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ABSTRACT As densification is the promising trend of future mobile networks, deployment of base
stations (BSs) becomes increasingly difficult due to the laborious procedures in network planning; besides,
unreasonable layout may lead to poor coverage performance. Hence, this paper firstly trains a propagation-
model-free received signal strength (RSS) predictor based on machine learning (ML) models, and then
optimizes coverage performance of BS deployment via multi-objective heuristic methods. Specifically, many
practical features that affect signal propagation like geographical types and operating parameters of BS, are
fed into ML models to predict RSS in a rasterized area; then based on the trained model, a well-designed
multi-objective genetic algorithm (GA) is proposed to minimize the number of deployed BSs with coverage
constraint. For the practical considerations of fast convergence and output-consistence, greedy algorithm
with fixed initial solution and searching direction is also carried out. Moreover, the typical scenarios
of incremental deployment (the mobile operator needs to deploy more BSs on the basis of the existing
deployment) and BS outage compensation (one BS fails and other BSs need to adjust their configurations to
fill the coverage gap), are also investigated for practical needs. Simulations show that multi-layer perceptron
outperforms other ML algorithms in terms of RSS prediction with mean absolute error (MAE) yielded to
3.78 dB; and numerical results verify the convergence and availability of the proposed algorithms, which
shows 18.5% gain than the real-world deployment in terms of coverage rate.

INDEX TERMS Propagation-model-free, base station deployment, machine learning, genetic algorithm,
greedy algorithm.

I. INTRODUCTION
The exponential growth of mobile data traffic brought by
smart devices and mobile Internet is approaching the capacity
of current network infrastructures [1]. To address this chal-
lenge, ultra-dense network comes out as one of the leading
concepts in the race to the future networks, where the basic
idea is to provide a coverage environment so that users can
connect to the access nodes as close as possible, i.e., base
stations (BSs) are ultra-densely deployed in hotspots [2].
However, unreasonable layout of densely deployed BSs may
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lead to poor coverage performance and extra capital expen-
diture (CAPEX) and operational expenditure (OPEX) [3].
Therefore, how to extend the wireless coverage by optimally
deploying BSs while minimizing the number of BSs becomes
an intractable problem in the field of BS deployment.

In general, the procedures of BS deployment can be divided
into 3 steps: 1) determine the number and the address of
new BSs according to users’ needs; 2) further decide the
exact locations of BSs by alternating optimization between
field measurements and coverage evaluation via propagation
models; 3) start deployment. As we can see, the procedures of
BS deployment is time-consuming and costly. Besides, there
exists many challenges during practical deployment of BSs:
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• Many existing empirical radio propagation models, such
as Okumura-Hata [4] and COST [5], may become inac-
curate or not longer applicable due to the change of
geographical environment and spectrum [6]; besides,
many factors that influence the signal propagation like
geography types are not considered.

• Although there are some network planning tools that
focus on radio frequency coverage planning (e.g.,
CelPlan [7]), they cannot avoid the intricate procedures
in building an approximator of propagation models for
received signal strength (RSS) prediction, and require
signal measurements in the field.

• Current network planning is an relatively independent
process and lots of experience as well as useful infor-
mation is underutilized, which implies that there is sig-
nificant potential gain remaining to be mined.

In addition, mobile operators have to handle many situa-
tions more than just deploy BSs in an unplanned area, such
as: 1) incremental deployment, i.e., there have already existed
some deployed BSs and the operator needs to deploy more to
increase the coverage; 2) BS outage compensation, i.e., a BS
fails to provide coverage to its users and neighbor BSs adjust
their configurations (e.g., antenna tilt or transmit power) to
fill the coverage gap caused by this faulty BS. Adapting
different solutions to solve these challenges is complicated
and costly, which drives self-organizing network (SON) [8]
to reduce human intervention. However, there still exist many
different SON functionalities focused on solving various sit-
uations nowadays, which is not cost-saving. Therefore, it is
necessity to design a systematic technique to extract relevant
information from lots of valuable information and diminish
operational costs.

In this context, machine learning (ML) is utilized as a pow-
erful tool to extract relevant information from the rich cellular
data. ML has achieved great improvements and extensive
applications nowadays, however, there are only a few studies
to analyze effective RSS prediction model and optimization
of BS deployment for the purpose of achieving better cover-
age performance and lower overhead.

A. RELATED WORKS
Path loss models are extensively used in signal prediction
and coverage evaluation, which is crucial for BS deployment
[9]. The design of mobile communication networks requires
a good knowledge of wireless channel. Many researches
have focused on designing path loss prediction models based
on drive test measurements [10], [11]. The authors of [12]
developed a neural network for path loss predictions with
normalized terrain profile data. And regression algorithms
were used in [13] by extracting relevant information from
the huge amount of radio measurements for quality of ser-
vice (QoS) prediction. However, many important factors that
affect the signal propagation, such as geography types, BS
height, downtilt of antennas and azimuths, are not taken into
the consideration of signal prediction. In our previous work

[14], a propagation-model-free coverage evaluation model
based on ML was proposed to predict the received signal
strength (RSS) at each grid, where the majority of important
factors were considered in order to improve the prediction
accuracy; however, the problem was modeled as a classi-
fication problem, which is not in line with the nature of
RSS prediction. Moreover, how to further optimize the BS
deployment is not discussed in those works above.

Theoretical algorithms were proposed in [15]–[17] to
address the nonconvex and combinatorial optimization prob-
lem of BS deployment. Nevertheless, these works assumed
simple propagation model and did not consider practical sce-
narios of BS deployment, which cannot be applied in practical
systems. In [18], different works that aim to solve the problem
of QoS prediction and verification was offered, but it directly
focused on QoS offered to end-users and the resources that
the operators need to offer, rather than optimized the coverage
performance of networks.

In [19], a pico BS deployment problem was formulated
as an additional part to meet the increasing data exchange
requirements, which assures the performance of coverage
and quality of services; besides, [20] proposed many BS
deployment algorithms including region-based, grid-based
and greedy algorithms to determine the most suitable posi-
tions of micro BSs. However, these works only consider
the impact of location, where other parameters that affect
the performance indicators are not taken into consideration.
Moreover, those algorithms optimized only one variable in
each iteration and was performed in an exhaustive manner,
which is inefficient with poor performance.

B. CONTRIBUTIONS
Therefore, different from aforementioned works, our pro-
posed BS deployment method firstly extracts main fea-
tures that determine the strength of signal propagation from
tremendous RSS data. Then ML techniques are leveraged to
train a regressor for RSS prediction. Moreover, in order to
address the non-convex optimization problem of BS deploy-
ment, a multi-objective genetic algorithm (GA) and greedy
algorithm are conducted. The locations and operating param-
eters of deployed BSs are optimized to minimize the number
of BSs with coverage guarantee. In this paper, homogeneous
BSs are considered to focus on the design of BS deployment
algorithms, where other types of BSs can be deployed layer-
by-layer with the same technique. Moreover, since coverage
performance is priority during initial network planning, QoS
demand is not taken into consideration, which can be opti-
mized in future research.

The main contributions of this paper can be summarized as
follows:

• Different from deriving empirical propagation models
from field measurements, the knowledge of channel fea-
tures (including topographic types and operation param-
eters of BSs) from different locations are extracted
via ML-based propagation-model-free method, which
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FIGURE 1. Screenshot of dataset consists of several outdoor BSs as well
as their corresponding RSS in a real-world area. Triangle represents the
BS, and colored dots represent the RSS belong to different BSs. The
darker is the dots, the higher strength of received signal they represent.

makes it easy to generalize to other locations without
too much tuning and saves a large amount of CAPEX
and OPEX.

• Multi-objective genetic algorithm is proposed to solve
the minimization problem of the number of deployed
BSs by optimizing the locations and operating parame-
ters. The constraints of coverage, BS deployment terrain
and operating parameters range are taken into account
for practical systems. Moreover, algorithm with fixed
initial solution and optimization direction is also carried
out under the practical considerations of fast conver-
gence and the output-consistent.

• In addition to deploying BSs in an unplanned area,
the proposed BS deployment algorithms can still be
used as SON functionalities in the typical scenarios like
incremental deployment and BS outage compensation.
As a result, it can be used as a substitute for the network
management tool, which reduces lots of operational
costs for mobile operators.

The rest of the paper is organized as follows. Section II
introduces the data needed to be collected for training and
formulates the optimization problem. Then the network plan-
ning tool including offline training, online evaluation and
practical applications is described in Section III. Section IV
presents the details of the simulation, as well as the meaning-
ful numerical results. Finally, Section V summarizes with the
conclusions.

II. PRELIMINARY
A. DATA COLLECTION FOR MODELLING RSS ESTIMATION
In order to accurately estimate RSS received at the user
side, main factors that affects signal propagation should be
taken into consideration as many as possible. Among all the
factors, the most dominant one is the distance between BS
and user due to the principle of electromagnetic propaga-
tion. The power strength will decrease as the distance from
source increases (known as the Inverse-square Law). Besides,
geography is also an important element in affecting signal
propagation especially in the city. Signal propagation will
be blocked by mountains, huge buildings and other ground
features, which obstructs line of sight transmission and lead
to reflection and diffraction. In addition, another important

factor is the operating parameters of BS, such as transmit
power, height, azimuth and mechanical (electrical) downtilt.

Fig. 1 shows a part of RSS distribution map as well as
several different BSs in a real-world area. Note that the
distribution of RSS is discrete and they may overlap with
each other, which increases the difficulty in data analysis and
channel modelling.

We build a data set collected from the real-world networks
of multiple locations. The data contains samples (rows), and
features (columns), which can be divided into 2 sets−the
training set and the test set. The training set is used to train the
model while the test set is used to evaluate howmuch the pre-
dictions are correct. Supervised machine learning is utilized
to develop a predictive model by deducing a specific function
f (x) from the output ŷ. Assume there are n selected features,
then a training sample can be represented by a n-dimensional
input vector x = (x(1), . . . , x(n)) ∈ Rn. Assume there are p
training samples ((x1, y1), . . . , (xp, yp)) in a training set. Each
training sample attaches to a corresponding output, i.e., RSS
value.

According to the feature selection criteria discussed ear-
lier, a total of 25 features that affects signal propagation is
collected to learn the relationship between input and output.
The features required are listed in Table 1 as follows:

TABLE 1. Required features from real-world datasets.

The first feature is the distance between user and BS,
denoted by d in meters. 9 = [ϕ1, . . . , ϕK ] is a vector that
calculates the main geography statistics between users and
BSs, where ϕi represents the proportion of i-th geography
types, such as buildings, mountains, forest and so on. After
the comparisons of feature importance and manual screening,
we select a subset of geography features with K = 17
from the 3D map dataset. λ̂azi = [λ(1)azi, λ

(2)
azi, λ

(3)
azi] represents

collection of the three azimuths of BS in a cellular network.
λMD and λED represent mechanical downtilt and electrical
downtilt, respectively. And h is the relative height of BS, P
is the transmit power of BS measured in dBm.

B. PROBLEM FORMULATION
The task in this paper is to meet the coverage requirement
by deployed as less BSs as possible. In order to calculate the
coverage rate, a given region is rasterized uniformly into L
grids with size of 20m×20m. For example, a 500m×1000m
area can be divided into 25 × 50 grids. Then for each grid
i, we have a RSS predicted by supervised learning model,
denoted by rssi. Therefore, given the collected data for oneBS
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FIGURE 2. Architecture of network planning tool, including two stages: offline training and online evaluation.
Offline training is to train a RSS prediciton regressor for the coverage evaluation in stage II; online evaluation
leverages heuristic approaches to minimize the deployed number of BSs.

with size of [L × n], the model produces an output with size
of [L×1]. Note that each grid may have multiple RSS values
corresponding to different BSs, the largest RSS is selected as
the indicator of coverage.

In order to formulate the optimization problem in a math-
ematical form, we introduce a variable, C, which indicates
whether the predicted RSS of a grid meets the coverage
requirements:

Ci =

{
1, if rssi ≥ φ
0, if rssi < φ

(1)

where φ is a predefined RSS threshold. Let C denote the
coverage rate, then the definition is given by:
Definition (Coverage rate): The coverage rate C of a spe-

cific area with several BSs is defined as the ratio of the
number of grids greater than a certain threshold Cth to the
total number of girds, i.e., C =

∑L
i=1Ci/L.

The goal is to minimize the number of deployed BSs while
ensuring the network coverage. Denote the set of deployed
BSs as A = {1, 2, . . . ,A}, where A is the number of BSs.
Therefore, the multi-objective optimization problem can be
formulated as follow:

min
{θ}a∈A

A

s.t. C1 : C ≥ Cth
C2 : (Gx ,Gy) ∈ Rd

C3 : λLOWazi ≤ λ
(i)
azi ≤ λ

UPPER
azi , i = 1, 2, 3

C4 : λLOWMD ≤ λMD ≤ λ
UPPER
MD

C5 : λLOWED ≤ λED ≤ λ
UPPER
ED

C6 : hLOW ≤ h ≤ hUPPER

C7 : PLOW ≤ P ≤ PUPPER

(2)

where θ = (n,Gx ,Gy, λ̂azi, λMD, λED, h,P) denotes the
seven optimized parameters of the BS, i.e., (Gx ,Gy) repre-
sents longitude and latitude of the BS to be deployed. (C1)
is the coverage constraint over the whole area. Rd indicates
the planned area that is suitable for BS deployment such

as the tall buildings, mountains and flat land, so that (C2)
indicates that the solutions of longitude and latitude must be
in the region. Let (•)LOW and (•)UPPER represent the lower
bound and the upper bound of corresponding parameters,
respectively, where the lower bound and upper bound are
statistics from actual data sets. Therefore, (C3−C7) represent
the constraints of azimuths, mechanical downtilt, electrical
downtilt, BS height and BS power, respectively. Note that the
optimization problem contains many real-world constraints
that cannot be modeled, it cannot be solved by numerical
optimization. Therefore, we seek to solve this problem with
heuristic approaches.

III. NETWORK PLANNING TOOL
In this section, we aim to create a novel BS deployment
tool, which solves the optimization problem (2) and achieves
the same coverage performance as in existing LTE network.
However, accurate coverage evaluation is difficult due to
the complex propagation environment; besides, the space of
feasible solution is incredibly large, which makes the global
optimal solution difficult to obtain. Therefore, we divided the
network planning tool into two stages. Stage I is responsible
to train a regressor by means of supervised learning approach
[21], which can be done offline. And Stage II leverages the
output model of Stage I to estimate the coverage rate for
a feasible solution. Then based on this evaluation function,
the parameters can be optimized to find the best solution (i.e.,
location and operating parameters of BSs) via heuristic algo-
rithms such as genetic algorithm and greedy algorithm. The
architecture of network planning tool is depicted in Fig. 2.

A. OFFLINE TRAINING
Supervised learning techniques can be generally classified
into classification and regression, which depends on the pre-
dicted values are discrete or continuous. As mentioned above,
the RSS prediction is a regression task. In this section, ML-
based model is responsible to learn the function f (x) that
represents the relationship between the features x and the
RSS value y. Therefore, the exactitude of coverage evaluation
highly depends on the accuracy of RSS prediction.
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Algorithm 1: Train Regressor
Input: The processed dataset (Xtrain,Ytrain) and

(Xtest,Ytest), Maximum number of iterations T
Output:Model
Given the training set Xtrain = {x1, . . . , xp},
Ytrain = {y1, . . . , yp};
\\Choose the best values by using grid search;
for t = 1 : T do
\\Call regressors
model(t):=regressor(Xtrain, Ytrain, parameters);
\\ Predict the RSS value:
Ŷtest:=model(t).predict(Xtest);
\\Evaluate performances by comparing with the
actual value (Ytest)
Score:=model(t).score(Ytest, Ŷtest);

end
return model:=best(model)

In order to improve the prediction performance, we exhaus-
tively compare several ML algorithms such as k-nearest
neighbor, random forest, SVM with different kernels and
multi-layer perceptron (MLP). The raw data collected in
Section II is firstly processed by data cleaning, normalization,
dimensionality reduction. Then the processed data is split into
training set and test set. Based on the training set, each ML
algorithm traverses all the parameter settings and find the
optimal parameters that obtains the best prediction perfor-
mance. Among all the ML models, we choose the model that
fits the data best to evaluate coverage in Stage II. The detailed
training process is described in Algorithm 1.

1) DATA PRE-PROCESSING
a: DATA CLEANING
Data mining techniques highly rely on a clean and integral
dataset. However, faulty sampling process and limitations
of the data acquisition process will lead to missing values.
Many approaches are available to handle those samples,
such as expectation-maximization (EM), multiple imputa-
tion [22]. In this work, the missing values are discarded for
simplicity.

b: NORMALIZATION
The range of values of raw data varies widely, which may
make some ML algorithms not work properly and leads to
slow convergence. Therefore, data normalization, which is
also known as feature scaling, is used to normalize the range
of features of data. In this work, min-max normalization is
adopted in order to rescale the feature values to the range of
[0, 1]:

x ′ =
x −min(x)

max(x)−min(x)
(3)

c: DIMENSIONALITY REDUCTION
Principle component analysis (PCA) [23] is adopted to reduce
the feature dimensions, which can improve the training effi-

ciency and performance. The main idea is to decompose
a multivariate dataset into a set of successive orthogonal
components that explain a maximum amount of the variance.
It is essential in practical implementation especially when the
input data is with huge amount of features. The total number
of feature dimensions in our dataset 25, therefore, PCA is
adopted.

2) DATA PARTITION
The pre-processed data is split randomly into training set
(Xtrain,Ytrain) and test set (Xtest,Ytest). The training set con-
tains p samples and the test set contains m = L − p samples,
where approximately p : m = 7 : 3. The test set is utilized to
select the best model, the model will not be tuned any further
once the model has been well trained.

3) HYPERPARAMETER OPTIMIZATION
Due to the large number of parameters embedded in regres-
sor algorithms, finding the setting of regressor that fits the
data best is difficult. Therefore, we only consider the main
parameters in each algorithm, such as C and ε in SVM, k in
nearest neighbors [21]. Then exhausted grid search algorithm
is applied to perform hyperparameter optimization.

4) EVALUATION OF PREDICTION PERFORMANCE
After the model is tuned, the test set can be used to evaluate
the performance of the tunedmodel. For each predicted value,
we evaluate the performance against the actual value in terms
of the mean absolute error (MAE) as follows:

MAE =
1
m

m−1∑
i=0

|ŷi − yi| (4)

where ŷi and yi indicate the predicted value and the testing
actual value of the i-th data sample, respectively.m is the size
of the test set.

B. ONLINE EVALUATION BY GENETIC ALGORITHM
In this section, we propose a multi-objective genetic algo-
rithm to optimize the locations and operating parameters of
deployed BSs on the basis of coverage evaluation function,
which is shown in the Stage II of Fig 2. The proposed GA
performs parallel search from a population and avoids local
optimum by following probabilistic rather than deterministic
search rules. In particular, we first calculate the interval of
the number of BSs to be deployed and try the GA from
the minimum value of the interval. If coverage meets the
requirements, then the optimal solution is output with min-
imum number of BSs; otherwise, add a BS and perform
GA again. In each iteration of GA, a population of feasible
solutions are generated randomly and the relevant data is
collected to evaluate their coverage respectively. Among all
the individuals in the population, we select several best indi-
viduals according to a certain selection method and exchange
their chromosomes, namely the crossover. To escape the local
optimum, genemutation is adopted.More details are depicted
in Algorithm 2.

VOLUME 8, 2020 83379



L. Dai, H. Zhang: Propagation-Model-Free Base Station Deployment for Mobile Networks

Algorithm 2:Multi-Objective Genetic Algorithm
Input: Trained regressor, Regressor ,

Initial population S, size of population N ,
Number of generations g,
Rate of elitism e, rate of mutation δ
Predefined coverage rate Cth, RSS threshold φ

Output: Optimal solution θ̂
∗

Given planning area, calculate ā
for a = bā(1− 30%)c, . . . , dā(1+ 30%)e do
\\Initialization
Create random feasible population
S = {θ̂

1
, θ̂

2
, . . . θ̂

N
}

for i = 1 : g do
forall θ̂ ∈ S do

Collect neccesary information X for
prediction
\\Predict and count the RSS that larger than
φ

Fitness(θ̂):=Regressor(X )
if Fitness≥ Cth then

return the best solution θ̂
∗

Break
end

end
\\Selection based on Tournament Selection
Select the best e individuals
\\Crossover based on Uniform Crossover
Number of crossover nc = e/2
for j = 1 : nc do

Randomly select two individuals θ̂
a
and θ̂

b

Generate θ̂
c
by Uniform Crossover

\\Mutation
Mutate each parameter of θ̂

j
under the rate δ

end
end

end
return the best solution θ̂

∗

1) CREATE RANDOM FEASIBLE SOLUTIONS

We create a set of random feasible solutions (also called
chromosomes or individuals), S = {θ̂

1
, θ̂

2
, . . . θ̂

N
}, where

N is the population size. As the number of BSs deployed in a
given area is uncertain and the search space can be very large,
an integer value ā is firstly derived by counting the number of
BSs in the existing cellular network, where the range of the
initial number of planned BSs a is bā(1−30%), ā(1+30%)e,
30% is an empirical value. Therefore, the parameter vector of
an individual n can be denoted by θ̂

n
= (θn1, θ

n
2, . . . , θ

n
a).

It is worth noting that many geography types are not
suitable for BS deployment, such as inland water, wet land,
forest and so on. Therefore, we make statistics on the types
of geographies that are suitable for building stations and
mark those terrains that are not. Then the feasible solu-
tions are generated only on the suitable terrains, which

helps to find better solution and fasten the convergence
procedure.

2) EVALUATE THE COVERAGE PERFORMANCE
The objective of this module is to design a function (also
called fitness) to evaluate the coverage of each individual.
Given a feasible solution θ̂

n
, this function is responsible for

predicting the values of all grids by the model produced
during the offline training, and returning the coverage rate
of θ̂

n
. Specifically, in each iteration we firstly collect the

required data of all grids for each feasible solution, θ̂ . Then
the collection is input to the trained regressor to obtain the
RSS value in each grid of the area. Each grid will have several
RSS values attached to different BSs, and the maximum RSS
value is selected as the indicator of this grid for the calculation
of coverage.

3) SELECTION
This module generates a new population of individuals by
selecting the best fit individuals from the current population
for reproduction, which is known as elitist selection. Elitism
chooses the best e fittest candidates into the next generation.
There aremany selection operators like proportionate roulette
wheel selection, tournament selection and inear or exponen-
tial ranking selection [24]. In this work, tournament selection
is used because it is easy to implement, which selects the best
two for reproduction from population.

4) CROSSOVER
This function generates new offspring by inheriting part of
the genes from their parents selected by elitist selection.
There are also many genetic operators in terms of crossover,
like one-point or two-point crossover, uniform crossover and
arithmetic crossover. In this work, UniformCrossover is used.
The idea behind this operator is to combine the genes into one
chromosome from two parents with a mixing ration. Unlike
one-point and two-point crossover, the uniform crossover
means that genes at each chromosome of two matched indi-
viduals are swapped with the same crossover probability.
If the mixing ratio is set to 0.5, the offspring owns approx-
imately half of the genes from the first parent and the half
from the other parent.

5) MUTATION
In order to avoid premature convergence on a local optimum,
mutation is essential to maintain the diversity in the value of
the parameters for next generation. Therefore, this module
selects a uniform random value between the minimum and
maximum value. The probability of mutation in a feasible
solution θ̂

n
is set to δ. δ need to be chosen carefully because

if δ is too high, the convergence is slow, otherwise it will
converge to a local optimum. Finally the new individuals
replace previous ones in the population.

C. ONLINE EVALUATION BY GREEDY ALGORITHM
Genetic algorithm can avoid local optimum due to its stochas-
tic mutation, which also makes it difficult to converge;
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besides, the global optimum is hard to attained in large
planning region, which may lead to different outputs when
the genetic algorithm is performed several times. From the
perspective of industrial application, greedy algorithm with
fixed the initial solution and search direction is suitable due
to the advantages of fast convergence and output-consistence.
In particular, we also set an interval of the number of deployed
BSs as bā(1 − 30%)c, . . . , dā(1 + 30%)e. The greedy algo-
rithm is performed with the number of deployed BSs ranging
from the lower bound of the interval to the upper bound,
until reaching the stop criteria that the coverage require-
ment is met. In each iteration, we create the fixed initial
solution θ̂

0
according to the coordinates of the planning

region. Then for each optimized parameter, a set of adjacent
solutions is built by adding or subtracting their step size
1 = (41,42 . . . ,4v), respectively. Among the adjacent
set, we evaluate their coverage rate and greedily select the
solution with maximum coverage as a new initial solution.
If the coverage meets the requirements, break; otherwise,
repeat the step in each iteration. The online evaluation by
greedy algorithm is given in Algorithm 3.

D. USE CASES
1) INCREMENTAL DEPLOYMENT
It is a very typical application scenario that there have already
existed some deployed BSs and the operator wants to deploy
more for larger coverage. In this scenario, the proposed algo-
rithms are also applicable. Take the parameters of existed
deployed BSs as part of the chromosome, and generate the
incremental BSs according to the procedures according to
Algorithm 2 or Algorithm 3. This is for the case that there
exist no other candidate BS depositories that have the tower
but not at working. As for the case that there are some
inactive BSs besides those active BSs, it is cost-saving to
activate those BSs rather than build a new one. In this case,
when initialize the feasible solution, the parameters of active
BSs are fixed in the chromosome; for those inactive candi-
date BSs, fix their longitude and latitude and then update
other parameters. Then the proposed model can be used to
optimize the result. Therefore, the incremental deployment
can be integrated as a global optimization problem as blank
deployment.

2) BS OUTAGE COMPENSATION
During the network operation, the BS may be not able to pro-
vide services to its users within a certain period. Therefore,
it is necessary to provide a tool that alleviates the outage via
readjusting the parameters of nearby BSs to fill the coverage
gap. Assume there is a BS corrupted suddenly, we fix the
longitude and latitude of other normal BSs, then remove the
faulty BS from the initial solution and maintain the coverage
rate unchanged. Run the model until it satisfies the stop
condition, the neighbor BSs will adjust their antenna tilt and
transmit power to fill the coverage gap caused by the faulty
BS. The simulations of these use cases are presented in the
next section.

Algorithm 3: Greedy Algorithm-Based BS Deployment
Optimization
Input: Trained regressor Regressor ,

Number of optimized variables v,
Initial solution θ̂

0
= (θ01, θ

0
2, . . . , θ

0
v),

Step size 1 = (41,42 . . . ,4v)
Predefined coverage rate Cth, RSS threshold φ

Output: Optimal solution θ̂
∗

Given planning area, calculate ā
for a = bā(1− 30%)c, . . . , dā(1+ 30%)e do

Create fixed initial solution θ̂
0

Assign the current solution to the optimal solution,
i.e., θ̂

∗

= θ̂
0

while Fitness(θ̂
∗

) < Cth do
By adjusting the step size in each variable, attain
many adjacent points 5
forall θ̂ ∈ 5 do

Collect neccesary information X for
prediction
\\Predict and count the RSS that larger than
φ

Fitness(θ̂):=Regressor(X )
end

θ̂
∗

= argmax
θ̂∈5

(
Fitness(θ̂ i)

)
if Fitness(θ̂ i) remains unchanged over multiple
iterations then

break
end

end
end
return the best solution θ̂

∗

TABLE 2. Parameters in algorithms.

IV. NUMERICAL RESULTS
In this section, numerical results are analyzed through the
proposed network planning tool in Hangzhou, China. The
dataset consists of over 760,000 samples from about 500 BSs,
and each BS is attached with about 2000 RSS values in aver-
age. The threshold φ andCth is -90 dBm, 70% if not specified.
An area of 1 square kilometer will deploy an average of 4 base
stations, i.e., ā = 4. The goal is to optimize the parameters
(i.e., number of BSs, longitude, latitude, azimuths, mechani-
cal downtilt, electrical downtilt, height and transmit power of
each BS) that satisfy the coverage requirement (among all the
grids, the RSS that larger than φ accounts for over Cth). More
parameters used in the simulations of genetic algorithm are
given in Table 2.
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TABLE 3. Performance comparison of different RSS prediction schemes.

FIGURE 3. Feature importance measured via XGBoost.

Table 3 presents the prediction performance and the major
optimized parameters for different RSS prediction models
(i.e., k-nearest neighbor, SVM with linear and RBF kernel,
decision tree, random forest, multi-layer perceptron, ANN
[12], Hata [4], and COST 231 [5]). Among the parameters,
k is the number of neighbors; C denotes the penalty param-
eter and η is the kernel coefficient; α and β represent the
regularization term and learning rate in the multi-layer per-
ceptron, respectively. As we can see, multi-layer perceptron
outperforms other algorithms in terms of MAE with training
time of 60.371 s in average. More complex models are more
expensive to train, but the results are not necessarily good.
The proposed regression schemes outperform ANN in [12]
because more relevant features are used to train our model.
All ML methods achieve much gain compared to empirical
models. In this paper, multi-layer perceptron is leveraged to
train the regressor and further used as a tool to evaluate the
coverage performance in Stage II.

The impact on MAE of feature dimensions and data size
is investigated on three main regression algorithms (kNN,
SVM, MLP) in Table 4. The amount of features is 25, includ-
ing distance, geography types and operating parameters of

TABLE 4. MAE comparison of different regression algorithms for different
dimension and training set size.

BS, where the combination and reduction of these features
have been tested to improve the prediction. PCA is conducted
by re-scaling the 17 geography types and 4 operating param-
eters into 1 principle component, respectively. 2D refers to
transforming distance as one dimension, other features as the
other dimension. It is expected that with the increase of data
size, the MAE of test set is improved. However, although
best performance is achieved without PCA, the training cost
is expensive and the importance of distance is overwhelmed.
Therefore, in the following steps, 3D dataset is used to train
the MLP.

Fig. 3 gives part of the feature importance ranking among
all features measured through XGBoost. In the decision tree,
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FIGURE 4. Evolution of different criteria with the increase of iterations for
multiple BS deployment algorithms (a) the coverage rate; (b) the number
of BSs.

the attribute value is calculated by improving the amount of
performance variables at each attribute division point, which
is responsible and recorded times. And the result of one
attribute in all the promotion trees is summed up as expected
and then averaged to obtain the degree of importance. There-
fore, it can be seen that distance between the BS and grid
plays the most important part in predicting RSS, accounting
for about 0.17 in terms of relevant importance. Transmit
power ranks second and other parameters of BS also play a
big role, which is as expected. Buildings have big accounting
because our dataset comes from cities in the land so that the
features of sea, wet land and forest almost have no impact on
predictions.

Fig. 4 shows the evolution of average coverage rate and the
number of BSs with the increment of iterations for different
BS deployment algorithms in an unplanned location with size
of 1km×1km. For benchmarks,

1 Exhaustive search, where grid search is performed on
all the parameters within the range to find the best
parameters that meet the coverage requirement;

2 Green BS deployment [19], in order to make the algo-
rithm suitable for this paper, we fix the other parameters
except the locations and coverage assurance phase in
Algorithm 3, [19] is perform, which BS is added one-
by-one greedily;

3 Random deployment, where all parameters are gener-
ated randomly.

FIGURE 5. Evolution of different criteria with the increase of iterations
under different map resolution in a 3× 3 km2 region (a) coverage rate;
(b) the number of BSs.

FIGURE 6. Comparison of convergence time between the two algorithms
under different planning area and number of BS deployments.

where all the schemes need to produce feasible solutions that
satisfy the geography constraints. The convergence of two
algorithms proposed in this paper is validated, and genetic
algorithm outperforms the greedy algorithm in terms of cov-
erage rate because it searches for the global optimum dur-
ing the stochastic optimization. Greedy algorithm converges
faster than the GA which stems from the fact that once it
discovers the local optimum, the search process is stop. Green
BS deployment achieves almost the same performance as
greedy algorithm, however, it needs 4 BSs because BS is
added one-by-one without coordination. Besides, over the
multiple runs of these algorithms, greedy algorithm attains
the consistent results while the GA may have different out-
puts, because we fix the initial solution and search direc-
tion of greedy algorithm. The proposed algorithms achieve
better coverage performance with less BSs than the actual
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TABLE 5. Performance comparison under different simulation thresholds of GA.

FIGURE 7. An example of BSs deployment results for two algorithms and the actual deployment, including the
map of BS deployment and the heatmap of RSS (dBm).

deployment, which shows about 7.68% gain by greedy algo-
rithm and 18.5% gain by GA in terms of coverage rate.

In Fig. 5, the effects on coverage performance, the number
of BSs deployed and running time for different map resolu-
tion are simulated. The original resolution of map is 20m,
which means that the region is divided into many square
pixels with size of 20m×20m. However, in each iteration of
online evaluation, the information of every grid has to be col-
lected for RSS prediction. Therefore, the time consumption
is highly related to map resolution since the lower is the map
resolution, the larger is the number of grids and the measure
space of feasible solution. Note that the map resolution has a
slightly effect on the deployment since the coverage rate and
the number of deployed BSs are almost the same, therefore,
resolution of 100m is used when the deployment area is over
10 km2 for fast convergence and resolution of 20m is used
when the region is small, for example, 1 km2.

Fig. 6 presents the results of execution time of the genetic
algorithm and greedy algorithm under different area and num-
ber of deployed BSs. As expected, the convergence time of
the two algorithms increases with the increment of planning
area and number of deployed BSs, since they require more
time to collect data for RSS prediction. The execution time of
greedy algorithm grows linearly as the planning area and the
number of deployed BSs increase, because the time mainly
comes from the data collection brought by the increased BS
number while the total number of iterations is almost the
same. In contrast, genetic algorithm takes explorations until
it reaches the global optimum or the maximum number of
iterations, which results to exponential growth.

Table 5 gives the comparison of average program running
results under different simulation thresholds in GA, where
logs contains the record results during program optimization
including the number of deployed BSs and the corresponding
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FIGURE 8. An example of incremental BSs deployment scenario.

FIGURE 9. A use case that neighbor BSs react to fill the coverage gap caused by the faulty BS, where the blue triangle denotes the
normal BS and the red triangle denotes the faulty BS. φ = 90 dB.

optimal coverage rate. As expected, the number of BSs that
need to meet the coverage threshold Cth is increasing accord-
ing to the increment of Cth, because more BSs can provide
higher quality coverage. Besides, if we lower the value of
φ, fewer BSs are needed to be deployed because more RSS
is greater than φ. Note that with the increase of φ and Cth,
more BSs need to be deployed to satisfy the requirements,
which results to larger running time. Note that the running
time of program is strongly related to the number of deployed
BSs, which is due to the data collection during the online
evaluation.

Fig. 7 gives an example of results in BS deployment for two
algorithms and the actual deployments in a 3 × 3 km2 with
map resolution of 50 m. Fig. 7 (a) presents the BS locations
of the three schemes in the real-world map. In order to obtain
an overview of BS deployment performance, we create the
heatmap of RSS distribution as is depicted in Fig. 7 (b)-(d),
which consists of about [60 × 60] matrix of 3,600 values
that represent the RSS with respect to the cell that has the
strongest signal at each grid. Each grid corresponds to one
pixel of 50m by 50m. The φ is set to -97 dBm, and the Cth
is set to 90%. Note that the genetic algorithm satisfies the
requirement with only 5 BSs deployed, while the greedy algo-
rithm as well as real-world deployment has to deploy 6 BSs
to achieve this goal. However, from the distribution of BSs,
we can see that the greedy algorithm is more reasonable than

real-world deployment since the coverage rate is 0.9628 ver-
sus 0.9189.

Fig. 8 gives an example of incremental scenario of
BSs deployment. There have already existed 7 BSs in a
4× 5 km2 area and needs to deployment some BSs for bet-
ter coverage. Greedy algorithm is leveraged to optimize the
coverage rate, and we set the Cth to 70%. Before deploy-
ment, the coverage rate is 0.618 with φ of -97 dBm; after
deploying 3 more BSs, the coverage rate is up to 0.703.
Note that although the solution is generated randomly, which
means that there are many solutions to satisfy the coverage
requirement, the initial feasible solution and search direction
have been fixed so that it generates the same result no matter
how many times to run the program.

A use case of BS outage compensation is presented
in Fig. 9. In Fig. 9 (a), the RSS heatmap of normal network
operation is shown. If the middle BS is down, it will cause
coverage gap and the coverage rate falls to 0.3663 as is
shown in Fig. 9 (b). The tuned configurations consists of the
antenna tilt, transmit power and azimuths of the neighboring
BSs. Surrounding BSs automatically adjust their parameters
according to the result generated by the algorithms until
the coverage gap is filled, which is shown in Fig. 9 (c).
Therefore, the network planning tool is applicable for prac-
tical scenarios of incremental deployment and BS outage
compensation.
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V. CONCLUSION
In this paper, a network planning tool that integrates machine
learning techniques and heuristic algorithms, is proposed for
RSS prediction and BS deployment. The goal is to meet
the coverage requirement while minimizing the number of
deployed BSs. In order to achieve this target, we divided
the task into two stages. Firstly, a large amount of relevant
information in real-world is fed into data processing module.
Then, we train a regression model to predict RSS values.
In stage II, the best parameters of multiple BSs is determined
by leveraging the trained model and online optimization
algorithms. Moreover, typical scenarios including increment
deployment and BS outage compensation are investigated
for practical needs. Numerical results demonstrate the RSS
prediction model outperforms existing methods and the pro-
posed BS deployment algorithms achieve better coverage
than real-world networks with less BSs, which is applicable
for practical systems.
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