/, Get residual vector 2/

4. Get the correction factor Bj = (IJCI, erI) /(¥.7)

5. Get search direction vector for next iteration pic1 =
Z]'Cl 4 ﬁjp]

6. Obtain the correction factor o; = (Ij ,J) / (p’ , Apf)

7. Get the next iteration vector ¥¢1 = ¥ + ocjpi

8. Obtain the residual vector #¢1 = p/ — ajApi

9. End Do

Ill. DESIGN AND IMPLEMENTATION OF MULTI-GPU
WORKSTATION CLUSTER ARCHITECTURE

The research background is that the small-scale computing
cluster completes the strength check of key components
in a limited number of milliseconds, and ensures the task

VOLUME 8, 2020

decision-making under the condition that the control sys-
tem does not diverge. Therefore, from the perspective of
computing scale, the current mainstream computing cluster
frameworks such as Hadoop MapReduce and Spark are not
suitable for real-time computing or millisecond lightweight
cluster interaction required in this paper due to the problems
of programming language and architecture volume. Based
on Java, the mechanism of managing memory through GC
(garbage collection) mechanism affects the calculation stabil-
ity and efficiency [33]. Zhou et al. [34] and Kaur et al. [35]
have proposed some improvement schemes for this frame-
work, Wakde et al. [36], Hazarika et al. [37] et al. tested
the efficiency differences between Spark and Hadoop with
different data sets in their literature, the research shows that
both of them are competent in traditional counting and iter-
ative solving problems, but they are not suitable for the cal-
culation scenario of spacecraft component strength check in
millisecond level in this paper. The API of MPI is not flexible
enough, and it is easy to cause the whole system to crash
when a single node fails, which is unacceptable in the space
launch mission. Its use of communicator to connect process
groups may greatly increase the running time of the algo-
rithm [38]. Pellegrini et al. [39] demonstrated that the Boost
based design is more flexible and faster in transmission speed
through experiments; Fukuoka ef al. [40] indicate that MPI
has performance bottlenecks in multi-threaded applications.
In millisecond computing intensive computing, the efficiency
of OpenMP is much lower than CUDA. Guo et al. [41] proved
that CUDA has a higher acceleration ratio than OpenMP,
and proved this view in the application of target tracking;
Sivanandan et al. [42] compared and analyzed the application
of MPI, OpenMP and CUDA in heat conduction calculation,
and the results showed that the efficiency of OpenMP is far
lower than CUDA under the condition of single machine
parallel.

Inter-node cross communication

Intra-node hybrid communication CcPU

-
- M Uniform mem
Node 0

Pagelock mem

Node N

|
|
|
|
|
|
|
|
| MULTI-GPU WORKSTATION CLUSTER
|
|
|
|
|
|
|
|
|

FIGURE 2. Hardware model of cluster communication.

Combined with the above literature conclusions, it is a
reasonable choice to design an efficient, lightweight and
cross platform cluster communication architecture combin-
ing CUDA, Boost ThreadPool and Asio. The computing solu-
tion of multi GPU workstation cluster is generally divided
into three levels: inter node parallel, intra node parallel and
GPU parallel [43], as shown in Figure 2. It can be seen from
the topology structure that the intra-node communication

77193

IEEE Access

Y. Zhang, B. Hu: Strength Check of Aircraft Parts Based on Multi-GPU Clusters for Fast Calculation

includes two parts, concurrent execution of CPU in the node
and the parallel execution of GPU. In order to avoid data
congestion, the Boost Asio based on threadpool is used in
inter-node communication to complete the task of data trans-
mission between nodes with a fixed number of threads. Based
on the multi-GPU cluster framework, this section will elabo-
rate the parallel algorithm flow on multiple GPUs, including
pseudo-code and multi-GPU communication. The first part is
the task allocation of multi GPU based on message bus, which
describes the allocation model, data division and message
bus design in detail; the second part is the asynchronous
communication module based on Asio, which describes the
connection process of the server and the topological relation-
ship of each component.

A. MULTI-GPU TASK ALLOCATION OF THREAD POOL
BASED ON MESSAGE BUS

It can be seen from the preamble of this section that, for
the calculation intensive problem, the performance of code
execution on GPU can be much higher than that of CPU by
selecting appropriate parallel algorithm. At the same time,
due to the limited number of memory and stream processors
in a single GPU, now multi GPU cluster is used to achieve
higher acceleration ratio [44]. In order to ensure the univer-
sality and extensibility, a message-driven component design
inspiration is selected here, and the multithreading engine is
realized by the threadpool to ensure the concurrent execution
of tasks in different cores on the CPU. In the computing
node shown in Figure 2, all GPUs are called by the engine
module (class named Engng). In the sequence diagram shown
in Figure 3, it can be seen that the software framework used in
this paper is mainly composed of three categories: observer,
engine and data communicator. The observer contains spe-
cific algorithm and is called by Engng. in the initialization
stage, the observer registers messages with Engng, and after
receiving the messages, Engng stores the messages in the
message queue. Engng module, as a message bus, centrally
manages the interaction between the computing class and the
data communication class, and acts as an intermediary to send
and receive messages, so as to reduce the coupling between
algorithms and modules. This module is the key to asyn-
chronous heterogeneous level parallel of CPU-GPU. In the
initialization stage, it completes the creation of threadpool
and the segmentation of calculation data required by each
node. During the calculation, Engng finds and broadcasts the
objects related to the message according to the message type.
The data communicator class is responsible for managing
data communication between computing nodes which called
Inter-node cross communication. The data communicator that
invokes this computing node contains Boost Asio, which is
responsible for data interaction between nodes.

Once the observer completes the data division required
by the calculation of each GPU in the node, it sends a
message to inform that the operation has been completed,
and Engng will put each corresponding function into the
threadpool for asynchronous operation, and complete data

77194

reduction and message sending in the callback function. After
the calculation in one computing node is completed, the data
communicator calls the data in the observer and sends it to the
master node asynchronously. The send completion message
is referenced in the callback function to inform the engine
that the data transfer step has been completed. The dotted line
represents data input and the solid line represents data output.

Observer Engng M
| |
|

|

I I
| | _ Regist(NodeName+Topic) |
|

Initial Regist(FuncName+Topic)
| Add(FuncName+Topic)
| T Add(NodeName+Topic) :

Timeline

i T 1Al i !
| I:I | oc;te dart‘a rejuwred | |:| |:| | Create threadpool
NN Ny v each node HEaSy
R S — J—
_| Send message and _E[—I Send to or

| start the calculation
I Allocate data required
— T~ Tor GPUtalculation
| I S~ Call(Args...)

(N i’} i
e

I Call(Args...)

receive from
Callback(Args...) data

| | Call(Args...)

FIGURE 3. Sequence diagram of component calculation.

The most important steps in FIGURE 3 are task parti-
tioning and data division on the CPU. Under the hardware
configuration of 2-node and dual-GPUs per node, SpMV is
taken as an example to illustrate the task assignment prob-
lem of multi GPUs based on asynchronous operation. After
the bandwidth optimization in section 2.1, the sparse matrix
has been changed into the following banded sparse matrix,
which is expressed in the form of block matrix, as showed in
FIGURE 4. Computing node 0 is responsible for calculating
the first two lines, that is, the sub matrix A11-A23 is put
to computing node O for calculation. Computing node 1 is
responsible for the last two rows, which represents the task
level parallelism between nodes. The two GPUs inside the
node are respectively responsible for calculating any row
to represent the parallel level within the node. When the
matrix bandwidth is undersize, each GPU only needs to call
the SpMV function once, as shown in FIGURE 4a). Further
partitioning is needed when the matrix bandwidth is large,
and the computation is carried out in the form of flow [45]
to represent the internal parallel level of GPU, as shown
in FIGURE 4b).

Note that the number of computing nodes is N, the current
node is n, where n < N. the number of stream in each com-
puting node is Sy, and the number of GPU in each compute
node is i, where n<N. If SpMV is calculated in the n-th node,

the Sy-th stream on the i-th GPU corresponds to the submatrix
m<n

A(D. im + 1, 5), that is, the GPU will calculate all the data in

m=0
the row where the current submatrix is located. The advantage
of this scheme is that it is easy to implement the sum operation

VOLUME 8, 2020

Y. Zhang, B. Hu: Strength Check of Aircraft Parts Based on Multi-GPU Clusters for Fast Calculation

IEEE Access

I
I
GPUO A1) v |
Node } A Ty,
GPUI
A22 V) } _ Ay, F v,
a) GPUO A v. [Ay, *v,
Nodel 33 3 ! 4 v
43 3
GPUI A v |
44 | 44
I
Stream Stream Stream SyncStreams Sum
I
I
VdOCPUO A4, 4, 0 0 Vil [y e+ Ayt
Node !
b) a4, A, Ay O v, LI Ay * v+ Ay F v, + Ay, Fvy
T s T T T T A e * *
arvo | () A32 A, A, Vil Ay ¥ vy + Ay v+ Aty
Nodel o N | * *
GPUL 0 0 A43 ,44‘1 v, } A43 v+ A44 Yy
I

FIGURE 4. Data segmentation and task allocation in SpMV.

Algorithm 5 GPU Pseudo-Code Based on Multiple Streams
1. Create task structure and contents
. cudaHostAlloc & & cudamalloc
. For i=0:WorkloadNum
cudaMemcpyAsync(H2D)
. kernel K< grid, block, sharedSize, stream >>(...)
. put function into threadpool
cudaMemcpyAsync(D2H)
. cudaStreamAddCallback(stream,callbackfunc,
data,flag)
9. End For
10. Sum the the submatrices of the corresponding rows

© NN AW

of the Thrust library in a GPU, but the load imbalance will
occur when the bandwidth of the original matrix changes
greatly, and the hardware utilization is not easy to guarantee.
Due to the emergence of P2P technology [46], different GPU
memory can be directly connected through the PCIE bus,
so this paper applies the task structure and adopts a more
efficient multi-stream strategy, as shown in Algorithm 5.

Taking the current node n has s submatrix as an example,
it can be divided into s streams. The device number of the s-th
stream is s%iy, and the submatrix of the column number s/i,
is calculated. In the first step, the parameters of each device
in the calculation node are obtained first, and the submatrix is
divided according to the size of the matrix to form a number of
task structures. The task structure includes the host input data
pointer, the device data pointer, the stream number, device
number used by the current stream, and position index of
current block matrix in primitive matrix. After getting the
length of the input data in the task structure, the address space
is allocated in the lock page memory asynchronously, and
the task is delivered to the threadpool. Step 5-8 complete the
kernel function calculation according to the given flow and
device number, and the callback function waits for the data to
be returned. Step 10 evaluates the sum of the vector by row
number through Thrust [47].

For the above strategies, the following mathematical model
can be obtained. Assume a total of M streams in each time
step and process the data divided into N blocks. In each

VOLUME 8, 2020

stage, the calculation time for unit data is represented by ¢;,
the transmission time is represented by #;4ns—i. If step [takes
the most time in the calculation and recorded as t;, the total
execution time #;,4; is as follows. The value of j in the formula
isje[0,M]U £ 1.

-1 M-l
total = Z Ttrans—j +N-y+ Z tirans—j (13)
Jj=0 Jj=l+1

The expression of data processing capacity per unit time is as
follows.

N
DataperStep =1 M (14)
Hrans—j +N -1+ Z Yrans—j
j=0 Jj=I+1

Pipeline delay is defined as the time when data transmission
has been completed from the initial stage to the final stage:
M-2
delay =) " tirans—j (15)
0

Assuming that the operation time of each flow is the same,
expressed as t. The previous equation can be simplified as
follows.

M—1
toal =N 11+ Y tirans—j =N +M — 1)1 (16)
j=1
N
Datayersier = (33— 1)1 a7
delay = (M — 1) -t (18)

A typical example of linear stream is the pipelining problem.
It is proved that the pipeline scheduling problem is not suit-
able for the application of stream, and that the stream should
try to deal with the algorithm that the duration of each stage
is similar and the data is far longer than the pipeline length.
In reference [48], the slender elastic vehicle is simplified as
beam element to solve the vibration problem, it is decoupled
into an independent calculation process in three directions,
realizing the time overlap of memory replication and kernel
function execution, as shown in FIGURE 5.

GPU Serial Task Sequence
cudaMemcpy (H2D)

H2D D2H | |

Concurrent execution

/

FIGURE 5. The difference of computation time between serial and
asynchronous stream.

cudaMemcpy (D2H)

<+—Time saved—

GPU runtime timelin

|
F

¥Ilback
CPU runtime timelin

Perform other operations asynchronously

While the first stream executes the kernel function, the sec-
ond stream passes data into the GPU. Once the first stream

77195

IEEE Access

Y. Zhang, B. Hu: Strength Check of Aircraft Parts Based on Multi-GPU Clusters for Fast Calculation

returns data to the host, the second stream starts executing
the kernel function and waits for another stream to return after
the completion of the third stream of data into the operation.
Compared with the serial execution in GPU, the overall per-
formance can be further improved. Since the Kepler archi-
tecture, HyperQ technology makes it possible to run multiple
CPU cores or threads to start tasks on a GPU, which improves
the utilization of GPU in the form of multiple work queues
and avoids pseudo dependence.

B. CLUSTER COMMUNICATION DESIGN AND
OPTIMIZATION BASED ON BOOST.ASIO

In order to ensure the reliability and future expansibility of
the strength checking calculation framework in the rocket
flight mission, the communication module of the software
framework in this paper should have the following charac-
teristics. The data communication thread in the node should
not affect the stability of the main thread, and the real-time
computation is not affected by the communication block, so
as to guarantee the computational stability of the node itself.
In order to ensure the subsequent larger component strength
check, it should have strong expansibility. Due to the need
to communicate with multiple nodes and other file servers,
should have a high communication efficiency. To meet the
above requirements, this paper combines Boost.Asio with
Boost.Threadpool. Asio is a cross-platform library that can
be used on most operating systems and can support thousands
of concurrent connections simultaneously. It provides a set
of API that can support TCP socket, UDP socket and IMCP
socket. If necessary, it can be extended at any time to support
the required protocol.

start

Async_waitand |
pending

Kick the client
out of the list

Yes

Async_Read | g
Andstarta [«

timer

No Reset
deadline

Yes

Async_write
With threadpool

Add to output
list

|

Write_handle

FIGURE 6. Flow chart of communication module.

In the communication module flowchart shown in Figure 6,
the server maintains a message bus, which contains the

77196

BaseEngng CommonEngng TcpSession

Start(...),
Receive(...),
Delive(...).
/ Steady_timer
/ MsgBus_ptr
Buffer_queue

Read(...),
Delive(...),

Read(...),

FC™™ Delive(), /4

To_context
Threadpool ,
T /
! /
v BaseSession /

UdpSession

ServerEngng |e—Invoke and transfer data Start(...), / Start(...),
Read(..), f-—— =" Reccive(.),

Read(...), Delive(...) \ Delive(...).
Async_Wait(...), Instantiate with type M \ Steady_timer
\ MsgBus_ptr
\ Buffer_queue
- \

Shared_ptr

Delive...). <this>

\ SerialSession
instantiate \

\ Start(...),
1 Receive(...),

MsgBus .
e Addin Delive(...).

Join(...), Steady_timer
Leave(...), MsgBus_ptr
Read/Write(...) Buffer_queue

FIGURE 7. Invocation relationships and topology diagrams between
components.

a) slrmg4m1 b) Nasal824

¢) nos4 d) nos1

.:;#,/

e) s3rmt3m3

g) besstk23

FIGURE 8. Grid structure of partial test cases.

h) bodyy4

shared_ptr of all TCP/UDP/Serial instances. The server lis-
tens asynchronously to a port, keeps listening after connect-
ing to a client, and creates the session class to send and
receive data. When other components send a notification
to call the function Read(), and at the same time call the

VOLUME 8, 2020

Y. Zhang, B. Hu: Strength Check of Aircraft Parts Based on Multi-GPU Clusters for Fast Calculation

IEEE Access

TABLE 1. Matrix market.

Matrix number The A non-zero Symmetry/ Conditio
and name row value positivity n
number number

C3D8 122208 10641602 Symmetry/ 6.73¢10
positivity

2D3N 8076 430909 Symmetry/ 6.1e6
positivity

besstk03 112 640 Symmetry/ 6.7913¢6
positivity

besstk14 1806 63454 Symmetry/ 1.3¢10
positivity

bosstk23 3134 45178 Symmetry/) (45612
positivity
Symmetric /

besstm34 588 24270 nonpositive 1.133e6
definite

bodyy4 19366 134208 Symmetry/ 8.05¢2
positivity

nasal824 1824 39208 Symmetry/ 6906
positivity

nasa4704 4704 104756 Symmetric /-y
nonposmve

NOS1 237 1017 Symmetry/ 1.9915¢7
positivity

NOS4 100 594 Symmetry/ - 7003
positivity

slrmg4ml 5489 262411 Symmetry/ 1.81e6
positivity

s3rmt3m3 5357 207123 Symmetry/ 2.4e10
positivity

5ts4098 4098 72356 Symmetry/) 1508
positivity

nd24k 72000 2.87¢7 Symmetry/
positivity

TABLE 2. The influence of bandwidth reduction on the bandwidth and
solution time of linear equations.

approximates the

original parameter RCM minimum degree
Matrix of freedom
Band elapsed Band total Band total
width P width elapsed width elapsed
bcosgtk 7 0.3992 3 0.056 5 0.17
bclsjtk 161 14(;'85 199 34042 1712 123302
b°§f‘tm 410 87.489 64 29195 1781 12.155
bczsgtk 449 1628'8 410 367872 3113 220.143
b"jyy 16818 8362'34 248 826399 17463 128.93
D3N 7614 5271‘98 23 365211 7970 79.863
B gypy 20034 5 1472 5325 9876
m3 39
nd24k 3323 10566'9 1418 630.809 4096 28.238

run() function of io_context to start running the program.
The deadline of asynchronous read operation is set as a time
step, that is, when the data cannot be accepted in a time
step, the callback function will close the communication class
instance and delete the client from list. If the receive operation
does not timeout, the relevant operation will be carried out,
and the io_context will be suspended waiting for the next
message reading. The logic of write operation is similar to
that of read operation, but when calling asynchronous write

VOLUME 8, 2020

)

a) besstk23

t3m3

e) s3rm

f) nd24k

FIGURE 9. Comparison of the distribution of reduced matrix elements in
the test set.

function, it needs to consider whether the output queue has
been cleared. If not, it is necessary to send the original data
before the data transmission.

A basic message framework is given here, as shown in
FIGURE 7. Where the dashed lines represent derived rela-
tionships and the solid lines represent associations such as
invocation or instantiation. It can be seen from the figure that
BaseEngng and BaseSession are both atomic components
that derive different types of entity components. BaseEngng
derived the communication classes ServerEngng and Com-
monEngng, and maintained their own io_context instance and
threadpool instance. BaseSession derive various instances of
communication classes and realize polymorphism by calling
the same function interface. CommonEngng is responsible for

77197

IEEE Access

Y. Zhang, B. Hu: Strength Check of Aircraft Parts Based on Multi-GPU Clusters for Fast Calculation

184
164 |:| Other Peripheral in Reorder
B8] Qsort in Reorder
144 RS Reorder SpMV
Other Peripheral Operations
124 1 Peripheral SpMV
E 104
@
a) E ¢
—
6
44
2_
0 T T
203N (CPU) 2D3N(GPU)
9 . .
[Other Peripheral in Reorder
g m Qsort in Reorder
RS Reorder SpMV PRGN,
7 422 Other Peripheral Opergtishsxe
Peripheral SpMV
6 -
©
<) £ 4]
3
94
14
0

T T
bodyy4 (CPU) bodyy4 (GPU)

1400

1200

1000

800 4

Time (ms)

600

400

200 4

0 T

350 4

300

[other Peripheral in Reorder
B2 Qsort in Reorder

Reorder SpMV

Other Peripheral Operations
[1 Peripheral SpMV

250

B2

=]

S
1

b)

o
=]
1

Time (ms)

100

504

csusl(m) wusl(uvu
Other Peripheral in Reorder
Qsort in Reorder |
Reorder SpMV

777 Other Peripheral
Peripheral SpMV

(N1

d)

Time (ms)

T T
nasa4704 (CPU) nasa4704 (GPU)

[Other Peripheral in Reorder
Qsort in Reorder

Reorder SpMV

Other Peripheral Operations
Peripheral SpMV

Fm

nd24k (CPU)

T
nd24k (GPU)

FIGURE 10. Comparison of CPU/GPU time consumption for some test cases.

managing all message buses, while ServerEngng maintains a
single messagebus for the communication class to manage all
instances derived from BaseSession.

In the algorithm design, the calculation of element matrix
and the parallel solution of linear equations are a series of
steps repeated on a data set. When cluster computing is used,
the data should be separated along one or more dimensions
and distributed to different computing nodes. If there is no
dependency between the data, it is a simple problem of data
segmentation, which can maximize the potential speedup
ratio. Unfortunately, there is data dependency among the
calculation nodes when solving the linear equations, and the
data stored among the nodes needs to be exchanged in each

77198

calculation step. Referring to the existing TCP/IP network
characteristics and GPU video memory bandwidth character-
istics, the implementation platform is homogeneous and has
a single port all two-way communication connection, and the
problem parameters are described as follows:

N is the number of cells in each dimension.

k is the number of cells in each group along the decompo-
sition density.

P is the number of calculation nodes.

tcomp 15 the cost of one update in each cell.

t.omm 1S the communication cost between two computing
nodes.

tstart 18 delay caused by communication start.

VOLUME 8, 2020

Y. Zhang, B. Hu: Strength Check of Aircraft Parts Based on Multi-GPU Clusters for Fast Calculation

IEEE Access

Assuming that a total of P = N /k groups are mapped to
this node in the one-dimensional decomposition, and N is
divisible by k, the execution and communication costs of a
single node at each time step are:

N * N N2
complD = ? N Leomp = thomp (19)
commlD = 2 (tmm +)N) (20)

In two-dimensional decomposition, each node processes k>
cells, P = N2/k%. The execution and communication costs
of a single node in each time step are as follows:

2
compZD = k2*tc()np = ?tcomp (21)

* * N
comm2D = 4 (tsmr; + tcommk) =4\ Lstare + tcommﬁ
(22)

Similarly, we can deduce the execution and communication
cost of each node processing k> cells under three-dimensional
decomposition

N3
comp3D = k3*lcomp = ?tcomp (23)

comm3D = 6 (W n z;z,mmkz) (24)

According to the relationship between each dimension calcu-
lation and communication cost, the optimal threshold value
of each dimension decomposition can be derived:

comml1D + complD < comm2D + comp2D

2
= tjommN(l - ﬁ) < Istart
comm?2D + comp2D < comm3D + comp3D
. N N2
= 4 tstart + tmmmﬁ + ?tcomp
N3
<6 (tstarz + tjommkz) + ?tcomp

N
= |:t:0mm (4ﬁ - 6*k2> - 2tstarti|

NZ
< ? (N - 1)tcomp

At the beginning of calculation, N, P and K are known,
so when the time of communication and calculation is
taken, the optimal geometric decomposition method can be
obtained.

IV. NUMERICAL EXAMPLES ANALYSIS

A. TEST PLATFORM AND TEST SUITE

The purpose of this article is to realize the rapid calculation of
the strength of aircraft structural components, and to provide
a reference for the decision of subsequent flight missions and
the reconstruction of guidance instructions. For the compo-
nents that affect the flight attitude, the digital twin system
should ensure that the aircraft system does not diverge during
the calculation time of strength check and the subsequent

VOLUME 8, 2020

i Solving Time Consuming

Matrix analysis and decomposition
12 Memory Copy

Bandwidth Reduction Preprocessing

Consumption Time (ms)

0 T T T T
CG PCG SSOR-PCG CPU

besstk03

FIGURE 11. Comparison of time consumption of different algorithms for
besstko3.

decision-making time. The guidance and control system of
aircraft may diverge in several periods. In order to ensure
sufficient time for subsequent guidance reconstruction and
mission decisions, a guidance cycle is selected here, that is,
25ms as the real-time judgment criterion.

The experimental platform is a computing cluster com-
posed of 2 nodes, each of which includes Intel E3
1230 V5 with 3.4G Hz and two GeForce GTX1060 graph-
ics cards. Due to funding constraints, Tesla GPUs with
higher double-precision computing capabilities will be used
in future tests. In order to illustrate the impact of bandwidth
reduction on the speed of solving sparse linear equations
and ensure generality, two components (C3D8 and 2D3N)
in engineering applications and part of sparse matrices in
sparse matrix library [50] are selected as test sets to verify
the parallel algorithm of RCM and the parallel algorithm of
linear equations in the next section. The selected test matrix
attributes are shown in TABLE 1. C3D8 represents a model
consisting of a three-dimensional hexahedron and eight-node
unit, which is a load-bearing component in the body. The
simplified heat-preventing component 2D3N is composed of
a two-dimensional three-node element. It should be noted
that neither of the above two types of units can accurately
simulate non-linear problems. However, the main studio of
this article completes the real-time strength check based on
CUDA acceleration, focusing on completing the algorithm
design and performance testing first. The initial work of the
two models, from element division to total stiffness matrix
assembly, is completed in ABAQUS, and output through
.mtx file.

The above test cases include thin shell and truss struc-
ture of slender aircraft, simplified slender beam, truss struc-
ture applicable to complex aircraft interior, and thin plate
structure similar to simplified wing, etc. Some of the typical
structures are shown in FIGURE 8.

B. TEST RESULTS AND ANALYSIS
The experiment first validates the parallel RCM algo-
rithm based on linear algebra, which shows the fastness of

77199

IEEE Access

Y. Zhang, B. Hu: Strength Check of Aircraft Parts Based on Multi-GPU Clusters for Fast Calculation

Solving Time Consuming

Matrix analysis and decomposition
Memory Copy
Bandwidth Reduction Prep g

120 4

,_.

=3

>
1

oo
S
1

[=1]
3
1

a)

<
1

Consumption Time (ms)

3]
=
1

T T T
G PCG SSOR-PCG CPU
nasa4704

1300
1200 1
1100 A
1000 +
900
800
700 4
600
500
400
300
200 1
100 4
0 T T T T
CG PCG SSOR-PCG CPU

bodyy4

Solving Time Consuming
Matrix analysis and decd
Memory Copy
Bandwidth Reduction Prept

%
3
%
%
<
0.1

oV
=
o

::'.
SR
505
0%:
5

<

0%
200
IR

$oS
%%
XX
OB
505
e
2!

%
25
o
RN
Stetedetetels
5 byl
tateetates:

i,
%
Dol el

%
2525

%%

hotet

<0
%

T
3%
e
Petelodeds
Pe%e%s
5
<5
%5

< X
e
<
%
%5
ot
<%
K%

<
0%
b
{
4%
et
<
5

A
9.0
5
o
0.0
25555
55
KR

7%
ot
353
5
55

Polat

25055

55
52555
55

<o
9,

Consumption Time (ms)

Solving Time Consuming

3007 Matrix analysis and decomposition
Memory Copy
’EEZSO_ Bandwidth Reduction Prep ng
B
£ 200
o
o
S 1rp 4
S 150
b) -~
-
o,
= 100
92}
o
(@}
© 50
U T T T T
6 PCG SSOR-PCG CPU
slrmg4ml
Solving Time Consuming
140 . : .
Matrix analysis and dec bn
ey Memory Copy
175] “ 4
B Bandwidth Reduction Prep hg
2 100
o
=
o 807
2
d) o, 60
=
=
2 404
o
&
20 4
0 T T T T
e PCG SSOR-PCG CPU
sts4098

FIGURE 12. Time consuming situation of partial large sparse matrix with different algorithms.

the method. Next, the overall solution time of different matri-
ces is compared, and the components of the solution time are
analyzed to illustrate the fastness of the parallel algorithm.
Finally, the correctness of the algorithm is verified.

Taking RCM and the approximate minimum degree algo-
rithm as examples, Cholesky decomposition is adopted for
the positive definite matrix and QR decomposition is adopted
for the general matrix. The time spent on CPU after band-
width optimization is compared as shown in TABLE 2. It can
be concluded from TABLE 2 that the bandwidth reduction
is very effective in reducing the solution time of linear
equations. Among them, the row number of matrix No. 12
is smaller than that of matrix No. 13, but the solution time is
longer. The main reason is that the sparsity of this matrix is
lower. In addition, RCM algorithm is not effective in accel-
erating the solution of linear equations in several examples.
The reason is that the row number of these matrix is massive
with poor sparseness. The above part of bandwidth reduction
schematic diagram is shown in FIGURE 9. The first column

77200

represents the original element distribution, the second col-
umn is the matrix element distribution optimized by RCM
algorithm, and the third column is the matrix element distri-
bution optimized by AMD algorithm [25], [26], [51].

Considering that GPU-based parallel algorithm does not
have a good acceleration effect on small-scale matrix, some
test cases close to the structure of aircraft parts in the test
set in TABLE 2 are taken as the comparison between CPU
operation time and GPU time, as shown in FIGURE 10.

It can be seen from the above figure that for the matrix
of bodyy4 and nasa4704, which have small dimensions and
a small average bandwidth, it is not appropriate to use the
GPU-based RCM parallel algorithm designed in this paper,
which takes even more time than the CPU version. The data
interaction between the CPU and the GPU requires extra time,
and cannot allocate enough threads to hide the overhead of
data transmission. For larger-scale examples such as nd24k,
the RCM algorithm designed in this paper has great advan-
tages, and the acceleration ratio ranges from 7-14. From the

VOLUME 8, 2020

Y. Zhang, B. Hu: Strength Check of Aircraft Parts Based on Multi-GPU Clusters for Fast Calculation

IEEE Access

composition of computation time, Osort and SpMV operation
take up most of the time of RCM algorithm, and GPU has
better acceleration performance for both algorithms. If a three
dimensional node has six degrees of freedom, considering
the time consumption of other calculation parts, the current
acceleration effect can meet the real-time calculation of the
aircraft finite element model with about 2000 nodes, but the
matrix beyond this scale will not guarantee the real-time
calculation with the step size of 25ms. Even so, the parallel
bandwidth optimization algorithm can still be applied to the
fault diagnosis of aircraft parts in limited time, which can save
a lot of time for subsequent calculations.

In order to prove the performance of the algorithm and
the architecture, the examples in TABLE 2 are used for time
comparison. The serial program adopts Lapack algorithm
package and Eigen library as contrast. By using partial par-
allel library and analyzing the time consuming of various
linear equation solving algorithms, the algorithm with the
least time-consuming on CPU is selected as the test bench-
mark. The stable double-conjugate gradient algorithm is not
compared with other parallel iterative methods because of its
large single-step calculation and low efficiency for symmetric
positive definite matrix. Part of the test results of the test set
are shown in FIGURE 11-FIGURE 12. The difference in the
bandwidth optimization preprocessing time is due to the use
of different bandwidth optimization algorithms.

The test results show that when the number of matrix rows
is less than 1000, the CPU computing time is within 10 ms,
and the conjugate gradient parallel algorithm based on
CUDA has no advantage. Especially for small matrix such as
besstk03, the efficiency of parallel algorithm is much lower
than that of CPU due to the data transmission. However, when
the number of matrix rows reaches 4000, the parallel algo-
rithm gradually begins to show its advantages, as FIGURE 7
shows. For example, the acceleration ratio can reach 3 when
solving sts4098, bodyy4 and some other examples. With the
increase of matrix dimension, the time-consuming proportion
of matrix analysis and decomposition steps in the total time
of preprocessing algorithm is increasing, while the propor-
tion of iterative solution time is decreasing. The reason is that
LU and Cholesky decomposition are path dependent. Only
after the previous row or column has completed the calcu-
lation can the next step be calculated. The available threads
also change with the bandwidth, and the time-consuming
increases sharply with the expansion of matrix dimension.
In addition, the time-consuming results of two parallel pre-
processing algorithms show that the preprocessing technol-
ogy can effectively reduce the time consuming of solving
linear equations. When the line equations are larger, the cal-
culation acceleration is more obvious.

As can be seen from FIGURE 13, the pretreatment tech-
nology can effectively reduce the initial residual, signifi-
cantly reduce the number of iterations, and is not prone
to divergence. The difference between FIGURE 13b) and
FIGURE 13d) examples is obvious. It can be seen from
TABLE 2 that the condition numbers of both matrices are

VOLUME 8, 2020

o] T e t 4 = (G
r -« PCG . ‘E « PCG
E \wuw-'. . (0 E 3000000 . i
2wl ¢ E| i
2 =11
&) 600 .’. '- | é
wo{" % 1o
m‘.: .
o \ & 0 00D
! o Il‘O)‘f“atiOI‘l‘” tlmeé o Iteration times
a) nos4 b) slrmg4ml
1100 0000
I 1 G
i - CG 1 « PCG
-y - | _ .
3 A =] .
é | ‘q:“ _? - \ .._. :
==] |) - L]
F o = o v,
\ % t
Y, | e .
. tea L '
| 10 100 i 0o o0
[teration times Iteration times
c) besstk16 d) besstk27

FIGURE 13. Comparison of iteration times of different iteration methods
for several examples.

relatively large, so they are sensitive to the calculation trun-
cation error in the iteration. However, the preprocessing
technology improves the matrix attributes and computational
efficiency by reducing the number of conditions.

V. CONCLUSION AND FUTURE WORK

In this paper, a large sparse linear algebra parallel band-
width optimization based on RCM algorithm and parallel pre-
processing conjugate gradient iteration method is proposed.
A data segmentation model is established in a multi GPU
Clusters, and the algorithm time-consuming test is carried out
with some examples in the sparse matrix library. The specific
contents are as follows:

The parallel RCM algorithm based on graph theory is
analyzed and designed. By using BFS and graph theory,
the matrix is equivalent to undirected vertex graph, and the
depth of tree graph is changed to reduce the bandwidth.
The custom SpMYV algorithm realizes the fast parent node
marking. An example of the sparse matrix library of the
university of Florida, which is close to the parts of the aircraft,
is used to analyze the composition of the parallel bandwidth
optimization algorithm and verify the rapidity of the parallel
bandwidth optimization algorithm.

Aiming at the solution algorithm of the current mainstream
large linear equations, the parallel iterative solution algo-
rithm of ICCG is implemented, and the calculation amount
of each iteration is analyzed. By comparing the test set
with the traditional CPU parallel solution library, the time
consumption of each calculation step under different matrix
dimensions is analyzed in detail. The results show that the
pretreatment technique can effectively reduce the number
of iterations and reduce the solution time for conventional
structural components.

77201

IEEE Access

Y. Zhang, B. Hu: Strength Check of Aircraft Parts Based on Multi-GPU Clusters for Fast Calculation

The asynchronous parallel architecture of multi-GPU clus-
ters is designed, and the structural examples in the sparse
matrix library of the University of Florida prove that the
design method in this paper can be applied to the rapid
calculation of the structural strength of aircraft parts.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

E. J. Oliveira, P. Gasbarri, and I. M. da Fonseca, “Flight dynamics
numerical computation of a sounding rocket including elastic deformation
model,” in Proc. AIAA Atmos. Flight Mech. Conf., Dallas, TX, USA,
Jun. 2015, pp. 1-13.

E. Glaessgen and D. Stargel, “The digital twin paradigm for future NASA
and U.S. air force vehicles,” in Proc. 53rd AIAA/ASME/ASCE/AHS/ASC
Struct., Struct. Dyn. Mater. Conf., Honolulu, HI, USA, Apr. 2012, pp. 1-15.
B. Ravishankar, B. Sankar, and R. Haftka, “Homogenization of inte-
grated thermal protection system with rigid insulation bars,” in Proc. 51st
AIAA/ASME/ASCE/AHS/ASC Struct., Struct. Dyn., Mater. Conf., Orlando,
FL, USA, Apr. 2010, p. 2687.

T. D. Skinner, S. Datta, A. Chattopadhyay, and A. Hall, “Biaxial fatigue
damage in quasi isotropic laminates,” in Proc. AIAA Scitech Forum,
Orlando, FL, USA, Jan. 2020, pp. 1-10.

J. Smith, K. Hamm, Jr., K. Imtiaz, and I. S. Raju, “Lesson learned from
recent space flight assessments,” in Proc. AIAA Scitech Forum, Orlando,
FL, USA, Jan. 2020, pp. 1-19.

K. R. R. Venkatesan, A. Rai, T. G. Stoumbos, D. Inoyama, and
A. Chattopadhyay, “Finite element based damage and failure analysis of
honeycomb core sandwich composite structures for space applications,” in
Proc. AIAA Scitech Forum, Orlando, FL, USA, Jan. 2020, pp. 1-10.

S. Cook, CUDA Programming: A Developer’s Guide to Parallel Comput-
ing With GPUs. San Francisco, CA, USA: Morgan Kaufmann, 2012.

J. V. T. Risso, M. Bauer, P. R. de Carvalho, U. Rude, and D. Weingaertner,
“Scalable GPU communication with code generation on stencil applica-
tions,” in Proc. 31st Int. Symp. Comput. Archit. High Perform. Comput.
(SBAC-PAD), Campo Grande, Brazil, Oct. 2019, pp. 88-95.

H. Binxing, L. Xinguo, Q. Hao, and L. Zenghao, ‘“‘Accelerated solution
of stiffness matrix for isoparametric elements based on CUDA,” in Proc.
IEEE Int. Conf. Signal Process., Commun. Comput. (ICSPCC), Xiamen,
China, Oct. 2017, pp. 1-4.

S. Wang, X. Yan, Y. Zhang, D. Wu, and D. Xie, “Research on EBE-
FEM realized by CUDA applying to electromagnetic field analysis,” in
Proc. IEEE Student Conf. Electr. Mach. Syst., HuZhou, China, Dec. 2018,
pp. 14.

A.T. Corrigan, A. Kercher, J. Liu, and K. Kailasanath, “Jet noise simula-
tion using a higher-order discontinuous Galerkin method,” in Proc. AIAA
Aerosp. Sci. Meeting, Jan. 2018, p. 1247.

A. Dziekonski and M. Mrozowski, “GPU acceleration of block Krylov
methods for FEM problems in electromagnetics,” in Proc. IEEE MTT-S
Int. Conf. Numer. Electromagn. Multiphys. Modeling Optim. RF, Microw.,
THz Appl. (NEMO), Seville, Spain, May 2017, pp. 1-3.

L. Mangani, G. Romanelli, A. Gaddai, and E. Casartelli, “Comparison
of acceleration techniques on CFD open-source software for aerospace
applications,” in Proc. 22nd AIAA Comput. Fluid Dyn. Conf., Dallas, TX,
USA, Jun. 2015, pp. 1-14.

A. Basermann, B. Reichel and C. Schelthoff, ““Preconditioned CG methods
for sparse matrices on massively parallel machines,” Parallel Comput.,
vol. 23, no. 3, pp. 381-398, 1997, doi: 10.1016/S0167-8191(97)00005-7.
J. Bolz, I. Farmer, E. Grinspun, and P. Schroder, ““Sparse matrix solvers on
the GPU: Conjugate gradients and multigrid,” ACM Trans. Graph., vol. 22,
pp. 171-178, Jul. 2003, doi: 10.1145/1198555.1198781.

N. Bell and M. Garland, ““Efficient sparse matrix-vector multiplication on
CUDA,” NVIDIA, Santa Clara, CA, USA, Tech. Rep. NVR-2008-004,
2008.

A. Zaharovits, S. Stegaru, M. Carabas, E.-I. Slusanschi, and M.-V. Pricop,
“Shared memory parallelization of the conjugate gradient linear system
solver of a FEM topology optimization eode,” in Proc. 14th RoEduNet Int.
Conf.-Netw. Educ. Res. (RoEduNet NER), Craiova, Romania, Sep. 2015,
pp. 143-151.

L. P. Amorim, R. C. Mesquita, T. D. S. Goveia, and B. C. Correa,
“Node-to-node realization of meshless local Petrov Galerkin (MLPG)
fully in GPU,” IEEE Access, vol. 7, pp. 151539-151557, 2019, doi:
10.1109/ACCESS.2019.2948134.

77202

(19]

[20]

(21]

(22]

(23]

(24]

(25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

[36]

(371

(38]

(39]

V. Volkov, D. Barbieri, J. Hogg, and A. Charara. CUBLAS Library User
Guide, V10.1th ed. NVIDIA, Santa Clara, CA, USA. [Online]. Available:
https://docs.nvidia.com/pdf/CUBLAS_Library.pdf

L. W. Chang, P. Valero-Lara, and I. Martinez-Pérez. CUSPARSE
Library, V10.1th ed. Santa Clara, CA, USA. [Online]. Available:
https://docs.nvidia.com/pdf/CUSPARSE_Library.pdf

W. Su, C. K. King, S. R. Clark, E. D. Griffin, J. D. Suhey, and
M. G. Wolf, “Dynamic beam solutions for real-time simulation and control
development of flexible rockets,” J. Spacecraft Rockets, vol. 54, no. 2,
pp. 403416, Mar. 2017.

E. Cuthill and J. McKee, “Reducing the bandwidth of sparse symmet-
ric matrices,” in Proc. 24th Nat. Conf., New York, NY, USA, 1969,
pp. 157-172.

A. Shrestha and I. Senocak, ‘“Multi-level parallel algorithm to solve the
Eikonal equation with the fast sweeping method,” in Proc. 23rd AIAA
Comput. Fluid Dyn. Conf., Denver, CO, USA, Jun. 2017, pp. 1-10.

A. Azad, M. Jacquelin, A. Buluc, and E. G. Ng, “The reverse
Cuthill-McKee algorithm in distributed-memory,” in Proc. IEEE Int. Par-
allel Distrib. Process. Symp. (IPDPS), Orlando, FL, USA, May 2017,
pp. 22-31.

M. Fahrbach, G. L. Miller, R. Peng, S. Sawlani, J. Wang, and S. C. Xu,
“Graph sketching against adaptive adversaries applied to the minimum
degree algorithm,” in Proc. IEEE 59th Annu. Symp. Found. Comput. Sci.
(FOCS), Paris, France, Oct. 2018, pp. 101-112.

S. Singh, R. Srivastava, V. Kumar, and S. Agarwal, “An approximate
algorithm for degree constraint minimum spanning tree,” in Proc. Int.
Conf. Comput. Commun. Technol. (ICCCT), Allahabad, India, Sep. 2010,
pp. 687-692.

S. L. G. de Oliveira and A. A. A. M. de Abreu, “An evaluation of
pseudoperipheral vertex finders for the reverse Cuthill-McKee method for
bandwidth and profile reductions of symmetric matrices,” in Proc. 37th
Int. Conf. Chilean Comput. Sci. Soc. (SCCC), Nov. 2018, pp. 1-9.

A. George and J. W. H. Liu, Computer Solution of Large Sparse Positive
Definite Systems. Englewood Cliffs, NJ, USA: Prentice-Hall, 1981.

T. N. Rodrigues, M. C. S. Boeres, and L. Catabriga, “A non-speculative
parallelization of reverse Cuthill-McKee algorithm for sparse matrices
reordering,” in Proc. Federated Conf. Comput. Sci. Inf. Syst., Sep. 2017,
pp. 527-536.

A. Bulug and K. Madduri, “Parallel breadth-first search on distributed
memory systems,” in Proc. Int. Conf. High Perform. Comput., Netw.,
Storage Anal. (SC), Seatle, WA, USA, 2011, pp. 1-12.

K. Ueno, T. Suzumura, N. Maruyama, K. Fujisawa, and S. Matsuoka,
“Efficient breadth-first search on massively parallel and distributed-
memory machines,” Data Sci. Eng., vol. 2, no. 1, pp. 22-35, Mar. 2017,
doi: 10.1007/s41019-016-0024-y.

A. Kameari, “Improvement of ICCG convergence for thin elements
in magnetic field analyses using the finite-element method,” IEEE
Trans. Magn., vol. 44, no. 6, pp. 1178-1181, Jun. 2008, doi: 10.1109/
TMAG.2007.916501.

T. White, Hadoop: The Definitive Guide, 4th ed. Sebastopol, CA, USA:
O’Reilly, 2009.

J. Zhou, Y. Chen, W. Wang, S. He, and D. Meng, “A highly reliable
metadata service for large-scale distributed file systems,” IEEE Trans.
Farallel Distrib. Syst., vol. 31, no. 2, pp.374-392, Feb. 2020, doi:
10.1109/TPDS.2019.2937492.

K. Kaur, S. Garg, N. Kumar, G. S. Aujla, K.-K.-R. Choo, and
M. S. Obaidat, “An adaptive grid frequency support mechanism for energy
management in cloud data centers,” IEEE Syst. J., vol. 14, no. 1,
pp. 1195-1205, Mar. 2020, doi: 10.1109/JSYST.2019.2921592.

A. Wakde, P. Shende, S. Waydande, S. Uttarwar, and G. Deshmukh,
“Comparative analysis of Hadoop tools and spark technology,” in Proc.
4th Int. Conf. Comput. Commun. Control Automat. (ICCUBEA), Pune,
India, Aug. 2018, pp. 1-4.

A. V. Hazarika, G.J. S. R. Ram, and E. Jain, ‘“‘Performance comparision of
Hadoop and spark engine,” in Proc. Int. Conf. I-SMAC, Palladam, India,
Feb. 2017, pp. 671-674.

M. Axtmann, A. Wiebigke, and P. Sanders, ‘“‘Lightweight MPI communi-
cators with applications to perfectly balanced quicksort,” in Proc. IEEE
Int. Parallel Distrib. Process. Symp. (IPDPS), Vancouver, BC, Canada,
May 2018, pp. 254-265.

S. Pellegrini, R. Prodan, and T. Fahringer, “A lightweight C++ interface
to MPL,”” in Proc. 20th Euromicro Int. Conf. Parallel, Distrib. Netw.-Based
Process., Feb. 2012, pp. 3-10.

VOLUME 8, 2020

http://dx.doi.org/10.1016/S0167-8191(97)00005-7
http://dx.doi.org/10.1145/1198555.1198781
http://dx.doi.org/10.1109/ACCESS.2019.2948134
http://dx.doi.org/10.1007/s41019-016-0024-y
http://dx.doi.org/10.1109/TMAG.2007.916501
http://dx.doi.org/10.1109/TMAG.2007.916501
http://dx.doi.org/10.1109/TPDS.2019.2937492
http://dx.doi.org/10.1109/JSYST.2019.2921592

Y. Zhang, B. Hu: Strength Check of Aircraft Parts Based on Multi-GPU Clusters for Fast Calculation

IEEE Access

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

T. Fukuoka, W. Endo, and K. Taura, ““An efficient inter-node communica-
tion system with lightweight-thread scheduling,” in Proc. IEEE 21st Int.
Conf. High Perform. Comput. Commun., IEEE 17th Int. Conf. Smart City,
IEEE 5th Int. Conf. Data Sci. Syst. (HPCC/SmartCity/DSS), Zhangjiajie,
China, Aug. 2019, pp. 687-696.

X. Guo, J. Wu, Z. Wu, and B. Huang, ‘‘Parallel computation of aerial target
reflection of background infrared radiation: Performance comparison of
OpenMP, OpenACC, and CUDA implementations,” IEEE J. Sel. Topics
Appl. Earth Observ. Remote Sens., vol. 9, no. 4, pp. 1653-1662, Apr. 2016,
doi: 10.1109/JSTARS.2016.2516503.

V. Sivanandan, V. Kumar, and S. Meher, “Designing a parallel algorithm
for heat conduction using MPI, OpenMP and CUDA,” in Proc. Nat.
Conf. Parallel Comput. Technol. (PARCOMPTECH), Bengaluru, India,
Feb. 2015, pp. 1-7.

Y. Fang and Q. Chen, ““A real-time and reliable dynamic migration model
for concurrent taskflow in a GPU cluster,” Cluster Comput., vol. 22, no. 2,
pp- 585-599, Jun. 2019, doi: 10.1007/s10586-018-2866-8.

S. Lin and Z. Xie, “A Jacobi_PCG solver for sparse linear systems
on multi-GPU cluster,” J. Supercomput., vol. 73, no. 1, pp. 433-454,
Jan. 2017, doi: 10.1007/s11227-016-1887-4.

J. Sanders and E. Kandrot, CUDA By Example: An Introduction to General-
Purpose GPU Programming, 1st ed. Reading, MA, USA: Addison-Wesley,
2010, pp. 38-46.

C. Reaifio and F. Silla, “On the support of inter-node P2P GPU memory
copies in tCUDA,” J. Parallel Distrib. Comput., vol. 127, pp. 28-43,
May 2019, doi: 10.1016/j.jpdc.2018.12.011.

A. V. George, S. Manoj, S. R. Gupte, S. Mitra, and S. Sarkar, “Thrust+-+:
Extending thrust framework for better abstraction and performance,” in
Proc. IEEE 24th Int. Conf. High Perform. Comput. (HiPC), Dec. 2017,
pp. 368-377.

B. Hu and L. Xingguo, “Real-time simulation and optimization of elastic
aircraft vehicle based on multi-GPU workstation,” IEEE Access, vol. 7,
pp. 155659-155670, 2019, doi: 10.1109/ACCESS.2019.2946684.

G. R. L. Silva, R. R. De Medeiros, B. R. A. Jaimes, C. C. Takahashi,
D. A. G. Vieira, and A. De Padua Braga, “CUDA-based parallelization
of power iteration clustering for large datasets,” IEEE Access, vol. 5,
pp. 27263-27271, 2017, doi: 10.1109/ACCESS.2017.2765380.

VOLUME 8, 2020

[50] T.A.Davisand Y. Hu, “The university of florida sparse matrix collection,”

ACM Trans. Math. Softw., vol. 38, no. 1, pp. 1-25, Nov. 2011.

[S1] P. R. Amestoy, T. A. Davis, and I. S. Duff, “Algorithm 837: AMD, an

L]

o~

bk e b T b

approximate minimum degree ordering algorithm,” ACM Trans. Math.
Softw., vol. 30, no. 3, pp. 381-388, Sep. 2004.

YUHUA ZHANG received the B.S. degree from
Xi’an Technological University, Xi’an, China,
in 2013. She is currently a Teacher at the School
of Computer Science and Technology, Baoji Uni-
versity of Arts and Sciences. Her current research
interests include big data architecture design, par-
allel algorithm design, and cloud computing.

BINXING HU received the B.S. and M.S. degrees
from the Kunming University of Science and
Technology, Kunming, China, and the Ph.D.
degree from Northwestern Polytechnical Uni-
versity, Xi’an, China, in 2020. He is currently
a Researcher at Aerospace System Engineering
Shanghai. His current research interests include

"= flight dynamics, reentry guidance, and parallel
f '# programming and applications.

77203

http://dx.doi.org/10.1109/JSTARS.2016.2516503
http://dx.doi.org/10.1007/s10586-018-2866-8
http://dx.doi.org/10.1007/s11227-016-1887-4
http://dx.doi.org/10.1016/j.jpdc.2018.12.011
http://dx.doi.org/10.1109/ACCESS.2019.2946684
http://dx.doi.org/10.1109/ACCESS.2017.2765380

