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ABSTRACT As a method of predicting the target’s attention distribution, gaze estimation plays an important
role in human-computer interaction. In this paper, we learn a 3D gaze estimator with adaptive weighted
strategy to get the mapping from the complete images to the gaze vector. We select the both eyes, the
complete face and their fusion features as the input of the regression model of gaze estimator. Considering
that the different areas of the face have different contributions on the results of gaze estimation under free
head movement, we design a new learning strategy for the regression net. To improve the efficiency of the
regression model to a great extent, we propose a weighted network that can adjust the learning strategy
of the regression net adaptively. Experimental results conducted on the MPIIGaze and EyeDiap datasets
demonstrate that our method can achieve superior performance compared with other state-of-the-art 3D
gaze estimation methods.

INDEX TERMS Gaze estimation, weighted network, regression model, adaptive strategy.

I. INTRODUCTION
The gaze vector can be speculated from the pupil to the
target’s attention. It has been increasingly important as a
non-verbal cue in many fields, including marketing and con-
sumer research [1], [2], human-computer interaction [3]–[5],
medical care [6]–[8], aviation and vehicle driving [9], and
criminal investigation [10]–[12]. However, the existing gaze
estimation systems often have the following defects: redun-
dancy calibration process, low tolerance to head movement,
limitation of lighting conditions and complex system settings,
which limit the commercial promotion of gaze estimation.

In order to reduce the influence of the above-mentioned
defects, there have been an increasing number of meth-
ods proposed for gaze estimation, which can be roughly
classified into two major categories: model-based and
appearance-based methods.

The model-based gaze estimation [13], [14] method uses
the fitting model to estimate gaze direction relying on
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invariant facial features, such as pupil center [15], iris out-
line [16] and corneal infrared reflection [17]. Guestrin [18]
established an eye model based on the pupil center, fixa-
tion point and eye center, and only one camera with two
infrared light sources can complete the eye line estimation.
Hennessey et al. [19] considered the influence of various
head postures, relying on complex and detailed calibration
steps to complete the gaze estimation of free head movement.
To simplify the calibration procedure, Shih and Liu [20]
proposed an improved Le Grand model and combined with
the head attitude compensation model. By solving the linear
equation to estimate the optical axis, this method can use two
cameras to achieve the purpose of single point calibration and
update the mapping function dynamically. Zhou et al. [21]
developed a binocular model-based gaze tracking method,
proposed an improved iris center localization method based
on gradient characteristics, and simplified the individual cal-
ibration process requiring only one calibration point.

The appearance-based gaze estimation method extracts
input features from the human eye appearance images
and realizes gaze estimation by establishing a mapping
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relationship between input features and gaze direction.
Different from the model-based gaze estimation methods,
the appearance-based methods usually only need a single
camera to capture the user’s eye images. Common input
features include complete face image, human eye image,
color opponency and histogram extracted from eyes. There
are many kinds of mapping relationships, including k-Nearest
Neighbor (KNN), Random Forest (RF), Support Vector
Machine (SVM), Gaussian Process (GP) and Artificial Neu-
ral Network (ANN). Zhang et al. [22] first extracted three
low-dimensional features from the eye images, including the
color opponency, gray scale intensities and direction infor-
mation, and then used a KNN classifier with k = 13 to
learn the mapping from image features to gaze direction.
Wang et al. [23] added the depth feature to the traditional
gaze estimation and applied the RF regression based on
cluster-to-classify node splitting rules. Kacete et al. [24] used
RF regression to estimate the gaze vector from the high
dimensional data with the face information. The RF could do
parallel processing as well as the training speed is relatively
fast. Wu et al. [25] located the eye region by modifying the
characteristics of active appearance model and used SVM to
classify the five gaze directions.

Recently, with the development of machine learning and
the support of massive data, extensive learning-based gaze
estimation methods have been presented. These methods
such as Convolutional Neural Network (CNN)-based meth-
ods, have great potential to handle the challenges faced by
traditional methods, including redundancy calibration pro-
cess, complex head postures, and limitation of lighting con-
ditions. Zhang et al. [26] built a novel in-the-wild dataset
and employed the CNN to learn the mapping from the head
pose and eye images to gaze angles. Krafka et al. [27] intro-
duced an eye tracking method for mobile devices, which
used face image, individual eye and face grid as input.
Zhang et al. [28] used a spatial weights CNN to encode face
images and flexibly suppressed or enhanced the informa-
tion of different face regions. Cheng et al. [29] proposed a
concept of two-eye symmetry to predict the 3D gaze direc-
tion, and designed an evaluation network to adaptively adjust
the regression network according to the performance of the
eyes. Palmero et al. [30] used face, eye region and face land-
marks as separate information flows in CNN to estimate
gaze in static images. The learning features of all frames
were input into a many-to-one recurrent module sequentially,
and the 3D gaze vector of the last frame was predicted.
Fischer et al. [31] recorded a new dataset of different head
postures to improve the robustness of gaze estimation, applied
semantic image inpainting to the area covered by glasses to
eliminate the obtrusiveness of the glasses and built a bridge
between training and test images. Yu et al. [32] introduced
a constrained landmark-Gaze model to get the relation of
eye landmark locations and gaze directions. Park et al. [33]
used single eye image as input and simplified the task of 3D
gaze estimation. They mapped the appearance of the eye to
the intermediate pictorial representation, which was easier

to learn the end-to-end model. In [34], [35], the authors
introduced a hybrid-model that used CNN to map image to
eye landmarks and then mapped eye landmarks to eye gaze.
Wang et al. [36] proposed to combine adversarial learning
and Bayesian inference into a unified framework. They also
added an antagonistic component to traditional CNN-based
gaze estimators so they could learn features that respond to
the gaze.

In order to further utilize the powerful function of CNNs
and improve the accuracy of gaze vector prediction, we pro-
pose an adaptive weighted 3D gaze estimation method. The
main contributions of this paper are listed as following.

(1) We improve the Itracker model [27] to predict single-
frame gaze. The face gird in the conventional Itracker model
can be used to locate face position to supply the location
information for 2D gaze estimation, while this branch is
removed in the improved model because it is useless in our
3D gaze estimation. To further improve the performance of
the model, we concatenate the facial stream, left eye stream
and right eye stream to obtain their joint characteristics.

(2) During the process of model training, the face, left eye
and right eye images have different influence on the final
result. We propose a new loss function for the improved
regression model. Based on the traditional regression loss
function, we add the weight function of the three regional
images.

(3) We propose a weighted network to judge the contribu-
tion of face, left eye and right eye images on the results of gaze
estimation. According to the errors between the predicted
value and the real value, the corresponding weight will be
obtained. The adaptive weighting is realized by adjusting the
strategy of regression model by weight value.

II. PROPOSED GAZE ESTIMATION METHOD
In this section, we present an adaptive weighted gaze estima-
tion method. Firstly, the regression function of 3D gaze esti-
mation is introduced. Then, the steps of data preprocessing
are stated. Finally, the network architecture and the steps of
adaptive weighted implementation are detailed. The overall
architecture is shown in Fig. 1.

A. 3D GAZE ESTIMATION
Based on the image of eye appearance, a regression function f
is constructed to establish the mapping relationship between
image I and 3D gaze vector g, where g = f (I ). At present,

FIGURE 1. The overall architecture of proposed 3D gaze estimation
method.
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various regression models have been used in the gaze esti-
mation methods, such as Neural Network, RF regression,
GP regression, and SVM regression. We use the CNN to
solve the problem because the regression of gaze estimation
is usually highly nonlinear. With the development of deep
neural networks, designing an efficient network architecture
with large training dataset can solve this complex regression
problem simply.

B. DATA PREPROCESSING
The results of gaze estimation are significantly affected by
the head pose. Similar to [32], we normalize the image data
to weaken the influence of this factor. The basic concept of
data preprocessing is shown in Fig. 2.

FIGURE 2. The basic concept of data preprocessing.

The data normalization method is to make a perspective
transformation on the original image, so that the training
model can be complete for gaze estimation in a specific
virtual space. The method transforms the original image and
the normalized image to satisfy the following three condi-
tions. 1) The center of the face reference point is located at
a fixed distance d from the center of the normalized image.
2) The horizontal direction of the head is parallel to theX -axis
of the normalized image. 3) The face always has the same size
in the normalized image.

We place the face reference point in the center of the image
at a fixed distance from the camera. Assume that a(ax , ay, az)
is the face reference point under the camera space. The first
condition is satisfied by setting the z-axis of the virtual space
be vz = az/ ‖az‖. To satisfy the second condition, the y-axis
of the virtual space has to be defined as vy = vz × hx ,
where hx is the rotation matrix of head pose in x-axis. The
remaining x-axis of the visual space then can be computed
by vx = vz × vy. Using these vectors, the rotation matrix
can be defined as R =

[
vx/ ‖vx‖ , vy/

∥∥vy∥∥ , vz/ ‖vz‖]. The
transformation matrix is then defined as M = SR, where
scaling matrix S to satisfy the third condition can be defined
as S = diag(1, 1, d/ ‖a‖2).

We use the warp matrix W to transform the human face
into an image plane of a specific camera space. Let W =
CaMC−1v , where Ca is the internal parameter matrix of the
original camera and Cv is the internal parameter matrix of the
virtual camera. In addition, the original gaze label also needs
to be converted during the training stage by gv = Rga,where
gv and ga represent the normalized gaze label and initial gaze
label respectively. In the test phase, ga = R−1gv is used to

convert the virtual camera space to the original camera space
for each prediction result.

The proposed data normalization method can cope with
the influence of the difference of cameras in the real world
on the prediction accuracy. This operation will not have any
impact on the experimental process, but it should be noted
that the accuracy of the internal parameter value of the camera
is closely related to the presentation of the final sight vector
result.

C. REGRESSION NETWORK ARCHITECTURE
In this paper, we propose an adaptive weighted regression
model for the appearance-based gaze estimation. In practice,
we observed that the left eye, right eye and face images
have different contributions on the accuracy of regression in
different scenes. The different image areas cannot achieve the
same accuracy value. Therefore, when training a gaze regres-
sion model, it is better to rely on the high-quality images to
train a more effective model. This model is composed of a
main network and a sub-network. Themain network performs
the regression prediction from image to gaze vector, and the
sub-network performs the adjustment of the Loss function of
main network to achieve the purpose of adaptive adjustment.

The proposed network learns a regression model to predict
the ground truth of gaze vector with left eye, right eye and
face images. The overall structure is shown in Fig. 3.

In [27], the author used the face, both eyes and face grid
separately into a branch of the network, and finally mapped
the merged features which extracted from each branch to the
ultimate 2D gaze point on the screen. Since themethod in [27]
predicts the gaze point on the screen, it not only needs to
obtain the gaze vector, but also needs the face grid to provide
the position information of the head position in the camera
space. However, we mainly consider how to predict the gaze
vector effectively. Therefore, we remove the face grid in our
architecture. To realize the concept of adaptive weighted, the
separate features and joint features of the face and the two
eyes should be extracted and utilized.

As shown in Fig. 4, the regression network is a six-stream
convolutional neural network. We use the reduced version of
the convolution layers of a Lexnet as the basic network of
each branch. Considering that when the eyeball rotates, many
areas of the face will have big or small changes. In order
to realize the self-adaptive adjustment of spatial weight, this
paper adds three fused features to the basic features of face,
left and right eyes. The fused features of face, left eye, and
right eye are input as a single branch in the network. The
first three streams are designed to extract the 64-dimensional
deep features from the face, left eye and right eye respec-
tively, and the last three streams are used to produce a joint
64-dimensional deep features. These six streams are then
combined through a FC layer, and the dropout layer is used to
prevent over-fitting problem. Finally, the corresponding gaze
vectors are obtained through a 6-dimentiaonl FC layer.

The face and the both eyes can play different roles in the
training network. If one of the areas is more likely to achieve
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FIGURE 3. Overview of the proposed adaptive weighted regression model.

FIGURE 4. The regression network.

a smaller error, then we should expand its weight in the
optimization of the network. Following this idea, we propose
a new strategy to optimize the network.

We first calculate the angular error of the currently pre-
dicted 3D gaze direction of the face and the both eyes.

ef = arccos(
gf · f (If )∥∥gf ∥∥ ∥∥f (If )∥∥ ) (1)

el = arccos(
gl · f (Il)
‖gl‖ ‖f (Il)‖

) (2)

er = arccos(
gr · f (Ir )
‖gr‖ ‖f (Ir )‖

) (3)

where f (I ) represents the predicted value of the gaze vector
(the gaze regression), and g represents the ground truth of the
gaze vector. We then calculate the weighted average error of
the three errors.

e = λf · ef + λl · el + λr · er (4)

where λf , λl , and λr determine the errors of the face, the left
eye and the right eye, respectively. If the image of which
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FIGURE 5. The weighted network.

region is more likely to produce smaller errors, the weight
of the network should be increased when optimizing the
network.With this concept in mind, we propose the following
formula to set the weights.

λf =
1/ef

1/ef + 1/el + 1/er

λl =
1/el

1/ef + 1/el + 1/er

λr =
1/er

1/ef + 1/el + 1/er

(5)

Considering that the error between the predicted value and
the actual target value in the images of the three regions will
be different, we calculate the mean square error between the
predicted value and the target value.

predictedt = [f (If ), f (Il), f (Ir )]
observedt = [gf , gl, gr ]

MSE =
1
N

N∑
t=1

(observedt − predictedt )2
(6)

By combining Eqs. (4), (5) and (6), we can get the final Loss
function.

LR = MSE+ 3
ef · er · el

er · ef + el · ef + el · er
(7)

D. WEIGHTED NETWORK
As mentioned above, the regression network can predict the
gaze vector by the high-quality face and eye images. We then
design the weighted network to learn the selection of the
regression network and show its dependence on different
regional characteristics in the optimization process.

As shown in Fig. 5, the network is a three-stream convo-
lutional neural network. Each stream extracts 64-dimensional
deep features from the face, left eye and right eye respectively.
A simplified version of the Alexnet [37] is the basic network

of each branch followed by a 3-dimensional fully connected
layer. Finally, the Softmax regressor is used to get the proba-
bility bias vector [pf , pl, pr ]T of the corresponding face and
both eyes.

In order to train the weighted network to predict the choice
of regression network, we set the following Loss function.

predictedt = [pf , pl, pr ]
observedt = [ptf , ptl, ptr ]
ptf + ptl + ptr = 1

MSE =
1
N

N∑
t=1

(observedt − predictedt )2

(8)

where pf is the probability that the regression network
depends on the face region in the prediction process. pl and pf
are the probabilities that depend on the left eye and the right
eye respectively.

During training, the ground truth of p is determined by the
gaze vector error from regression network. Taking the Ptf as
an example, Ptf is set to be 1 if ef < el and ef < er , and
Ptf is set to be 0 in other cases. In other words, when the
error of the face in the regression network is the smallest,
we should choose to maximize pf to learn the fact to realize
the adjustment of the regression network. Similarly, ptl is set
to be 1 when el is the minimum; otherwise ptl is 0. When the
value of er is the minimum, Ptr is set to be 1; otherwise Ptr
is 0.

The aim of the weighted network is to adjust the regression
network to improve the accuracy of gaze estimation. For
this purpose, the Loss function of the regression network is
adjusted to

LR∗ = MSE

+w · 3
ef · er · el

er · ef + el · ef + el · er

+ (1− w) · β ·
ef + er + el

3
(9)
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where w is to balance the weight between the learning of left
eye, right eye and face. The gaze vector depends on the input
images of the regression network. If the ground truth of gaze
vector (gf , gl , gr ) are approximately the same, we should
not increase the weight of any area in the learning of the
regression network. When the gaze vector (gf , gl , gr ) are
greatly different, we prefer to train a certain region with small
error in the regression network. The adaptive adjustment is
realized by determining the output (pf , pl, pr ) of the weighted
network. In an ideal situation, pf , pl , pr can present extreme
values of 0 or 1, allowing the network to select areas that can
generate small errors and have high image quality for training
to improve the accuracy of the results. In the actual training
process, pf , pl , pr will only be a value between 0 and 1. The
calculation is stated as follows.

w = (1+ (2a− 1) · pf
+ (2b− 1) · pl
+ (1− 2a− 2b) · pr )/2 (10)

where a= 1 if ef < el and ef < er , otherwise a= 0; b= 1 if
er < el and er < ef , otherwise b= 0. During the experiment,
w is the decimal number between 0 and 1.

III. EXPERIMENTAL EVALUATION
To verify the effectiveness of the proposed 3D gaze estima-
tionmethod, we evaluate it on two publicly available datasets:
MPIIGaze [28] and EyeDiap [38].

Firstly, we cross-validate the method to demonstrate the
performance of our algorithm. Then, we perform ablation
experiments to evaluate the contributions of different regional
images on the network. Next, we do experiments with differ-
ent resolutions to show the robustness of the proposed net-
work. Finally, we evaluate the effectiveness of the weighted
network on the gaze vector. In this paper, we use the angle
difference between the prediction vector and the ground truth
vector to represent the accuracy of gaze estimation.

A. DATASETS
The MPIIGaze dataset consists of 213,659 images of 15 par-
ticipants, including various illumination conditions, eye
appearance and head posture. It’s worth noting that we need
to do normalization for the images and data of the MPIIGaze.
We use the center of six facial markers provided in the dataset
as the starting point of the gaze vector. The starting point of
the gaze vector is also the facing point of the virtual camera
in the normalization process. To reduce the influence of
illumination difference, each input image is equalized by the
adaptive histogram. To facilitate comparison with other state-
of-the-art gaze estimation methods, we perform leave-one-
person-out cross-validate on participants in the same way.

The EyeDiap dataset is a video data set of 16 participants,
including various illuminations, scenes and head postures.
We select an image per 15 frames from each video clip and
filter out the frames that satisfy the following conditions:
(1) participants do not look at the screen; (2) the annotations

are not provided correctly; (3) the gaze angle violates the
physical constraints (where: elevation angle theta (ϕ) <=
40◦, azimuth angle phi (θ) <= 30◦).

Similar to the MPIIGaze, the EyeDiap also needs to apply
normalization firstly. We use the midpoint of two iris cen-
ters provided in the dataset as the origin of the gaze vec-
tor. We apply the adaptive histogram equalization to reduce
illumination changes. The gaze targets on this data set are
divided into two categories: screen targets and floating tar-
gets. To facilitate comparison, we use only screen targets for
evaluation and divide 14 participants into four groups for
leave-one-group-out cross-validation.

B. CROSS PERSON/GROUP EVALUATION
The proposed method is compared with the state-of-the-art
3D gaze estimation methods on the MPIIGaze and the Eye-
diap datasets. Tables 1 and 2 show the comparison results
on both datasets, respectively. According to the comparison
results, our method achieves superior performance both in the
MPIIGaze and the Eyediap datasets. Fig. 6 and Fig. 7 show
part of the prediction results of our method on the MPI-
IGaze and EyeDiap datasets, where the green and red lines
represent the prediction results and ground truth of gaze
vector respectively. Our method is robust that can maintain
high prediction accuracy under the circumstance of various
illumination difference and large head postures.

TABLE 1. Comparison results with the state-of-the-art methods on the
MPIIGaze dataset.

TABLE 2. Comparison results with the state-of-the-art methods on the
Eyediap dataset.

C. NETWORK EVALUATION
To verify the role of each module in the network,
the network is divided into monocular module, face mod-
ule, face + monocular module, binocular module and

VOLUME 8, 2020 82147



X. Zhou et al.: Learning a 3D Gaze Estimator With Adaptive Weighted Strategy

FIGURE 6. Some prediction results of our method on the MPIIGaze.

FIGURE 7. Some prediction results of our method on the EyeDiap.

face + binocular module for evaluation. Fig. 8(a) shows the
evaluation results of each module on the MPIIGaze dataset.
It can be seen from the figure that the order of contributions
on the final estimation accuracy from large to small is monoc-
ular, face, face+monocular, binocular, and face+ binocular.

The contribution of a single face branch is greater than that
of a single eye branch on the final estimation results. How-
ever, the binocular module is more suitable for the learning
strategy of regression + weighted network, and the final
accuracy of the face+ binocular module after adding the face
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FIGURE 8. Network Parts evaluation on the MPIIGaze and EyeDiap
datasets.

module is the best. Similarly, Fig. 8(b) shows the evaluation
results of each module on the EyeDiap dataset. Face branch
plays a better role in the prediction of line of sight than
eye branch, but the function of face + binocular module is
better than binocular module and face + monocular mod-
ule, which is more conducive to the expression + weighted
network.

D. RESOLUTION EVALUATION
Gaze estimation method often requires that the model can
maintain high accuracy in a certain distance. Although our
data are normalized before model training to reduce the
resolution difference caused by images with different dis-
tances, the loss of some useful information cannot be avoided.
This phenomenon may lead to a decline in our forecast
results.

Therefore, we need to evaluate the influence of images
with different resolutions on our method. In order to simulate
this environment, images of 224 × 224 are downscaled to
168 × 168 and 112 × 112 respectively. In order to facilitate
the comparison, the final input size of images with different
resolutions needs to be consistent, so the two types of images
are returned to 224 × 224 through upscaling. We conduct
experiments on the MPIIGaze and EyeDiap datasets, and
the results are shown in Fig. 9. Our method can maintain
good accuracy even when the distance is twice as long as the
original distance.

FIGURE 9. Ablation study on the MPIIGaze and EyeDiap datasets.

E. WEIGHTED NET EVALUATION
The proposed weighted network is the key technology of the
proposed method. In this section, we evaluate the contribute
of adding the weighted network to the regression network.
We compare the experimental results before and after adding
the weighted network, and the comparison experiment is
completed on the MPIIGaze datasets. We perform leave-
one-person-out cross-validation for the regression network
and the adaptive weight adjustment network respectively.
As shown in Table 3, gaze estimation results for all the 15 sub-
jects in the MPIIGaze dataset are illustrated. The table shows
the gaze vector error of each subject from the starting point of
left eye, right eye and face to the target point under the RW-net
and R-net. After joining the weight adjustment network,
the prediction results generally have significant improve-
ment. However, a few of them have not been improved and
Figure 10 shows some evaluation results. Through the com-
parative analysis of the images, we can see that the negative
impact of the weight adjustment network is mainly affected
by the illumination. Due to the influence of illumination and
other factors, the overall quality of the captured image is
low, and the R-net cannot effectively evaluate the weight of
regional image features. In the RW-net, it is more likely to use
the average error of three regions to calculate the loss value
rather than the weighted error of the three regions, which is in
conflict with the idea of selecting the region with small error
for training in the actual situation, so as to have a negative
impact on the final accuracy.
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TABLE 3. Gaze angular error comparison for the regression network and the adaptive weight adjustment network for each subject.

FIGURE 10. Comparison of face and both eyes’ gaze errors.

IV. CONCLUSION
This paper has proposed an adaptive weighted 3D gaze esti-
mation method based on deep learning. The method needs to
maintain accuracy over a certain distance. We have evaluated
the proposed model at different resolutions, and the results

have showed that the proposed network has good robustness
for images with different resolutions. In order to improve the
prediction accuracy, this paper has proposed the weighted
network to adjust the regression network. Based on the con-
cept that the weight of which part is weighted based on the
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small error, the weight adjustment network can adapt the
strategy well. Compared with the existing latest line-of-sight
estimation methods, our method has significantly improved
the accuracy. However, through experimental comparison,
the training results of the weighted network under different
lighting conditions are not good. Future work will consider
how to improve the role of weighted networkmore effectively
and consider using more advanced network structure to fur-
ther improve its performance.
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