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ABSTRACT In this paper, we first present a scheme for teleporting an unknown four-qubit cluster state via
a cluster state chain between two distant nodes, which do not share entanglement pairs directly. Adjacent
nodes are linked by a partially entangled four-qubit cluster state with each other. In our scheme, we deduce
the relationship between the coefficients of the entangled cluster states and the success probability of
teleportation. Moreover, we derive the unitary matrixes for establishing direct channel between two distant
nodes, which reduce the computational complexity and resource consumption significantly. By performing
entanglement swapping simultaneously, our scheme is more flexible and efficient than most existing
schemes.

INDEX TERMS Multi-hop teleportation scheme, four-qubit cluster state, quantum entanglement, minimum
resource.

I. INTRODUCTION
Quantum teleportation is one of the most important branches
in quantum communication and may have wide appli-
cations in quantum repeaters [1], [2], quantum dense
coding [3], [4] and quantum networks [5]–[12]. In 1993,
Bennett et al. [13] first proposed quantum teleportation with
a Bell pair, which was later demonstrated in an experiment
by Bouwmeester et al. [14]. Quantum teleportation has been
developed rapidly both theoretically [15]–[26] and experi-
mentally [14], [27]–[33]. To satisfy a variety of different
quantum communication scenarios, a series of protocols for
quantum teleportation have been proposed involving differ-
ent quantum channels such as Bell states [15]–[18], GHZ
states [19], [20], W states [21]–[23], etc. Several theoretical
predictions were realized by various experiments with linear
optical systems [27], cavity QED [28] and other kinds of
physical systems [14], [29]–[33].
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Long-distance quantum communication between a sender
and a receiver can be divided into multiple sections of
short distance. In order to transmit quantum information
between nodes that do not share direct entanglement, inter-
mediate nodes are usually introduced where quantum chan-
nels are built through entanglement shared between adjacent
nodes. In most existing quantum teleportation protocols,
maximally entangled Bell pairs are used as the quantum
channels between the nodes. However, in practical appli-
cations, due to the decoherence from the environment,
the maximally entangled channel suffers distortion and read-
ily evolves into non-maximally entangled states, leading
to the loss of information. In order to achieve long dis-
tance and high-fidelity communication, several schemes
have been proposed based on the quantum error rejection,
the entanglement swapping, the entanglement purification
and concentration [23], [34]–[55].

Quantum error rejection is a useful technique to faithfully
transmit quantum states over large-scale quantum channels.
In 2005, Kalamidas et al. [34] presented two linear-optical
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single-photon schemes to reject and correct arbitrary qubit
errors without additional qubits. In 2007, Li et al. [35]
proposed a setup for a single-photon qubit against col-
lective noise without ancillary qubits, in which the suc-
cess probability could be improved to 100%. In 2017,
Jiang et al. [36] presented an original self-error-rejecting
photonic qubit transmission scheme for both polarization
and the spatial states of photon systems transmitted over
collective noise channels. In 2019, Gao et al. [37] real-
ized a faithful single-photon qubit transmission against the
channel noise with error-rejecting coding. In recent stud-
ies, Guo et al. [38] reviewed the development of quantum
error rejection and introduced several typical schemes for
error-rejection transmission.

In long-distance quantum communication, entanglement
purification is introduced to reduce the affect arisen from
the noise. In 1996, Bennett et al. [39] firstly proposed the
concept of the entanglement purification protocol based
on the quantum CNOT logic operations. Subsequently,
Deutsch et al. [40] reinvestigated and improved Bennett’s
protocols. In 2010, Sheng and Deng [41] presented a
deterministic entanglement purification protocol with hyper-
entanglement, which corrected the bit-flip error and the
phase-flip error in quantum communication. In 2017,
Zhou and Sheng [42] presented the first polarization entan-
glement purification protocol for concatenated GHZ state,
resorting to the photon-atom interaction in low-quality cavity.
In their study, Wang and Long [43] proposed an entangle-
ment purification protocol for an entangled nitrogen-vacancy
center pair based on the nondestructive parity-check detector.

Compared with entanglement purification, entanglement
concentration is the method which distills less entan-
gled pure states into maximally entangled states. In 1996,
Bennett et al. [44] proposed the first entanglement concen-
tration protocol, which was known as the Schmidt projection
method. In 2001, Yamamoto et al. [45] and Zhao et al. [46]
proposed two entanglement concentration protocols based
on polarization beam splitters independently. In 2008,
Sheng et al. [47] presented a nonlocal entanglement concen-
tration scheme based on cross-Kerr nonlinearities to distin-
guish the parity of two polarization photons. Later in 2017,
Du and Long [48] reported an entanglement concentra-
tion protocol for an unknown four-electron-spin cluster state
by exploring the optical selection rules derived from the
quantum-dot spins in one-sided optical microcavities. In their
study, Wang et al. [49] proposed a hyper-entanglement con-
centration protocol for nonlocal two-photon six-qubit par-
tially hyper-entangled Bell states with the parameter-splitting
method.

On the other hand, multi-hop teleportation protocols pro-
vide a way to transmit qubits from source to destination via
entanglement swapping and recovering operations. In 2015,
Shi et al. [51] reported a quantum wireless multi-hop net-
work in which the unknown information was teleported hop
by hop via Werner states. To improve the transmission effi-
ciency, Zou et al. [52] proposed a multi-hop teleportation

protocol to implement the quantum teleportation of an
unknown two-qubit state via the composite GHZ-Bell chan-
nel. Later in 2018, Zhou et al. [23] proposed an improved
multi-hop teleportation scheme for an unknown state via W
states.

Cluster state is one of the most important multi-particle
entangled states discovered by Briegel and Raussendorf [56]
in 2001. It is worth noting that cluster states have the
properties of both GHZ and W states [57] and they have
been proved that they are harder to be destroyed by local
operations and less susceptible to decoherence than GHZ
states [56], [58], which means that cluster states have the
maximum connectivity and persistent entanglement. Due to
these advantages, various quantum teleportation schemes
have been put forward with cluster states [59]–[67]. For
instance, in 2016 Li et al. [63] put forward a scheme for
teleporting a four-qubit state via a six-qubit cluster state.
In 2018, Zhao et al. [65] demonstrated that a eight-qubit
cluster state could be teleported by a six-qubit cluster state.
Subsequently, Sisodia and Pathak [66] reinvestigated and
improved Zhao’s protocol. In their protocol only two Bell
states (not a six-qubit cluster state as in [65]) were utilized as
the quantum channel. However, it is impossible to generate or
maintain the maximally entangled state at one’s disposal due
to the inevitable influence of environmental noise.

To solve this problem, we present a scheme for teleporting
an unknown four-qubit cluster state via partially entangled
cluster states in a multi-hop teleportation network, where
two distant nodes, the sender and the receiver, do not share
the entanglement pairs directly. In our scheme, the required
cluster states are distributed between adjacent nodes. All the
intermediate nodes help these two distant nodes establish an
entangled channel via entanglement swapping. In addition,
we deduce the general unitary matrixes in the multi-hop sce-
nario. The matrix relies only on the Bell state measurement
results, so that both the computational complexity and the
resource consumption are reduced significantly.

The rest of this paper is organized as follows. In Sect.II,
we introduce the one-hop quantum teleportation of an
unknown four-qubit cluster state via a non-maximally entan-
gled cluster states. In Sect.III, we generalize the scheme
described in Sect.II to a multi-hop scenario. The performance
of our proposed scheme is discussed in Sect.IV. Conclusion
is given in Sect.V.

II. ONE-HOP QUANTUM TELEPORTATION OF AN
UNKNOWN FOUR-QUBIT CLUSTER STATE VIA
PARTIALLY ENTANGLED CLUSTER STATE
Suppose that the sender Alice intends to transmit an unknown
four-qubit cluster state to the receiver Bob. The unknown
four-qubit cluster state can be expressed as follows:

|χ〉1234= (α |0000〉+β |0011〉+µ |1100〉−ν |1111〉)1234.

(1)

Here α, β, µ and ν are unknown parameters that satisfy the
relationship: |α|2+|β|2+|µ|2+|ν|2=1.
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Assume the quantum channel shared by Alice and Bob is

|C〉A(1)1 B(1)1 A(1)2 B(1)2

= (a |0000〉+b |0011〉+c |1100〉 − d |1111〉)A(1)1 B(1)1 A(1)2 B(1)2
.

(2)

Here the coefficients a, b, c, d are real and satisfy the normal-
ization condition a2+b2+c2+d2=1(a 6 b 6 c 6 d). Alice
possesses qubits 1, 2, 3, 4, A(1)1 and A(1)2 . Bob possesses qubits
B(1)1 and B(1)2 , as schematically shown in Fig. 1.

FIGURE 1. A diagram shows that Alice and Bob share a four-qubit
entangled cluster state.

Now, the initial state that consists of qubits 1, 2, 3, 4,A(1)1 ,

B(1)1 ,A
(1)
2 and B(1)2 can then be written as:

|ϕ〉1234A(1)1 B(1)1 A(1)2 B(1)2
= |χ〉1234 ⊗ |C〉A(1)1 B(1)1 A(1)2 B(1)2

. (3)

In order to realize the teleportation of the unknown state
described in Eq. (1), Alice and Bob perform the following
operations, as shown in Fig. 2.

FIGURE 2. Quantum circuit for teleportation of an unknown four-qubit
cluster state via partially entangled cluster states.

Step 1, Alice performs two CNOT operations on the selec-
tive qubit pairs {1, 2}and {3, 4}, which can be expressed as:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (4)

The state of the whole system become:

|ϕ〉1234A(1)1 B(1)1 A(1)2 B(1)2

= CNOT34CNOT12
× ((α |0000〉 + β |0011〉 + µ |1100〉

− ν |1111〉)1234 ⊗ |C〉A(1)1 B(1)1 A(1)2 B(1)2

)

= (α |00〉 + β |01〉 + µ |10〉 − ν |11〉)13|00〉24
⊗ |C〉A(1)1 B(1)1 A(1)2 B(1)2

. (5)

It is obvious from Eq.(5) that Alice transfers the information
of the initial unknown four-qubit cluster state described in
Eq. (1) to qubits 1 and 3, which is expressed as α |00〉 +
β |01〉 + µ |10〉 − ν |11〉. Now we just consider the state
of qubits 1, 3, A(1)1 , A(2)2 , B(1)1 and B(1)2 . The state can be
expressed as:

|ϕ〉13A(1)1 B(1)1 A(1)2 B(1)2
= |χ〉13 ⊗ |C〉A(1)1 B(1)1 A(1)2 B(1)2

. (6)

Step 2, Alice performs two Bell state measurements on
particle pairs (1,A(1)1 ) and (3,A(1)2 ) with the basis of
{|φ00〉 , |φ01〉 , |φ10〉 , |φ11〉}. Here |φ00〉, |φ01〉, |φ10〉 and |φ11〉
are determined as:

|φ00〉 =
1
√
2
(|00〉+|11〉) , |φ01〉 =

1
√
2
(|01〉+|10〉) ,

|φ10〉 =
1
√
2
(|00〉 − |11〉) , |φ11〉 =

1
√
2
(|01〉 − |10〉) . (7)

When these two Bell state measurements are performed,
there are sixteen possible collapsed states possessed by Bob,
as follows:

3A(1)2
〈φ00| 1A(1)1

〈φ00 | ϕ〉13A(1)1 B(1)1 A(1)2 B(1)2

=
1
2
(αa |00〉 + βb |01〉 + µc |10〉 + νd |11〉)B(1)1 B(1)2

,

3A(1)2
〈φ10| 1A(1)1

〈φ00 | ϕ〉13A(1)1 B(1)1 A(1)2 B(1)2

=
1
2
(αa |00〉 − βb |01〉 + µc |10〉 − νd |11〉)B(1)1 B(1)2

,

3A(1)2
〈φ01| 1A(1)1

〈φ00 | ϕ〉13A(1)1 B(1)1 A(1)2 B(1)2

=
1
2
(αb |01〉+βa |00〉 − µd |11〉 − νc |10〉)B(1)1 B(1)2

,

3A(1)2
〈φ11| 1A(1)1

〈φ00 | ϕ〉13A(1)1 B(1)1 A(1)2 B(1)2

=
1
2
(αb |01〉 − βa |00〉 − µd |11〉 + νc |10〉)B(1)1 B(1)2

,

3A(1)2
〈φ00| 1A(1)1

〈φ10 | ϕ〉13A(1)1 B(1)1 A(1)2 B(1)2

=
1
2
(αa |00〉 + βb |01〉 − µc |10〉 − νd |11〉)B(1)1 B(1)2

,

3A(1)2
〈φ10| 1A(1)1

〈φ10 | ϕ〉13A(1)1 B(1)1 A(1)2 B(1)2

=
1
2
(αa |00〉 − βb |01〉 − µc |10〉 + νd |11〉)B(1)1 B(1)2

,

3A(1)2
〈φ01| 1A(1)1

〈φ10 | ϕ〉13A(1)1 B(1)1 A(1)2 B(1)2

=
1
2
(αb |01〉+βa |00〉 + µd |11〉 + νc |10〉)B(1)1 B(1)2

,

3A(1)2
〈φ11| 1A(1)1

〈φ10 | ϕ〉13A(1)1 B(1)1 A(1)2 B(1)2

=
1
2
(αb |01〉 − βa |00〉 + µd |11〉 − νc |10〉)B(1)1 B(1)2

,

3A(1)2
〈φ00| 1A(1)1

〈φ01 | ϕ〉13A(1)1 B(1)1 A(1)2 B(1)2

=
1
2
(αc |10〉 − βd |11〉 + µa |00〉 − νb |01〉)B(1)1 B(1)2

,

3A(1)2
〈φ10| 1A(1)1

〈φ01 | ϕ〉13A(1)1 B(1)1 A(1)2 B(1)2
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=
1
2
(αc |10〉 + βd |11〉 + µa |00〉 + νb |01〉)B(1)1 B(1)2

,

3A(1)2
〈φ01| 1A(1)1

〈φ01 | ϕ〉13A(1)1 B(1)1 A(1)2 B(1)2

=
1
2
(−αd |11〉+βc |10〉 + µb |01〉 − νa |00〉)B(1)1 B(1)2

,

3A(1)2
〈φ11| 1A(1)1

〈φ01 | ϕ〉13A(1)1 B(1)1 A(1)2 B(1)2

=
1
2
(−αd |11〉 − βc |10〉 + µb |01〉 + νa |00〉)B(1)1 B(1)2

,

3A(1)2
〈φ00| 1A(1)1

〈φ11 | ϕ〉13A(1)1 B(1)1 A(1)2 B(1)2

=
1
2
(αc |10〉 − βd |11〉 − µa |00〉 + νb |01〉)B(1)1 B(1)2

,

3A(1)2
〈φ10| 1A(1)1

〈φ11 | ϕ〉13A(1)1 B(1)1 A(1)2 B(1)2

=
1
2
(αc |10〉 + βd |11〉 − µa |00〉 − νb |01〉)B(1)1 B(1)2

,

3A(1)2
〈φ01| 1A(1)1

〈φ11 | ϕ〉13A(1)1 B(1)1 A(1)2 B(1)2

=
1
2
(−αd |11〉+βc |10〉 − µb |01〉 + νa |00〉)B(1)1 B(1)2

,

3A(1)2
〈φ11| 1A(1)1

〈φ11 | ϕ〉13A(1)1 B(1)1 A(1)2 B(1)2

=
1
2
(−αd |11〉 − βc |10〉 − µb |01〉 − νa |00〉)B(1)1 B(1)2

. (8)

Next, Alice tells her measurement outcomes to Bob via
classical communication. According to Alice’s measurement
results, Bob performs corresponding unitary operations on his
qubits B(1)1 and B(1)2 . The unitary operations UB(1)1 B(1)2

can be
represented by Pauli matrices:

X =
[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 − 1

]
,and

I =
[
1 0
0 1

]
.

The detailed relationship between the measurement out-
comes

∣∣φm1m2

〉
1A(1)1

,
∣∣φn1n2 〉 3A(1)2

(m1,m2, n1, n2 ∈ [0, 1]) and
the corresponding unitary operations is given in Table 1.

According to the unitary operations mentioned above,
Bob’s qubits |ϕm〉 (m = 0, 1, 2, 3) collapse into one of the
following states:

|ϕ0〉=
1
√
p0
(αa |00〉+βb |01〉+µc |10〉+νd |11〉)B(1)1 B(1)2

,

(9)

with the probability p0=|αa|2+|βb|2+|µc|2+|νd |2 or

|ϕ1〉=
1
√
p1
(αb |00〉+βa |01〉+µd |10〉 + νc |11〉)B(1)1 B(1)2

,

(10)

with the probability p1=|αb|2+|βa|2+|µd |2+|νc|2 or

|ϕ2〉=
1
√
p2
(αc |00〉+βd |01〉+µa |10〉+νb |11〉)B(1)1 B(1)2

,

(11)

TABLE 1. The relationship between the measurements outcomes of Alice
and the unitary operation performed by Bob.

with the probability p2=|αc|2+|βd |2+|µa|2+|νb|2 or

|ϕ3〉=
1
√
p3
(αd |00〉+βc |01〉+µb |10〉+νa |11〉)B(1)1 B(1)2

.

(12)

with the probability p3=|αd |2+|βc|2+|µb|2+|νa|2.
Step 3, Bob performs the generalized measurement given

by Kraus operators [55] for |ϕm〉 (m = 0, 1, 2, 3)

ESm =
1∑

i,j=0

bij |ij〉 〈ij| , (13a)

EFm =
1∑

i,j=0

√
1− bij2 |ij〉 〈ij| . (13b)
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TABLE 2. The relationship between all the possible state of qubits B(1)
1 ,

B(1)
2 and the coefficients bij (i, j = 0, 1) for the Kraus operators.

The relationship between all the possible states of qubits
B(1)1 ,B

(1)
2 and bij(i, j = 0, 1) for the Kraus operators is given

in Table 2.
For example, if Bob’s qubits collapse into the state |ϕ0〉,

when ES0 is obtained, the state of qubits B(1)1 and B(1)2 will
collapse into:

|ϕ〉B(1)1 B(1)2
=a(α |00〉+β |01〉+µ |10〉+ν |11〉)B(1)1 B(1)2

. (14)

The success probability can be calculated as p =

p0 〈ϕ0|E
†
S0ES0 |ϕ0〉 = |a|

2. To obtain the initial four-qubit
cluster state described in Eq. (1), Bob introduces another two
ancillary qubits B3 and B4 with the initial state |00〉B3B4 and
then executes two CNOT operations on the selective qubit
pairs {B(1)1 , B3} and {B

(1)
2 , B4}.

∣∣∣ϕ(1)〉
B(1)1 B3B

(1)
2 B4

= CNOTB(1)2 B4
CNOTB(1)1 B3

× (α |00〉 + β |01〉+µ |10〉 + ν |11〉)B(1)1 B(1)2
|00〉B3B4

= (α |0000〉+β |0011〉 + µ |1100〉 + ν |1111〉)B(1)1 B3B
(1)
2 B4

.

(15)

Finally, Bob applies a CZ gate on qubits B(1)1 and B(1)2 ,
as follows:

CZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 − 1

 . (16)

We obtain the following state:∣∣∣ϕ(2)〉
B(1)1 B3B

(1)
2 B4

= CZB(1)1 B2(1)
(α |0000〉 + β |0011〉 + µ |1100〉

+ ν |1111〉)B(1)1 B3B
(1)
2 B4

= (α |0000〉 + β |0011〉+µ |1100〉−ν |1111〉)B(1)1 B3B
(1)
2 B4

.

(17)

In this way, the unknown four-qubit cluster state shown in
Eq. (1) is teleported to the remote receiver Bob successfully.
Similarly, combining all the situations shown in Eq. (9)

- Eq. (12) and Table 2, Bob can obtain the teleported state
with a certain probability. The total success probability of the
teleportation can be calculated as:

Ptotal =
3∑

m=0

pm 〈ϕm|E
†
SmESm |ϕm〉 = 4|a|2. (18)

Note that if we use maximally entangled quantum channel,
i.e., |a| = |b| = |c| = |d | = 1

2 , the total success probability
reaches maximum 100%.

III. MULTI-HOP QUANTUM TELEPORTATION OF AN
UNKNOWN FOUR-QUBIT CLUSTER STATE VIA
PARTIALLY ENTANGLED CLUSTER STATE
The above scheme can be generalized to a multi-hop scenario
via non-maximally entangled cluster states, in which there is
no direct channel between the sender Alice and the receiver
Bob. In detail, we suppose there are totally T (T > 1) inter-
mediate nodes between Alice and Bob. As shown in Fig. 3, all
the participants are linked by one channel with its neighboring
nodes, which can be expressed as:

|C〉A(i)
1 B(i)

1 A(i)
2 B(i)

2

= (a(i)00|0000〉 + a
(i)
01|0011〉 + a

(i)
10|1100〉

− a(i)11|1111〉)A(i)
1 B(i)

1 A(i)
2 B(i)

2
. (19)

|ϕ〉13A(1)1 B(1)1 A(1)2 B(1)2 ······A
(T+1)
1 B(T+1)1 A(T+1)2 B(T+1)2

= |χ〉13 ⊗
T+1
i=1

∣∣C ′〉A(i)1 B(i)1 A(i)2 B(i)2
= |χ〉13 ⊗ (a(1)00 |0000〉 + a

(1)
01 |0011〉 + a

(1)
10 |1100〉+a

(1)
11 |1111〉)A(1)1 B(1)1 A(1)2 B(1)2

⊗ (a(2)00 |0000〉 + a
(2)
01 |0011〉 + a

(2)
10 |1100〉+a

(2)
11 |1111〉)A(2)1 B(2)1 A(2)2 B(2)2

⊗ · · · ⊗ (a(T+1)00 |0000〉 + a(T+1)01 |0011〉 + a(T+1)10 |1100〉+a(T+1)11 |1111〉)A(T+1)1 B(T+1)1 A(T+1)2 B(T+1)2
. (20)
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FIGURE 3. T + 1 cluster states are shared between Alice, Bob and the intermediate nodes. T is
the number of the intermediate node.

FIGURE 4. Quantum circuit for multi-hop teleportation of an unknown four-qubit cluster state via non-
maximally entangled cluster states.

Here the coefficients a(i)00, a(i)01, a(i)10, a(i)11 (i =
1, 2, · · · , T+1) satisfy the normalization condition a(i)00 6

a(i)01 6 a(i)10 6 a(i)11 and
(
a(i)00
)2
+

(
a(i)01
)2
+

(
a(i)10
)2
+

(
a(i)11
)2
=1.

Step 1, Alice and all the intermediate nodes perform CZ
gates on their own qubit pair {A(i)1 , A(i)2 }(i = 1, 2, 3, . . . ,
T + 1) to preprocess the channel, where qubit A(i)1 works as
the controlling qubit and qubit A(i)2 works as the target qubit.
Now the state of the entire system can be decomposed as (20),
as shown at the bottom of the previous page.

Step 2, T intermediate nodes perform two Bell
state measurements on particle pairs {B(i)1 , A(i+1)1 }and
{B(i)2 , A(i+1)2 }(i = 1, 2, 3, . . . ,T ) with the basis of
{|φ00〉 , |φ01〉 , |φ10〉 , |φ11〉}, respectively, as shown in Fig. 4.
Now the entire state can be written as (21), shown at the

bottom of the next page.
Here, the unitary matrixes U1 and U2 can be expressed by:

U1 = [L100,L
1
01,L

1
10,L

1
11] · [IA(1)1

,XA(1)1
,ZA(1)1

,ZA(1)1
XA(1)1

]′,

U2 = [L200,L
2
01,L

2
10,L

2
11] · [IA(1)2

,XA(1)2
,ZA(1)2

,ZA(1)2
XA(1)2

]′.

(22)
with

L100=⊕
T
i=1m

(i)
1 · ⊕

T
i=1n

(i)
1 , L101=⊕

T
i=1m

(i)
1 · ⊕

T
i=1n

(i)
1 ,

L110=⊕
T
i=1m

(i)
1 · ⊕

T
i=1n

(i)
1 , L111=⊕

T
i=1m

(i)
1 · ⊕

T
i=1n

(i)
1 .

(23)

L200=⊕
T
i=1m

(i)
2 · ⊕

T
i=1n

(i)
2 , L201=⊕

T
i=2m

(i)
2 · ⊕

T
i=2n

(i)
2 ,

L210=⊕
T
i=1m

(i)
2 · ⊕

T
i=1n

(i)
2 , L211=⊕

T
i=1m

(i)
2 · ⊕

T
i=1n

(i)
2 .

(24)

Here, m(i)
1 , n(i)1 , m(i)

2 , n(i)2 (i = 1, 2, 3, · · · , T ) are
used to denote the Bell state measurement results 0 or 1. The
symbols ‘‘⊕ ’’, ‘‘ · ’’ and ‘‘-’’ represent logic XOR, AND and
negation, respectively.

According to the unitary operations mentioned above,
a desired entangled channel between the source node Alice
and the destination node Bob is established successfully. The
state of qubits A(1)1 , A

(1)
2 , B

(T+1)
1 , B(T+1)2 collapses into the

following state:

|ϕ〉A(1)1 B(T+1)1 A(1)2 B(T+1)2

=
1√

pn(1)1 ,...,n(T )1 ,n(1)2 ,...,n(T )2

(aT+100 aT
n(T )1 ,n(T )2

aT−1
n(T )1 ⊕n

(T−1)
1 ,n(T )2 ⊕n

(T−1)
2

· · · a1
n(T )1 ⊕n

(T−1)
1 ⊕···⊕n(1)1 ,n(T )2 ⊕n

(T−1)
2 ⊕···⊕n(1)2

|0000〉

+ aT+101 aT
n(T )1 ,n(T )2 ⊕1

aT−1
n(T )1 ⊕n

(T−1)
1 ,n(T )2 ⊕n

(T−1)
2 ⊕1

· · · a1
n(T )1 ⊕n

(T−1)
1 ⊕···⊕n(1)1 ,n(T )2 ⊕n

(T−1)
2 ⊕···⊕n(1)2 ⊕1

|0011〉

+aT+110 aT
n(T )1 ⊕1,n

(T )
2
aT−1
n(T )1 ⊕n

(T−1)
1 ⊕1,n(T )2 ⊕n

(T−1)
2

· · · a1
n(T )1 ⊕n

(T−1)
1 ⊕···⊕n(1)1 ⊕1,n

(T )
2 ⊕n

(T−1)
2 ⊕···⊕n(1)2

|1100〉
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+aT+111 aT
n(T )1 ⊕1,n

(T )
2 ⊕1

aT−1
n(T )1 ⊕n

(T−1)
1 ⊕1,n(T )2 ⊕n

(T−1)
2 ⊕1

· · · a1
n(T )1 ⊕n

(T−1)
1 ⊕···⊕n(1)1 ⊕1,n

(T )
2 ⊕n

(T−1)
2 ⊕···⊕n(1)2 ⊕1

|1111〉).

(25)

For simplicity, we redefine the coefficients as follows:

κ00 = aT+100 aT
n(T )1 ,n(T )2

aT−1
n(T )1 ⊕n

(T−1)
1 ,n(T )2 ⊕n

(T−1)
2

· · · a1
n(T )1 ⊕n

(T−1)
1 ⊕···⊕n(1)1 ,n(T )2 ⊕n

(T−1)
2 ⊕···⊕n(1)2

,

κ01 = aT+101 aT
n(T )1 ,n(T )2 ⊕1

aT−1
n(T )1 ⊕n

(T−1)
1 ,n(T )2 ⊕n

(T−1)
2 ⊕1

· · · a1
n(T )1 ⊕n

(T−1)
1 ⊕···⊕n(1)1 ,n(T )2 ⊕n

(T−1)
2 ⊕···⊕n(1)2 ⊕1

,

κ10 = aT+110 aT
n(T )1 ⊕1,n

(T )
2
aT−1
n(T )1 ⊕n

(T−1)
1 ⊕1,n(T )2 ⊕n

(T−1)
2

· · · a1
n(T )1 ⊕n

(T−1)
1 ⊕···⊕n(1)1 ⊕1,n

(T )
2 ⊕n

(T−1)
2 ⊕···⊕n(1)2

,

κ11 = aT+111 aT
n(T )1 ⊕1,n

(T )
2 ⊕1

aT−1
n(T )1 ⊕n

(T−1)
1 ⊕1,n(T )2 ⊕n

(T−1)
2 ⊕1

· · · a1
n(T )1 ⊕n

(T−1)
1 ⊕···⊕n(1)1 ⊕1,n

(T )
2 ⊕n

(T−1)
2 ⊕···⊕n(1)2 ⊕1

. (26)

The probability of state given by Eq. (25) can be
calculated as:

pn(1)1 ,...,n(T )1 ,n(1)2 ,...,n(T )2
=|κ00|

2
+|κ01|

2
+|κ10|

2
+|κ11|

2. (27)

Step 3, Alice performs a CZ gate operation on qubit pair
{A(1)1 , A(1)2 }. Then the state will become (28), shown at the
bottom of the next page.

For example, suppose the Bell state measurement out-
comes of all the intermediate nodes are |φ00〉B(i)1 A

(i+1)
1

and
|φ00〉B(i)2 A

(i+1)
2

(i = 1, 2, 3, · · · , T ). The state of qubits

A(1)1 , A
(1)
2 , B

(T+1)
1 , B(T+1)2 collapses into:

|ϕ〉13A(1)1 B(T+1)1 A(1)2 B(T+1)2

= |χ〉13 ⊗ (aT+100 aT00a
T−1
00 · · · a

1
00 |0000〉

+ aT+101 aT01a
T−1
01 · · · a

1
01 |0011〉

+ aT+110 aT10a
T−1
10 · · · a

1
10 |1100〉

− aT+111 aT11a
T−1
11 · · · a

1
11 |1111〉)A(1)1 B(T+1)1 A(1)2 B(T+1)2

. (29)

According to Eq. (26), we redefine the coefficients as
follows:

κ00 = aT+100 aT00a
T−1
00 · · · a

1
00

κ01 = aT+101 aT01a
T−1
01 · · · a

1
01,

κ10 = aT+110 aT10a
T−1
10 · · · a

1
10

κ11 = aT+111 aT11a
T−1
11 · · · a

1
11. (30)

Step 4, Alice performs two Bell state measurements. The
state |ϕm〉 (m = 0, 1, 2, 3) obtained by Bob collapses into one
of the following states:

|ϕ0〉=
1
√
p0
(ακ00 |00〉+βκ01 |01〉+µκ10 |10〉+νκ11 |11〉) ,

(31)

|ϕ〉13A(1)1 B(1)1 A(1)2 B(1)2 ······A
(T+1)
1 B(T+1)1 A(T+1)2 B(T+1)2

= |χ〉13 ⊗
1
2T

1∑
m(1)
1 n(1)1

m(1)
2 n(1)2 = 0

1∑
m(2)
1 n(2)1

m(2)
2 n(2)2 = 0

· · ·

1∑
m(T )
1 n(T )1

m(T )
2 n(T )2 = 0

∣∣∣φm(1)
1 n(1)1

〉
B(1)1 A(2)1

∣∣∣φm(1)
2 n(1)2

〉
B(1)2 A(2)2

· · ·

∣∣∣φm(T )
1 n(T )1

〉
B(T )1 A(T+1)1

∣∣∣φm(T )
2 n(T )2

〉
B(T )2 A(T+1)2

U1U2

(aT+100 aT
n(T )1 ,n(T )2

aT−1
n(T )1 ⊕n

(T−1)
1 ,n(T )2 ⊕n

(T−1)
2

· · · a1
n(T )1 ⊕n

(T−1)
1 ⊕···⊕n(1)1 ,n(T )2 ⊕n

(T−1)
2 ⊕···⊕n(1)2

|0000〉

+ aT+101 aT
n(T )1 ,n(T )2 ⊕1

aT−1
n(T )1 ⊕n

(T−1)
1 ,n(T )2 ⊕n

(T−1)
2 ⊕1

· · · a1
n(T )1 ⊕n

(T−1)
1 ⊕···⊕n(1)1 ,n(T )2 ⊕n

(T−1)
2 ⊕···⊕n(1)2 ⊕1

|0011〉

+ aT+110 aT
n(T )1 ⊕1,n

(T )
2
aT−1
n(T )1 ⊕n

(T−1)
1 ⊕1,n(T )2 ⊕n

(T−1)
2

· · · a1
n(T )1 ⊕n

(T−1)
1 ⊕···⊕n(1)1 ⊕1,n

(T )
2 ⊕n

(T−1)
2 ⊕···⊕n(1)2

|1100〉

+ aT+111 aT
n(T )1 ⊕1,n

(T )
2 ⊕1

aT−1
n(T )1 ⊕n

(T−1)
1 ⊕1,n(T )2 ⊕n

(T−1)
2 ⊕1

· · · a1
n(T )1 ⊕n

(T−1)
1 ⊕···⊕n(1)1 ⊕1,n

(T )
2 ⊕ n

(T−1)
2 ⊕···⊕n(1)2 ⊕1

|1111〉)A(1)1 B(T+1)1 A(1)2 B(T+1)2
. (21)
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with the probability p0=
|ακ00|

2
+|βκ01|

2
+|µκ10|

2
+|νκ11|

2

p
n(1)1 ,...,n(T )1 ,n(1)2 ,...,n(T )2

or

|ϕ1〉=
1
√
p1
(ακ01 |00〉+βκ00 |01〉+µκ11 |10〉+νκ10 |11〉) ,

(32)

with the probability p1=
|ακ01|

2
+|βκ00|

2
+|µκ11|

2
+|νκ10|

2

p
n(1)1 ,...,n(T )1 ,n(1)2 ,...,n(T )2

or

|ϕ2〉=
1
√
p2
(ακ10 |00〉+βκ11 |01〉+µκ00 |10〉+νκ01 |11〉) ,

(33)

with the probability p2=
|ακ10|

2
+|βκ11|

2
+|µκ00|

2
+|νκ01|

2

p
n(1)1 ,...,n(T )1 ,n(1)2 ,...,n(T )2

or

|ϕ3〉=
1
√
p3
(ακ11 |00〉+βκ10 |01〉+µκ01 |10〉+νκ00 |11〉) .

(34)

with the probability p3=
|ακ11|

2
+|βκ10|

2
+|µκ01|

2
+|νκ00|

2

p
n(1)1 ,...,n(T )1 ,n(1)2 ,...,n(T )2

.

In the multi-hop scenario, the operators performed by Bob
can be expressed as:

E
S
(
n(1)1 , ..., n(T )1 , n(1)2 , ..., n(T )2

) = 1∑
i,j=0

bij |ij〉 〈ij| , (35a)

E
F
(
n(1)1 ,...,n(T )1 ,n(1)2 ,...,n(T )2

) = 1∑
i,j=0

√
1− bij2 |ij〉 〈ij| . (35b)

TABLE 3. The relationship between all the possible state of qubits
B(T +1)

1 , B(T +1)
2 and the coefficients bij (i, j = 0, 1) for the Kraus operators.

The relationship between all the possible states of qubit
B(T+1)1 , B(T+1)2 and bij(i, j = 0, 1) for the Kraus operators
is given in Table 3.

Here κmin = min κij, (i, j = 0, 1).
When E

S
(
n(1)1 , ..., n(T )1 , n(1)2 , ..., n(T )2

) is obtained, Bob performs

the same operations as that shown in Sec.II to obtain the initial

|ϕ〉13A(1)1 B(T+1)1 A(1)2 B(T+1)2

= |χ〉13 ⊗ (aT+100 aT
n(T )1 ,n(T )2

aT−1
n(T )1 ⊕n

(T−1)
1 ,n(T )2 ⊕n

(T−1)
2

· · · a1
n(T )1 ⊕n

(T−1)
1 ⊕···⊕n(1)1 ,n(T )2 ⊕n

(T−1)
2 ⊕···⊕n(1)2

|0000〉

+ aT+101 aT
n(T )1 ,n(T )2 ⊕1

aT−1
n(T )1 ⊕n

(T−1)
1 ,n(T )2 ⊕n

(T−1)
2 ⊕1

· · · a1
n(T )1 ⊕n

(T−1)
1 ⊕···⊕n(1)1 ,n(T )2 ⊕n

(T−1)
2 ⊕···⊕n(1)2 ⊕1

|0011〉

+ aT+110 aT
n(T )1 ⊕1,n

(T )
2
aT−1
n(T )1 ⊕n

(T−1)
1 ⊕1,n(T )2 ⊕n

(T−1)
2

· · · a1
n(T )1 ⊕n

(T−1)
1 ⊕···⊕n(1)1 ⊕1,n

(T )
2 ⊕n

(T−1)
2 ⊕···⊕n(1)2

|1100〉

− aT+111 aT
n(T )1 ⊕1,n

(T )
2 ⊕1

aT−1
n(T )1 ⊕n

(T−1)
1 ⊕1,n(T )2 ⊕n

(T−1)
2 ⊕1

· · · a1
n(T )1 ⊕n

(T−1)
1 ⊕···⊕n(1)1 ⊕1,n

(T )
2 ⊕n

(T−1)
2 ⊕···⊕n(1)2 ⊕1

|1111〉)A(1)1 B(T+1)1 A(1)2 B(T+1)2
. (28)

Ptotal =
1∑

n(1)1 ,n(2)1 ,···n(T )1

n(1)2 ,n(2)2 ,···n(T )2 =0

3∑
m=0

pm 〈ϕm|E
†
S
(
n(1)1 ,...,n(T )1 ,n(1)2 ,...,n(T )2

)E
S
(
n(1)1 ,...,n(T )1 ,n(1)2 ,...,n(T )2

) |ϕm〉

=

1∑
n(1)1 ,n(2)1 ,···n(T )1

n(1)2 ,n(2)2 ,···n(T )2 =0

4|κmin|
2 (36)
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TABLE 4. Comparisons between four quantum teleportation protocols.

four-qubit cluster state. The total probability of successfully
recovering the original state is (36), shown at the bottom of
the previous page.
Obviously, if we use the maximally entangled quantum chan-
nel, i.e.,

∣∣∣a(i)00∣∣∣ = ∣∣∣a(i)01∣∣∣ = ∣∣∣a(i)10∣∣∣ = ∣∣∣a(i)11∣∣∣ = 1
2 (i = 1, 2, · · · ,

T+1), the total success probability is:

P=4 ∗ 22T ∗
1(

2T+1
)2 = 1. (37)

IV. EFFICIENCY ANALYSIS
In quantum teleportation scheme, classical communication
cost and quantum communication delay are usually used to
evaluate the efficiency of the protocol.

First, we discuss the usage of classical information in our
scheme. Here, the classical communication cost is defined
as the number of data transmission required. In our scheme,
each intermediate node needs to perform two Bell state mea-
surements and then send measurement outcomes via classical
communication. Moreover, after establishing the quantum
entangled channel between source node and destination node
successfully, Alice needs to publish two Bell state measure-
ment outcomes to Bob. Therefore, the total classical informa-
tion cost can be expressed as:

C = 4 ∗ (T + 1) . (38)

Second, we discuss the quantum communication delay in
our scheme. Quantum communication delay usually occurs in
quantummeasurements, unitary operations and measurement
outcomes transmission. In our scheme, all intermediate nodes
perform Bell state measurement independently and transmit

measurement results simultaneously, which introduces the
delay of Bell measurement dmeas and measurement outcomes
transmission delay dtrans. After that, Alice performs a series
of unitary operations to adjust the entangled quantum chan-
nel, and executes Bell state measurements and transmits mea-
surement outcomes to Bob, which introduces the delay of
unitary operation doper , Bell measurement dmeas, and mea-
surement outcomes transmission delay dtrans. Finally, Bob
performs a series of the unitary operations to recover the
target four-qubit cluster state, which introduces unitary opera-
tion delay doper . Therefore, the total quantum communication
delay can be expressed as:

dtatol = 2(dmeas + dtrans + doper ). (39)

If we take use of the hop-by-hop transmission [51], [55],
the measurement and outcome transmission are performed
one by one. The total communication delay in the hop-by-hop
quantum teleportation can be written as:

dtatol = (T + 1)(dmeas + dtrans + doper ). (40)

It is obvious from Eq. (39) and Eq. (40) that the delay of
our multi-hop protocol is much less than the hop-by-hop case,
especially when the amount of intermediate nodes is huge.

In Table 4, we discuss the efficiency of our scheme with T
intermediate nodes and compare with other quantum telepor-
tation schemes in the following aspects; the quantum resource
consumption, the classical resource consumption, the com-
plexity of necessary operation and the quantum state to be
teleported.

It is clear from Table 4 that our scheme has several merits.
First, our aim is to transfer a four-qubit state while only
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two-qubit state is prepared in schemes given in [52], [53].
Second, if we utilize Choudhury’s scheme to transfer an
unknown four-qubit state, it needs at least 4(T + 1) Bell
states as quantum channels. Only T + 1 four-qubit cluster
states are required in our scheme, indicating the quantum
resources used in our scheme are more effective. Third,
in terms of classical resource consumption, our scheme only
needs T+1 bit classical resources to teleport each qubit. It is
noteworthy that our scheme did not consider the influence of
noise during the transmission. In real systems, the quantum
noise is unavoidable which reduces the fidelity of quantum
states. Therefore, we hope the scheme can be improved later
by considering the noise effect on multi-hop teleportation
network.

V. CONCLUSION
In summary, we propose a novel scheme for multi-hop tele-
portation of an arbitrary four-qubit cluster state between
two distant nodes. These two nodes have no entanglement
pairs shared directly. First, we make detailed calculations on
one-hop teleportation of an arbitrary four-qubit cluster state
and then generalized the scheme to the multi-hop case. More-
over, we deduce the relationship between the coefficients of
the entangled cluster states and the probability of the success-
ful teleportation. The success probability and the fidelity of
our scheme can reach 100% when the maximally entangled
channel is applied. Finally, we compare our scheme with
other schemes on quantum and classical resource consump-
tion, the complexity of necessary operation and the quantum
state to be teleported. We believe our scheme is efficient.
We hope our findings will stimulate more investigations on
the development of quantum teleportation.
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