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ABSTRACT In order to improve the classification performance of a single classification model, Multiple
Classifier Systems (MCS) are used. One of the most common techniques utilizing multiple decision trees is
the random forest, where diversity between base classifiers is obtained by bagging the training dataset. In
this paper, we propose the algorithm that uses horizontal partitioning the learning set and uses decision trees
as base models to obtain decision regions. In the proposed approach feature space is divided into disjoint
subspace. Additionally, the location of the subspace centroids, as well as the size and location of decision
regions, are used in order to determine the weights needed in the last process of creating MCS, i.e. in the
integration phase. The proposed algorithm was evaluated employing multiple open-source benchmarking
datasets, compared using accuracy and Matthews correlation coefficient performance measures with two
existingMCSmethods – random forest andmajority voting. The statistical analysis confirms an improvement
in recognition compared to the random forest. In addition, we proved that for infinitely dense space division
proposed algorithm is equivalent to majority voting.

INDEX TERMS Decision tree, ensemble classifier, majority voting, multiple classifier system, random
forest.

I. INTRODUCTION
One of the ways of improving the predictive performance
of a single machine learning model is using a committee
of classifiers, which is widely known as Multiple Classifier
System (MCS) or Ensemble of Classifiers (EoC) [44]. The
idea of building MCS is to compose a single strong classifier
from the pool of weak ones. Integrating different hypotheses
of individual machine learning models reduces the risk of
choosing an incorrect one and therefore, improves the overall
predictive performance [39]. In general, the procedure of
creating EoC can be divided into three major steps [25]:

• Generation – a phase where base classifiers are trained
and the pool of base classifiers is created.

• Selection – an optional phase where only several models
from the committee are taken to the next phase.

• Integration – a process of combining outputs of multi-
ple classifiers to obtain a single one, integrated model
classification. This step is optional if the selection phase
results in a single classification model.

The associate editor coordinating the review of this manuscript and
approving it for publication was Robert P. Schumaker.

In the generation phase, each base model can be trained
using the injection of randomness into the training set or parti-
tioning of the dataset [38]. In horizontal partitioning, the orig-
inal dataset is divided into several sets that include all features
while in vertical partitioning each base model uses a subset of
all features [9].With this procedure, different base models are
obtained. Another way to create diversity in the base models
is to train them with varied parameter values.

During the selection phase, the competence of each base
classifier can be used [5]. The simplest way to do this is
by measuring the classification quality for each model. The
worst classifiers can be then omitted in the integration phase
and the best classifiers can have a greater impact on the
integration process. However, it was noticed, that using local
competence provides better results compared to generalizing
over the whole feature space, since models can perform dif-
ferently depending on the classification area.

The integration phase can be performed using different
types of the classifier output: (1) a class label, (2) a subset
of labels ordered by plausibility, (3) a vector of all possible
labels with the corresponding support values [25]. One of
the most used methods to integrate the class labels of base
classifiers is the majority vote rule (MV). In this method,
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each base model has the same impact on the final decision
of EoC. In the weighted majority voting rule, the integration
phase includes probability estimators or other factors of base
models to the final decision of MCS [6], [29].

One interesting approach to building the MCS system is
clustering and selection algorithm proposed in [24]. This
algorithm has its modification presented in [19] and a good
performance proven for imbalanced datasets [27]. In general,
the clustering and selection algorithms divide the feature
space into subspace by K-means or other clustering proce-
dure and select one base classifier for each subspace using
performance measure.

In this paper, we propose an algorithm that uses:

• Division of feature space into disjoint subspaces.
• Horizontal partitioning of the original dataset in order
to train base models, in our proposal decision trees are
used.

• The location of the subspace centroids, as well as the
size and location of decision regions defined by base
classifiers are used in order to determine the weights
needed in the integration phase.

Mutual location in geometric space, subspace centroids
and the decision regions define the class label assigned to
each subspace. Thus the integration process in the proposed
algorithm takes into account the geometric space.

The objectives of this work are as follows:

• A proposal of a newMCS algorithm that uses in the inte-
gration phase mutual location of the subspace centroids
and the decision regions.

• Proving that for infinitely dense space division the pro-
posed algorithm is equivalent to majority voting.

• A new experimental setup to compare the proposed
method with majority voting and random forest algo-
rithms.

The paper is structured as follows: In the next section
related work is presented. Section III introduces base con-
cept of supervised classification. The proposed algorithm is
presented in section IV. In Section V the experiments that
were carried out are presented, while results and discussion
are present in section VI. Finally, we conclude the paper in
section VII.

II. RELATED WORK
Considerations about classifiers integration using their geo-
metrical representation have been studied for over a decade
now [33]. Based on operations in geometrical space generated
by real-valued features this procedure has proven itself to be
effective in comparison to others, commonly used integration
techniques such as majority voting [7]. In one of the previous
papers authors have shown significant improvement in the
classification by applying weighted mean and median func-
tional to decision boundaries of the SVM classifiers [8].

A geometric approach to the classification problem by
Voronoi cells utilization was recently examined by Polianskii
and Pokorny [31]. The authors consider Voronoi cells instead

of points as basic objects being classified. Boundaries of
cells are associated with labels of the closest training objects.
Then, integration over the boundaries with regard to associ-
ated labels is performed to obtain the most probable class.
This approach was tested using SVM, the nearest neighbor
and random forest classifiers.

Nearest neighbor classifiers are proven to be efficient when
testing which Voronoi cell an object belongs to [3], because
there is no need to calculate the geometry of every Voronoi
cell. An efficient search lookup was proposed by Kushilevitz
et al. [26]. The algorithm employs a space–efficient data type
that allows to approximate the nearest neighbor in time nearly
quadratic regarding dimensionality.

However, the nearest neighbor algorithms are difficult in
usage when it comes to specifying the number of prototypes.
Using too many leads to high computational complexity. Too
few prototypes can cause an oversimplified representation of
the decision space especially for datasets that are not linearly
separable, have island–shaped decision space, etc. Multiple
solutions for this problemwere proposed. One way to achieve
this is to apply Generalized Condensed Nearest Neighbor rule
to obtain a set of prototypes [22]. Each prototype is an object
of the training dataset. Another approach was proposed by
Gou et al. [16]. The first step of the algorithm is to apply
kNN algorithm to obtain fixed number of prototypes for every
class. Then local mean vectors are calculated to transform
the set of prototypes to better represent the decision space
distribution.

Decision tree belongs to the simplest and most intuitive
machine learning algorithms. They work by recursively par-
titioning the classification space [37]. Although it has been
proposed more than three decades ago [34], decision tree and
many its derivatives are very commonly used today [43]. Easy
representation, low cost and high quality make decision trees
one of the most powerful and popular approaches in data
science [37].

It has been noticed, that local quality for each of the base
classifiers might differ. The objective of classifier selection
is to choose one or a subset of possible base classifiers to
perform classification over a region. If the division is known
a priori, the selection is called static. Otherwise, models are
tested for their quality for the new pattern [32]. Kim and
Ko [23] favor local confidence over averaging the quality of
classification over the entire space. Combining complemen-
tary characteristics of the basemodels is proven to outperform
individual classifiers and several other integration methods.

An interesting approach is combining weighting with local
confidence [41]. The authors of the mentioned article notice,
that a classifier trained on a subset of training data should
be limited to the area it spans in an impact on the resulting
classifier.

The problem of generalization of majority voting was
studied in [2]. The authors are using a probability estimate
calculated as the percentage of properly classified validation
objects over geometric constraints. Separately are consid-
ered regions that are functionally independent. A significant
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improvement in the classification quality was observed when
using the proposed algorithm, although knowledge of the
domain is needed to provide a proper division. The authors
are using a retinal image and classify over anatomic regions.

Another variation on weighted majority voting is class–
wise majority voting covered in [35]. Weights are determined
for each label separately over the entire validation dataset.
This can lead to the improvement of the performance of the
resulting integrated classifier.

One of the most popular ensemble methods is a Random
Forest introduced by Breiman in 2001 [4]. This technique has
proven itself to be very powerful and many related algorithms
appeared over the years. In article [14] 179 different classi-
fications algorithms were evaluated using 121 datasets. The
results show, that random forest outperforms the majority of
examined classifiers. It operates on a pool of base classifiers
– decision trees trained on different subsets of the training
dataset. An object under test is classified by every model
and results are gathered. Finally, majority voting is applied
to obtain the most common label.

Extreme Gradient Boosting (XGB) is among the most
widely spread, especially in machine learning competi-
tions [11], [40], [42]. The algorithm works by training sub-
sequent decision trees, where consecutive models minimize
the value of a loss function generated by its predecessor [15].
Another implementation of Gradient Boosting Decision Tree
aiming at performance, especially in case of high dimen-
sionality, is LightGBM [21]. Without loss of performance in
classification, the process of training a model can be sped up
up to 20 times.

The diversity between base classifiers can be obtained
using vertical or horizontal partitioning [37]. It has been
proven that for datasets of extreme sizes (very large or small)
horizontal partitioning (splitting data into disjoint subsets)
outperforms other ensemble methods like bagging or boost-
ing [10]. This provides great possibilities in parallelizing
model learning in a distributed environment like p2p net-
work [28].

III. BASIC CONCEPT
The recognition algorithm 9 maps the feature space X to the
set of class labels � = {ω1, ω2, . . . , ωC } according to the
general formula:

9 : X → �. (1)

The classification goal is to assign a given object x ∈ X into
one of the predefined class labels ωi ∈ �. Let us assume
that K different decision trees 91, 92, . . . , 9K are used to
solve the classification task. As a result of all the classifiers’
actions, their K responses are obtained. All K base classifiers
are applied to make the final decision of MCSs.

The majority voting method allows counting base classi-
fiers outputs as a vote for a class and assigns the input pattern
to the class with the greatest count of votes. It is defined as

follows:

9MV (x) = argmax
ωi

K∑
k=1

I (9k (x), ωi), (2)

where I (·) is the indicator function with the value 1 in the
case of the correct classification of the object described by
the feature vector x, i.e. when 9k (x) = ωi.
This means that having a pool of arbitrary classifiers and

an object to classify, we assign to the object a label that is
indicated by most of the models in the pool. There are differ-
ent approaches to handle ties (two or more labels are mode),
for example random draw from conflicting classes [25].

In the majority vote method each of the individual clas-
sifiers takes an equal part in building EoC. Given definition
for binary classification is sufficient provided the number of
classifiers is odd (to eliminate ties). Otherwise the definition
must be modified, usually using random draws or weighting.

The most basic application of MCS to decision trees is
random forest. Decision trees are trained on different subsets
of training data to obtain different models. Afterwards major-
ity voting is applied (formula (2) is used where decision tree
classifiers are inserted in the place of 9k ) [18].

IV. PROPOSED METHOD
Every decision tree divides space into the finite set of n-
dimensional cubes associated with the given class. Let us
consider a two-dimensional space as a special case, where
decision boundaries can be represented as rectangles. This
paper proposes a method of combining multiple decision
trees using this representation.

The proposed idea is based on the division of the classifica-
tion space into rectangular (cubic in case of more dimensions)
subsets and assigning classes to them. Further, they will be
referred to as classification regions for brevity.

The whole dataset (training and testing subsets) generates
a cubic space, that can be divided into smaller ones. Those
cubical sets (further referred to as subspaces) are of the same
shape as the original dataset but of a different size, since
the cube is divided into the same amount of parts along
every dimension (feature axis). Subspaces and classification
regions are depicted in fig. 1. Three different levels of granu-
larity were examined: every edge was divided into 20, 40 and
60 parts. For every region a midpoint is calculated.

For each subspace a candidate is resolved as a label of the
classification region that spans themidpoint of the considered
subspace. For every such candidate weight is derived based
on the area (volume) of the classification region. Finally, all
intermediate results are aggregated by summing their weights
and the class with the largest weight is assigned to the sub-
space. Since the resulting classifier assigns labels to every
rectangular region of competence, it is also a decision tree.

On the other hand, since the classification space is divided
into equal subspaces and for all objects within the subspace
their label is determined as the label assigned to the midpoint,
the resulting classifier can be considered as 1-NN (Nearest
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FIGURE 1. Graphical explanation of subspace and classification region.

Neighbor) classifier with training objects located in the center
points of every subspace and subspaces themself become
Voronoi cells (areas of points whose closest training point
is the midpoint of that area). This eases reasoning about
the resulting classifier and simplifies its representation. On
the other hand this technique can be useful as a cardinality
reduction method and can be applied as an intermediate step
in the classification process. The resulting centers of the sub-
spaces can be used as a training set for another classification
model and it’s resolution can be customized (cardinality of
the training set can be any number of the form resn, where
res ∈ N+ and n denotes dimensionality).

To keep the notation consistent the classifier that maps the
classification region into a label will be denoted as ϒ(A) ≡
∀x∈A9(x). Note that all objects from the classification region
A must be classified with the same label by the classifier 9.

Let Sm be them-th subspace, Rkl – l-th classification region
of k-th classifier with label ωi = ϒ(Rkl ) (ωi ∈ �) and x –
classified object. Let us denote by M number of partitions
of the classification space into subspaces along one dimen-
sion. Then, for n-dimensional problemMn subspaces will be
considered. Notice, that k-th decision tree can be completely
represented as Rk . If we define δS (Sm, x) as 1 if Sm spans x
and 0 otherwise, δR(Rkl , Sm) as 1 if the midpoint of Sm lies
within Rkl and 0 otherwise, i.e.

δS (Sm, x) =

{
1 if x ∈ Sm
0 if x /∈ Sm

δR(Rkl , Sm) =

{
1 if mid(Sj) ∈ Rkl
0 if mid(Sj) /∈ Rkl

FIGURE 2. The marked midpoint lies within a classification region labeled
with ω0, thus every object in this subspace is assigned label ω0 with
weight defined by the function 5.

and fm(Rkl ) as a weighting function, we can formalize the
proposed algorithm as:

9T (x)=argmax
ωi

K∑
k=1

Mn∑
m=1

|Rk |∑
l=1

δS (Sm, x)δR(Rkl , Sm)fωi (R
k
l ).

(3)

Knowing, that mid(A) is the midpoint of the cubic region
A, the equation [3] can be rewritten as:

9T (x)=argmax
ωi

K∑
k=1

Mn∑
m=1

|Rk |∑
l=1

δ(x, Sm,Rkl )fωi (R
k
l ), (4)

where δ(x, Sm,Rkl ) = δS (Sm, x)δS (R
k
l ,mid(Sm)).

The effective computational complexity is reduced as
most terms of the equation [4] are omitted because either
δS (Sm, x) or δS (Rkl ,mid(Sm)) resolves to 0.
In this paper only the proportional and inversely pro-

portional weighting function was examined: fvol(A) =
volume(A), finv(A) = 1

volume(A) .
Notice, that fωi depends on labelωi. It assigns weight to the

label, thus it is a shorthand:

fωi (R
k
l ) = fwt (Rkl )I (ϒk (R

k
l ), ωi), (5)

where I (·) is the indicator function from equation [2] andwt ∈
{vol, inv}.

Fig. 2 shows an example of weight calculation. Since the
midpoint of the considered subspace lies within the classifica-
tion region classified with the label ω0, label for every object
in this subspace is assigned toω0 withweight calculated using
formula [5].

The algorithm is depicted in fig. 3. Given the subspace and
weighting function proportional to the area, the first classifier
(fig. (a)) assigns weight to label ω0 and the second (fig. (b))
– to ω1, because the midpoint lies in the respective classi-
fication regions. Weight associated with label ω0 is smaller
than the one associated with ω1, because it’s proportional
to the area of classification regions. The resulting classifier
(fig. (c)) aggregates calculated weights and assigns label ω1
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Algorithm 1: Algorithm to Obtain Integrated Decision
Tree Using Cubic Subspaces
Input : K – number of base classifiers

(91, 92, . . . , 9K ), M - number of edge
divisions, n - number of dimensions, dataset

Output: Integrated decision tree 9T
1 Select the most informative features and normalize the
dataset.

2 Divide the dataset into K + 1 subsets (K for training
base classifiers and 1 for testing).

3 Train base classifiers 91, 92, . . . , 9K to obtain their
geometrical representation (classification regions with
labels).

4 Divide the feature space into Mn identical cubic
subspaces.

5 For each subspace determine the classification region
that spans the midpoint of the considered subspace and
evaluate competence of the label using weighting
function using formula 5.

6 Sum weights for every label over every classifier and
assign to the subspace label with the greatest sum
according to [4].

TABLE 1. Descriptions of datasets used in experiments (name with
abbreviation, number of instances, number of features, imbalance ratio).

to the entire subspace, since this is the label with the greatest
sum of weights.
Lemma:Majority Voting with an arbitrary weighting func-

tion that depends on the region only is a special case of the
presented algorithm for the infinitely dense space division.

Proof: First let us notice, that for any training point x
there are only one Sx and Rks that fulfil the following:

∃Sx ∈ {Sm} : x ∈ Sx
∀k∃Rks ∈ {R

k
l } : s = mid(Sx) ∧ s ∈ Rks . (6)

This is the consequence of exclusiveness of subspaces and
subregions: Si ∩ Sj = ∅ ∧ Rki ∩ R

k
j = ∅ for every i 6= j.

The special case of the proposed algorithm is when the
division into subspaces becomes infinitely dense. Thismeans,
that the size of every subspace becomes infinitely small and

FIGURE 3. Label calculation using two base classifiers and mapping
function proportional to area.

shrinks to a single point, which results in:

lim
|Sx |→0

mid(Sx) = x. (7)

Combining equations [6] and [7] we can obtain from [4]:

lim
M→∞

9T (x) = argmaxωi

K∑
k=1

fωi (R
k
x ), (8)

where Rx denotes the decision tree region, that spans x. Thisproves the lemma.

The consequence of the proven lemma is that majority
voting is a special case of the presented algorithm for the con-
stant weighting function (without weighting) and infinitely
dense partition into subspaces.

V. EXPERIMENTAL SETUP
The pool of classifiers consisted of 5 decision trees of depth
of 3. Decision tree implementation from scala library spark
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TABLE 2. ACC and mean rank for the proportional weighting function.

TABLE 3. ACC and mean rank for the inversely proportional weighting function.

TABLE 4. MCC and mean rank for the proportional weighting function.

TABLE 5. MCC and mean rank for the inversely proportional weighting function.

was utilised. To conduct statistical tests numpy [30] and
scipy [20] were used.

As referential classifiers majority voting and random forest
were used. The experiments were conducted for edge division
into 20, 40 and 60 parts. Edge division into M parts means
creating Mn areas of competence, where n is the number of
dimensions. In this paper only the two-dimensional feature
space is considered, but the algorithm is easily applicable to
any number of dimensions without any modifications.

Two antagonistic weighting methods were used: propor-
tional and inversely proportional to the volume. Weight of
every decision tree competence region can be calculated as
its area (inverse of the area respectively). To assure even
influence of every dimension, datasets were normalized to
span over square space.

The experiments were conducted using open-source
datasets available on platforms UCI Machine Learning
Repository [13] and KEEL Data Set Repository [1]. Datasets
are presented in table 1. The imbalance ratio is shown to
stress the need to use metric sensitive for highly imbalanced

datasets (MCC). For all datasets the feature selection pro-
cess [17], [36] was performed to indicate two most informa-
tive features.

It’s also important to notice, that no other requirements
besides knowledge of extrema of the feature space is needed
to apply the algorithm.

Integrated classifiers are designated as 9M
weight , where

weight denotes weighting function (vol for proportional to
volume or inv for inversely proportional to volume) and M -
number of divisions along the dimension. Referential classi-
fiers are designated as9alg, where algmeans algorithm used:
majority voting – mv or random forest – rf .

VI. RESULTS AND DISCUSSION
The main aim of the experiments was to compare the
quality of classification of the proposed method with refer-
ential algorithms. Statistical tests were performed to com-
pare the improvement achieved by using the proportional
and inversely proportional weighting function for decision
trees. In order to compare the quality of the classification,

VOLUME 8, 2020 82105



J. Biedrzycki, R. Burduk: Weighted Scoring in Geometric Space for Decision Tree Ensemble

TABLE 6. p–values of ranked Friedman tests for the examined algorithms.

two classification measures were used: accuracy (ACC) and
Matthews correlation coefficient (MCC).

ACC is the most commonly used quantity, but it reflects
the quality of classifier very poorly, when applied to imbal-
anced datasets. Suppose the imbalance quotient for the binary
classification problem ( #minor class objects

#major class objects ) equals
1
9 , then the

model classifying every object with the most common label
will receive a score of 90%. MCC takes the imbalance of
dataset into account, what makes it more reliable in case of
datasets used, where the imbalance reaches 0.07.

Tables 2 and 3 show the results of ACC and tables 4
and 5 – the results of MCC. Every experiment was conducted
10 times and the average is presented. Along with quality
measures, average ranks obtained in nonparametric Friedman
tests are written in the last column.

p-values of Friedman tests are shown in table6. They do not
exceed the value of 0.01, what means, that not all algorithms
perform equally. To determine which algorithms are odd,
post–hoc Bonferroni–Dunn tests were conducted.

This test was carried out for each division of the feature
space (the feature space was divided into 202, 402 and 602

areas of competence). The difference in the quality of clas-
sification in some cases was observed, because Bonferroni–
Dunn test requires the difference in Friedman ranks to be
at least 1.18 (3 algorithms are compared against referential,
11 datasets are used) to reject the null hypothesis at a signif-
icance level of α = 0.1 [12].

The best results are marked with the bolded font. For
every division granularity and every quality measure classi-
fiers obtained using both weighting functions perform sig-
nificantly better than random forest. Additionally, using the
proportional weighting function provides better results than
majority voting when comparing MCC.

Fig. 4 depicts a statistical analysis of the obtained results.
The graphs show rankings obtained in Friedman’s tests for
every algorithm. The lower the rank, the better the quality of
the classifier. For the reference the critical difference between
ranks is presented in the top–left corner. The bolded line
spans over values, whose ranks differences are smaller than
the critical value. This means, that according to Bonferroni–
Dunn’s test, they are indistinguishable.

VII. CONCLUSION
In this article the algorithm of the decision tree integration
in the geometric space along with two weighting functions
were proposed. The algorithm is less restrictive than majority
voting when it comes to the number of base classifiers, since
the possibility of draw is low. The resulting classifier is also

FIGURE 4. Comparison of quality of proposed algorithm, majority voting
and random forest.

a decision tree, which makes it easy to reason about and
serialize.

Because all subspaces are cubes of the same size, they are
also Voronoi cells. This means, that the resulting model is
also a nearest neighbor classifier with centroids placed in the
centers of every subspace.

It was also proven, that the weighted majority voting is
a special case of the presented algorithm, when the division
granularity is infinite.

Eleven open-source benchmarking datasets were used in
the experimental part to perform the statistical analysis of
the results concerning two classification measures. MCCwas
used aside of ACC because of the high imbalance of the
datasets used. MCC unlike ACC takes the imbalance into
account, what makes it more reliable. Bonferroni–Dunn tests
showed, that for all division densities the proposed algorithm
resulted in the better classification quality than the random
forest for datasets used. Additionally for proportional weight-
ing function MCC of the integrated classifier outperformed
the random forest.
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