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ABSTRACT Jamming is a big threat to radar system survival and anti-jamming is a part of the solution.
The classification of radar jamming signal is the first step toward to anti-jamming. Recently, as an important
part of deep learning, convolutional neural network (CNN) based methods have shown their capability in
discriminant feature extraction and accurate classification. In this study, in order to harness the powerfulness
of deep learning, CNN based methods are proposed to classify radar jamming signal acting on pulse
compression radar. Specifically, a 1D-CNN is designed for radar jamming signal classification under
the condition of sufficient training samples. Furthermore, due to the fact that the collection of sufficient
training samples is time-consuming and expensive, a CNN-based siamese network is proposed for radar
jamming signal classification to deal with the issue of limited training samples. The experimental results
with sufficient and limited training samples show that the CNN-based classification methods obtain good
classification performance in terms of classification accuracy and show a huge potential for radar jamming
signal classification.

INDEX TERMS Radar jamming signal, convolutional neural network (CNN), sufficient and limited training
samples, siamese network.

I. INTRODUCTION
Radar is playing an important role since it is widely-used in
civilian and military areas. Recently, electronic warfare has
become one of the most important parts of modern warfare
and radar is crucial to the victory of a war. In order to disturb
the enemy radar system and influence its target detection,
identification and tracking ability, various radar jamming
techniques have been designed.

According to the different jamming mechanism, the jam-
ming signals can be divided into suppression jamming and
deception jamming [1]. Suppression jamming covers the
target signal by transmitting high-power jamming signals.
Among them, noise jamming is the most widely used [2],
which can be divided into aiming jamming, blocking jam-
ming, and sweeping jamming according to the ratio between
the spectrum width of jamming and the passband of the
receiver. Deception jamming actively transmits radio waves
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of a certain phase and frequency to the enemy radar, which
is used to imitate the echo of the target, so that the enemy
radar gets the wrong target information [3]. Typical deception
jamming includes interrupted sampling repeater jamming
(ISRJ) [4], distance deception jamming [5], dense false target
jamming [6], etc.

At present, the increasingly complex electromagnetic
environment and jamming technology seriously affect the
survival and effectiveness of radar system. Therefore, radar
anti-jamming technology has been developed. A complete
anti-jamming process includes radar jamming signal classi-
fication, anti-jamming strategy selection and anti-jamming
performance evaluation. As a first step of anti-jamming,
the accurate classification of radar jamming signal is a core
part of anti-jamming system.

In recently years, the methods of radar jamming signal
classification mainly include likelihood-based methods and
feature-based methods. The likelihood-based methods cal-
culate the likelihood function of the jamming signal and
compare it with a certain threshold to determine the type of
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jamming. For example, Greco et al. [7] presented adaptive
coherent estimator and generalized likelihood ratio test to
solve the problem of detecting deception jamming based on
digital radio frequency memory. Zhao et al. [8] proposed a
generalized likelihood ratio test target discriminator based on
the classical linear model to distinguish between target and
deception jamming. However, the likelihood-based methods
need prior information and expert experience. Therefore,
the scope of application is limited.

The feature-based methods include feature extraction and
the design of classifier. Feature extraction is the key of radar
jamming signal classification. Different radar jamming sig-
nals can be transformed through the time domain, frequency
domain and time-frequency domain so that the characteris-
tics between the signals are clearly distinguished [9]–[11].
In addition, the amplitude, phase and frequency of different
jamming signals are also different. Therefore, it is possible
to extract the statistical features of jamming signals in dif-
ferent domains to distinguish different radar jamming sig-
nals. For example, Li et al. [12] proposed feature extraction
methods based on amplitude fluctuations, high order cumu-
lants, and bispectrum to detect deception jamming. Ma et al.
studied statistical algorithms to extract deception jamming
features [13]. Liu et al. [14] studied the polarization scatter-
ing characteristics of chaff jamming and classified them by
support vector machines (SVM). However, the feature-based
methods mainly rely on artificial feature extraction, and the
process of artificial feature extraction has high computational
complexity and requires a lot of manpower.

In recent years, deep learning-based methods have been
proposed and achieved outstanding performance in image,
text and speech processing [15]. As a representative of
deep learning, CNNs have great advantages in extracting
discriminant and invariable features of inputs [16]. The pow-
erful feature extraction ability of CNN is inspired by neu-
roscience [17], which is reasonable in theory. Furthermore,
CNN has been successfully applied in the field of radar
jamming signal classification. Such as, Yun et al. proposed a
new method of barrage jamming detection and classification
for SAR based on CNN [18]. Wang et al. [19] designed CNN
to classify active jamming. However, there are few types of
jamming signals that can be distinguish by radar jamming
signal classification methods based on CNN, and with the
development of electronic technology, more and more jam-
ming patterns are presented. So, it is of great significance to
design a reliable CNN model which can distinguish various
radar jamming signals.

Furthermore, it should not be ignored that CNN-based
methods usually need lots of training samples. If the train-
ing samples are limited, the phenomenon of overfitting will
appear in the CNNmodel. In fact, due to the complex electro-
magnetic environment, the acquisition of jamming samples
is often very difficult and the labeling of jamming samples
is also a relatively tedious thing. Therefore, it is of great
practical significance to design a model that can realize the
accurate classification of radar jamming signals under the

condition of limited training samples. At present, siamese
network is widely used to solve the problem of insufficient
training samples. For example, Wang and Wang [20] pro-
posed an improved siamese network to solve the problem of
leaf classification in the case of insufficient samples. With
limited training samples, Sun et al. [21] realized the efficient
identification of voltage sag sources by designing siamese
networks. Therefore, in this paper, in order to address the
problem of limited jamming training samples, an improved
siamese network combined with CNN is proposed too.

The main contributions of this study are listed as followed:

1) A new classification model is proposed for radar jam-
ming signal, which is based on 1D-CNN. The proposed
model obtains good classification performance in terms
of overall accuracy under the condition of sufficient
training samples.

2) To deal with the practical problem of insufficient sam-
ples of radar jamming signal samples, an improved
Siamese-CNN (S-CNN) is proposed for radar jamming
signal classification.

3) The experimental results of 12 typical radar jamming
signals showed that the proposed methods can effec-
tively classify radar jamming signals with sufficient
and limited samples.

The rest of this paper is organized as follows. Section II
and Section III introduces 1D-CNN and S-CNN for radar sig-
nal jamming classification, respectively. Section IV mainly
introduces the experimental details, experimental results, and
comprehensively analyses. Section V gives the conclusion of
the whole work.

II. CNN-BASED RADAR JAMMING CLASSIFICATION
This section introduces the CNN-based radar jamming sig-
nals classification with relatively sufficient training samples.
In view of the time domain characteristics of radar jamming
signals, 1-D CNN is adopted to extract the hierarchical fea-
tures of jamming signals. Through the feature extraction of
the convolutional layers and the pooling layers, discriminant
and invariant features are finally obtained, which are critical
for radar jamming classification.

A. CNN-BASED FEATURE EXTRACTION
CNN mainly includes three basic parts: convolutional layers,
nonlinear transformation, and pooling layers [22]. It is worth
mentioning that deep CNNs can extract the input features
hierarchically. With the help of local connections and shared
weights, the features extracted by CNN are often invariant
and robust.

A convolution layer and nonlinear transformation are
defined in eq. (1) and eq. (2), respectively.

xkj = f

(
N∑
i=1

xk−1i ∗ wkij + b
k
j

)
(1)

f (x) = max (0, x) (2)
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FIGURE 1. The framework of 1D-CNN model for radar jamming signal classification. The proposed framework consists of two 1D-CNN, which
extract the deep features of the real and imaginary data of the input jamming samples, respectively.

Vector xk−1i is the ith feature vector of the previous (k-1)th
layer, xkj is the jth feature vector of the current kth layer,
and N is the number of input feature vectors. wkij and bkj
represent the weight and bias of the neuron, respectively. ∗
is the convolution operation. and f (x) is a rectified linear unit
(ReLU), which is used to increase the nonlinear expression
ability of the network.Moreover, it can extract sparse features
faster.

B. THE DESIGN OF THE 1D-CNN MODEL
The designed 1D-CNN model for the classification of radar
jamming signals is shown in Fig. 1. In order to fully demon-
strate the feature extraction ability of CNN, two 1D-CNNs
are designed to extract the features of real and imaginary
part of radar jamming data. Through convolution and pooling,
the deep features of the real and imaginary parts of the radar
jamming data are extracted. Finally, we concatenate the afore-
mentioned features and send them to the softmax classifier to
obtain the jamming category information.

Due to the high initial dimension of radar jamming data,
the network is prone to overfitting. In order to effectively
alleviate this phenomenon, dropout [22] and global average
pooling (GAP) [23] are adopted in this work. Dropout makes
the activation value of a certain probability p, which can
make the model more generalized. In order to better match
the jamming signal category with the feature map of the last
convolution layer, GAP is used for replacing the traditional
fully connected layers in CNN. Furthermore, GAP sums out
the global spatial information, thus it is more robust to spatial
translation of the jamming signal.

Meanwhile, In order to accelerate the training process,
batch normalization (BN) is adopted in the 1D-CNN model.
BN can maintain the same distribution of inputs at each
layer of the neural network during the training process and
accelerate the convergence of the network [24].

For the activation value of each neuron in the hidden layer,
the BN mechanism can be formulated as follows:

x̂(k) =
x(k) − E[x(k)]√

Var[x(k)]
(3)

y(k) = γ (k)x̂(k) + β(k) (4)

E[x(k)] is mini-batch mean, Var[x(k)] is mini-batch vari-
ance. After this transformation, the activation x̂ of a certain
neuron forms a normal distribution with a mean of 0 and a
variance of 1. In order to enhance the network expression,
eq. (4) is carried out for the transformed activation. γ (k) and
β(k) represent learnable parameters (scale and shift) [24].

III. S-CNN-BASED RADAR JAMMING CLASSIFICATION
This section introduces the S-CNN-based radar jamming sig-
nals classification with relatively limited training samples.
CNNs have a powerful feature extraction capability when
training samples are sufficient. However, the lack of adequate
training samples is a common problem in radar jamming
classification. If the training samples are insufficient, CNN
often overtrains, which reduces the classification accuracy
of the test samples. Due to the similarity between intra-
class samples and the differences between interclass samples,
S-CNN seizes this point and realizes the classification of
different jamming signals with limited samples by learning
the similarity between the two inputs.

A. S-CNN-BASED FEATURE EXTRACTION
The S-CNN is used to measure the similarity between the two
inputs. S-CNN has two sub-networks with the same struc-
ture and weights. During training, two sub-networks extract
features from two inputs, while connected neurons measure
the distance between two feature vectors. The traditional
classification model requires a lot of samples with labels.
To some extent, S-CNN realizes the reuse of training samples
by paired training. Therefore, in the case of limited training
samples, S-CNN can be considered for classification. S-CNN
measures the similarity of inputs through distance space, such
as Manhattan distance (L1 distance) and Euclidean distance
(L2 distance), and compares the new samples by learning
similarity to determine the category.

S-CNN maps inputs to feature vectors by using CNN,
and uses the distance between the vectors to represent the
differences between the inputs. Since paired samples are used
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FIGURE 2. The framework of S-CNN model for radar jamming signal classification. The four 1D-CNNs with parameter sharing are used to
extract features and the L1 distance of feature vectors is calculated.

to train S-CNN, it should be noted that the number of pairs
of intraclass samples is consistent with the number of pairs
of interclass samples. Only in this way can the S-CNN fully
learn the similarity of intraclass samples and the difference of
interclass samples. By training the S-CNN, the distance of the
same class in the feature space is continuously reduced, and
the distance of the different class is continuously increased.

S-CNN determine the category of test sample in the fol-
lowing way. Since the labels of the training samples are
known, the test samples and training samples are paired into
the trained S-CNN, and S-CNN will output the similarity
probability between the test samples and the training samples.
Therefore, the similarity probability between the test samples
and various types of training samples can be obtained, and
the category of the test samples is the category of the input
training samples corresponding to the maximum similarity
probability.

B. THE DESIGN OF THE S-CNN MODEL
The S-CNN model designed for the characteristics of radar
jamming signals is shown in Fig. 2. First, in order to fully
extract radar jamming signal features, separating the real part
data and imaginary part data of paired input signals, and the
four 1D-CNNs with parameter sharing are used to extract
features, and concatenating the real part features and imag-
inary part features. Second, through the full connected layer
(FC), paired inputs are finally represented by eigenvector.
And then, L1 distance is calculated by using the eigenvector,
and the obtained result is input into the sigmoid activation
function to acquire the similarity probability P (The larger the
P value, the more similar the two input signals were). Finally,
S-CNN determine the category of the unknown jamming
signal by the similarity probability P.

Table 1 shows the algorithm for the designed S-CNN
model. In training model, L1 distance is used to calculate the

distance between jamming features extracted by CNN. Let
p1, p2} denote the input jamming signal pair, they go through
the weight sharing CNN and get the feature representation
f (p1) and f (p2). Finally, the L1 distance D(p1, p2) is calcu-
lated, and D(p1, p2) is expressed as follows:

D (p1, p2) =
n∑
i=1

|xi − yi| (5)

n represents the dimensions of f (p1) and f (p2). xi and yi
represent the element of f (p1) and f (p2), respectively.
The loss function of the proposed S-CNN is defined as:

L = −y (p1, p2) logσ (D (p1, p2))

+ (1− y (p1, p2)) logσ (1− D (p1, p2)) (6)

where y (p1, p2) denotes label information for training jam-
ming signal pair. Suppose y (p1, p2) [[space]] = 1 whenever
p1 and p2 are from the same jamming signals class and
y (p1,p2) = 0 otherwise. σ (·) is the sigmoidal activation
function:

σ (x) =
1

1+ e−x
(7)

Due to the limited training samples for S-CNN model,
the network is easy to overfit. In order to effectively avoid
overfitting and accelerate the training process, L2 regulariza-
tion and BN operations are adopted in the S-CNN model.

L2 regularization improves the generalization ability of the
S-CNN model by punishing the weights of unimportant fea-
tures [25]. By introducing L2 regularization, the loss function
in this work is defined as follows:

L ′ = −y (p1, p2) logσ (D (p1, p2))

+ (1− y (p1, p2)) logσ (1− D (p1, p2))+ λ ‖w‖2 (8)
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TABLE 1. Algorithm for the designed S-CNN model.

λ is the L2 regularization coefficient, which can reduce the
complexity of the model and alleviate the over-fitting prob-
lem caused by limited samples. || · ||2 represents L2 distance.
w denote the weights of features.

IV. EXPERIMENT AND RESULTS
In this section, first, the radar jamming signals data set and
the setting of comparative experiments are introduced. Then,
the setting of 1D-CNN and S-CNN model are introduced in
detail. Third, the experimental results of 1D-CNN under the
condition of sufficient training samples are presented. Finally,
we analyse and summarize the results of S-CNN under the
condition of limited training samples.

A. DATA DESCRIPTION
In this study, we considered typical radar jamming signals
currently acting on linear frequency modulation pulse (LFM)
signal emitted by pulse compression radar [26]. The LFM

FIGURE 3. Radar target signal (real points) in this paper.

signal was defined as follows:

s (t)= rect

(
t−T

/
2

T

)
exp

(
jπ

B
T
t2
)

(9)

where the pulse width T = 20µs, bandwidth B = 10MHz,
and the sampling rate was 20MHz.

Then, typical radar jamming signals simulated by experts
were used to evaluate the performance of the proposed
method. There were 12 typical types of radar jamming sig-
nals, including suppression jamming such as aiming jam-
ming, blocking jamming, sweeping jamming and ISRJ, dis-
tance deception jamming, dense false target jamming, smart
noise jamming and typical passive jamming such as chaff
jamming [14]. Finally, it also included the additive compound
jamming such as ISRJ + chaff, dense false target + smart
noise, and distance deception + sweeping. In the jamming
data set, 500 samples were simulated for each kind of radar
jamming signals, and the number of sampling points per
sample was 2000 complex sampling points (2000 real points
+ 2000 imaginary points), and the real part and the imaginary
part were separated and assembled into a row vector. Some
jamming signals simulation parameters and time domain
waveform were shown in Table 2 and Fig. 4, respectively.
Among them, JNR represented the jamming noise ratio and
others represented the corresponding radar jamming signals
simulation parameters. All simulated jamming signals sup-
pressed or deceived the target signal.

In order to satisfy the needs of the comparative experi-
ments, experts extracted the features of the jamming signal.
Extracted statistical features (SF) including skewness, kurto-
sis [27], normalized instantaneous amplitude frequency max-
imum, frequency smoothness, envelope fluctuation param-
eter [28], mean, and variance, which were a total of seven
features.

B. EXPERIMENTAL PARAMETERS SETTINGS
1) COMPARATIVE EXPERIMENTS
In order to explore the classification effect of CNN and
S-CNN on jamming signals, a series of comparative exper-
iments were designed in this paper. We used feature data set
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FIGURE 4. Radar jamming signals (real points + imaginary points) in this
paper.

TABLE 2. Partial jamming signals core parameter range.

to train support vector machine (SVM), decision tree clas-
sifiers, logistic regression and random forest (RF). In terms
of parameter settings, the kernel function of SVM was radial
basis function and we searched the best parameters in the way
of exponentially growing sequences ofC and γ (The scope
of C and γ is: 10−3 ∼ 103 ). We adopted the classification

mode of logistic regression was one-vs-rest and we chose
classification and regression tree algorithm to train decision
tree. At the same time, the number of decision trees in RFwas
200 and the number of features to consider when looking for
the best split was set to 10. Furthermore, we compared the
designed algorithmwith the current 2D-CNNmethod applied
to radar jamming classification (we referred to the network
structure of [19]). Finally, we used overall accuracy (OA),
and kappa coefficient (K) [29] to compare and estimate the
capabilities of the proposed models. The OA was computed
by eq. (10).

OA =
number of correctly classified samples

total number of test samples
× 100 (10)

Suppose the number of test samples in each class was
a1, a2, . . . , an, and the number of samples for each type of
prediction was b1, b2, . . . , bn. The kappa coefficient was
computed by eq. (11).

kappa =
a1 × b1 + a2 × b2 + . . .+ an × bn
(total number of test sample)2

(11)

2) 1D-CNN
In this experiment, we spilt the jamming data set into three
subsets (i.e., training, validation and test samples). We ran-
domly chose 50, 100, and 150 samples from each kind of
jamming signal as training set. The validation samples were
from the radar jamming data set outside the training set,
and 50 samples were randomly selected from each kind of
jamming signals. Then, the rest of the samples were used
as the test set. The generated architecture of the 1D-CNNs
for jamming data set was shown in Table 3. In the training
process, the size of the mini-batch was set to 64, the dropout
ratio was set to 0.5, and the number of training epochs was
set to 300 for jamming data set. At the same time, the ini-
tial learning rate of all 1D-CNNs was set to 0.005, and the
learning rate decreased with a step size of 75 epochs.

3) S-CNN
In this experiment, the way to split the data set was consistent
with the previous setting. However, the number of training
samples for each class of radar jamming signals was set
to three, four, and five. The architecture of the S-CNN for
radar jamming data set was shown in Table 4. In the training
process, the number of training iterations was 300 and the
number of logarithms to train S-CNN in one iteration was 12.
Meanwhile, the size of the mini-batch was set to 12 and
L2 regularization weight was set to 2 × 10−4. At the same
time, the S-CNNmodel adopted adam algorithm [30], and its
learning rate was set to 0.0001.

4) EXPERIMENTAL ENVIRONMENT
The platform for jamming data generation was MATLAB
2018. All the experiments were run on pycharm-community-
2017.2.1 and a 2.30 GHz CPU with a GTX 960M GPU card.
Furthermore, all the algorithmswere implementedwith Keras
2.1.0, Scikit-learn 0.18.0, Numpy 1.15.1, and Scipy 0.19.0.
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TABLE 3. The architecture of the designed 1D-CNN model.

TABLE 4. The architecture of the designed S-CNN model.

TABLE 5. Classification results (values ± standard deviation) of various classification models under sufficient training samples.

C. THE CLASSIFICATION RESULTS OF THE 1D-CNN MODEL
Table 5 showed the classification results of different classi-
fication models under different training samples. In all mod-
els, the 1D-CNN model we designed achieved the optimal
OA and K under sufficient training samples. For example,
when the number of training samples of each class was

50, 100, and 150, the OA of the designed 1D-CNN model
was 91.95 ± 2.19%, 96.97± 0.88%, and 97.34 ± 0.37%,
which was 4.12%, 7.09%, and 6.01% higher than the optimal
comparative experimental results, respectively. At the same
time, the average accuracy of the designed 1D-CNN for nine
kinds of jamming signals reached the optimal value under the
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TABLE 6. Confusion matrix for the proposed 1D-CNN at JNR of 30-60dB.

FIGURE 5. Classification results of the designed 1D-CNN under different
JNR.

condition of 150 training samples for each type of jamming
signals. For example, when the number of training samples
of each class was 150, most classification models had poor
classification of the smart noise jamming, but the OA of 1D-
CNN was 98.27% ± 2.81%.

Since the range of JNR in the simulated radar jamming
data set was 30-60dB, the jamming signals were not affected
much by the noise. However, in the complex electromagnetic
environment, the jamming signals were mixed with a lot of
noise, which affected the performance of the classification
model. Therefore, in order to explore the anti-noise ability
of the designed 1D-CNN model, the JNR of radar jamming
data was changed, and the experimental results were shown
in Fig. 5. Under the condition of different training samples,
the JNR was reduced to 5dB and 10dB (white Gaussian noise
was mainly introduced), and the classification accuracy of the
1D-CNN model did not decrease significantly. For example,
when the number of training samples of each class was
150, the OA of the designed 1D-CNN with the JNR of 5dB
and 10dB was lower 3.02% and 0.95% than the designed

FIGURE 6. Classification results of the designed S-CNN under different
JNR.

1D-CNNmodel without changing the JNR, respectively. This
showed that the designed 1D-CNN model in this paper had
better anti-noise ability.

Table 6 showed the confusion matrix for the proposed
1D-CNN at JNR of 30-60dB. It can be seen from the table
that the proposed 1D-CNN algorithm had good classification
performance for radar jamming signals when the training
samples were sufficient. According to the confusion matrix,
classification errorsmainly occurred on jamming signals with
similar jamming mechanism and simulation parameters, such
as, distance deception jamming and dense false target jam-
ming. This was mainly because the simulation range of false
target parameters of the two types of radar jamming signals
was consistent (the number of false targets was different),
which led to the correlation and confusion between the two
types of jamming signals.

D. THE CLASSIFICATION RESULTS OF THE S-CNN MODEL
Table 7 showed the classification results of different classifi-
cation models with limited training samples. In all classifica-
tion models, the designed S-CNN had achieved the best OA
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TABLE 7. Classification results (values ± standard deviation) of various classification models under limited training samples.

TABLE 8. Confusion matrix for the proposed S-CNN at JNR of 30-60dB.

and K. For example, when the number of training samples of
each class was 3, 4, and 5, the OA of the designed S-CNN
model was 82.73 ± 3.67%, 83.99± 2.49%, and 84.55 ±
2.08%, which was 4.16%, 4.13%, and 3.54% higher than
the optimal comparative experimental results, respectively.
At the same time, in all classification models, the OA of the
designed S-CNN for five kinds of jamming signal reached the
optimal value under the condition of 5 training samples for
each type of jamming signals. Such as, most classification
models had poor classification accuracy for sweeping jam-
ming signals, but the OA of S-CNN was 100% ± 0.00%.

Meanwhile, the anti-noise ability of the designed S-CNN
model was analyzed. The change in JNR was consistent
with previous experiments and the experimental results were
shown in Fig. 6. Under the condition of different train-
ing samples, the JNR was reduced to 5dB and 10dB,
and the classification accuracy of the S-CNN model did
not decrease significantly. For example, when the number
of training samples of each class was 5, the OA of the
designed S-CNN with the JNR of 5dB and 10dB was lower
0.73% and 0.48% than the designed S-CNN model with-
out changing the JNR, respectively. This showed that the
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FIGURE 7. Jamming data set: 2-D embedding extracted by t-SNE for test data (a) and test data features (b) extracted by t-SNE.

designed S-CNN model in this study had better anti-noise
ability.

Table 8 showed the confusion matrix for the proposed
S-CNN at JNR of 30-60dB. It can be seen from the table
that the proposed S-CNN algorithm had good classification
performance for radar jamming signals. According to the
confusion matrix, classification errors mainly occurred on
jamming signals with similar jamming mechanism. Since
smart noise was generated by adding noise frequency mod-
ulation on the basis of ISRJ, ISRJ, smart noise, chaff+ ISRJ,
and dense false target + smart noise were easy to be con-
fused in time domain. Referring to the confusion matrix for
the proposed 1D-CNN, this phenomenon was more obvious
when the training samples were limited.

To better understand the classification power of the
designed S-CNN model, we randomly selected 60 labeled
samples per class from jamming data set and used t-SNE [32]
algorithm to reduce the dimensionality of inputs and features
extracted by S-CNN to two. The results were visualized
in Fig. 7, where different colors represented different classes
in jamming data set. It was obvious from the Fig. 7 (a) that the
original inputs of different jamming classes were confused
with each other. Then, these labeled samples were input into
the trained S-CNN to extract the features of full connection
layer. The feature visualization of the radar jamming signals
extracted by the designed S-CNN was shown in Fig.7 (b).
It can clearly see that the features extracted by S-CNN signif-
icantly reduced the distance between intraclass samples and
further increased the separability between interclass samples.

V. CONCLUSION
In this paper, we proposed a new radar jamming signal
classification model based on 1D-CNN and made full use
of the hierarchical feature extraction ability of 1D-CNN.
Through experiments, the method based on 1D-CNN showed
strong ability in feature extraction and accurate classification
when the training samples were sufficient. At the same time,
in order to solve the problem of limited training samples,
a radar jamming signal classification model based on S-CNN
was proposed. The proposed S-CNN fully showed the ability
to measure similarities between jamming signals. Compared

with other classification models, both designed 1D-CNN
model and S-CNN model achieved the optimal classification
performance for a variety of typical radar jamming types.
Meanwhile, the proposed radar jamming signal classification
models had good anti-noise ability. The experimental results
indicated the effectiveness of deep learning model, and it had
great potential in radar jamming signal classification.
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