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ABSTRACT In big data era, the special data with rare characteristicsmay be of great significations. However,
it is very difficult to automatically search these samples from the massive and high-dimensional datasets and
systematically evaluate them. The DoPS, our previous work [1], provided a search method of rare spectra
with double-peaked profiles frommassive and high-dimensional data of LAMOST survey. The identification
of the results is mainly depended on visually inspection by astronomers. In this paper, as a follow-up
study, a new lattice structure named SVM-Lattice is designed based on SVM(Support Vector Machine)
and FCL(Formal Concept Lattice) and particularly applied in the recognition and evaluation of rare spectra
with double-peaked profiles. First, each node in the SVM-Lattice structure contains two components: the
intents are defined by the support vectors trained by the spectral samples with the specific characteristics,
and the relevant extents are all the positive samples classified by the support vectors. The hyperplanes can
be extracted from every lattice node and used as classifiers to search targets by categories. A generalization
and specialization relationship is expressed between the layers, and higher layers indicate higher confidence
of targets. Then, including a SVM-Lattice building algorithm, a pruning algorithm based on association
rules, and an evaluation algorithm, the supporting algorithms are provided and analysed. Finally, for the
recognition and evaluation of spectra with double-peaked profiles, several data sets from LAMOST survey
are used as experimental dataset. The results exhibit good consistencywith traditionalmethods,more detailed
and accurate evaluations of classification results, and higher searching efficiency than other similar methods.

INDEX TERMS SVM-Lattice, double-peaked profiles, support vector machine, formal concept lattice.

I. INTRODUCTION
In the context of massive and high-dimensional data,
the research regarding special data with particular charac-
teristics is becoming increasingly difficult [2]. Searching of
data with rare characteristics is a typical example proving
the important of detecting and finding meaningful data from
abundant special data. Some current search methods fail to
mine these data with rare characteristics due to the properties
of the data. The attributes presented as the rare characteristics
are always considered together in detection works. The limi-
tation noted above is one of the most influential factors caus-
ing the difficult classification of these data. In the previous
works, a recognition method DoPS [1] is proposed based on
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relevant subspace and SVM for double-peaked profiles. In the
DoPS, a characteristics subspace is extracted using relevant
subspace mining algorithm. And the classification model
is built using the support vectors trained from the labelled
templates as thresholds. It is suitable for recognition of the
double-peaked profiles. However, it can not evaluate the clas-
sification result. The relationships and diversity among the
characteristics are not fully considered. An evaluation grid is
built in this paper based on FCL to address above problem.
As an effective data analysis tool, FCL has complexity and
complete layer relationship. The relationship between layers
conforms the characteristic connection of DoPS. Thus, it is
necessary to build a grid of the recognition and evaluation
for the double-peaked profiles. In this paper, we propose
a recognition and evaluation method named SVM-Lattice
for classification of data with rare characteristics, based on
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TABLE 1. Symbol summary.

the Support Vector Machine and Formal Concept Lattice.
The proposed method addresses the problem of classification
when detecting special data with rare characteristics. Mean-
while, this approach reduces the negative influences between
the attributes that are not necessarily in the characteristic
data. In addition, we offer an effect evaluation method for the
classification of unknown data.

Some symbols are included in this paper, which are listed
in the following table to give a clear view. The meaning of
symbols are in the Table 1.

A. MOTIVATIONS
The recognition and evaluation method addressed of this
study are mainly motivated by the following observations:
• Now, the identifications of the rare samples are largely

depended on manual inspection by the astronomy experts.
The complication and diversion of astronomical data improve
the difficulty of automatically recognition and evaluations.
• For the spectra with double-peaked profiles, very few

labelled samples are available relative to the astronomical
big data, and the characteristics are very sparse and diverse
relative to the high-dimension of the spectral data.
• DoPS [1] can provide a useful hyperplane as classifier

and the distance between the object and hyperplane can be
regarded as its confidence. While, it does not fully consider
the relationships and diversity among the characteristics. So,
it would be meaningful to build a hyperplane grid according
to the different characteristics.

In the DoPS, a characteristic subspace is extracted
using relevant subspace mining algorithm, including Hα,
[OIII]λλ4959, 5007, Hβ, [NII]λλ6548, 6584, [SII]λλ6717,
6731. And the characteristics set is analysed and grouped into

3 subsets according to the correlations among the characteris-
tics based on the frequent patterns and rough set theory. Thus,
the double-peaked profiles search algorithm is proposed by
using the support vectors trained from the labelled samples
as thresholds.
• FCL is always a useful tool of characteristics analysis,

however, it is not suitable for solving the above problems
directly.
Motivation 1: Samples with rare characteristics account for

a small proportion of the massive data, which is an obvious
difficulty for detection of these data from the large dataset.
In addition to the low abundance, high dimensionality is
another property of these data. There is some useless infor-
mation in all dimensions due to the low quality of the data.
However, the useful characteristics extracted from dimen-
sions are various, including the profiles, qualities, and so on.
Thus, a search method for the above mentioned samples is an
important work for researches.
Motivation 2: The spectra with double-peaked profiles

found by researchers are total 345 from LAMOST and SDSS,
which are rare samples in the big datasets. And the charac-
teristics are sparse and diverse relative to the dimensions in
a spectrum. The existing searching methods are applied to
find some required data, including classification methods [3],
clustering algorithms [4], outlier detection algorithms [5],
association rules mining [6], etc. These algorithms exhibit
good performance in various fields, including image classi-
fication [3], spectral clustering [7], credit card theft [8], and
so on. However, a few dedicated methods are used to detect
the special data with above characteristics. Researching a
method for detecting the rare samples in big data is necessary.
Therefore, an effective model for detecting the rare samples
from big data should be considered as the main work in this
paper.
Motivation 3: A classification method DoPS [1] based on

the SVM is a useful classifier, which serves as a hyperplane
trained by the known samples with double-peaked profiles.
ADoPS is obtained by the characteristics from feature extrac-
tion, as a threshold of the classification method. Before train-
ing the DoPS, the characteristics of double-peaked profiles
are extracted by the relevant subspace. Thus, the eight char-
acteristics are obtained to be used in the classifier of double-
peaked profiles.
Motivation 4: The formal concept lattice is build to dis-

cover the relationships between different transactions based
on formal context. It is always a useful tool of characteristics
analysis, however, it is not suitable for solving the above
problems directly. Thus, the combination of the DoPS and
FCL in this paper is a meaningful method for the different
characteristic combinations.

B. CONTRIBUTIONS
For the detection of special data with particular character-
istics, the properties of our data are so rare and varied that
the search of these data is more difficult than searching for
other balanced data. The support vector machine is used
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to be a threshold for nodes in the SVM-Lattice, which is
a classifier for detecting our data from massive and high-
dimensional datasets. Meanwhile, the lattice also can serve
as an evaluation system for the classification results. The
contributions in this paper are summarized as follows:
• A new lattice structure named SVM-Lattice is designed

and theoretically analysed based on SVM & FCL.
• A SVM-Lattice building algorithm, a pruning algorithm

and an evaluation algorithm are proposed.
• The proposed algorithms and techniques are integrated

in SVM-Lattice, which is particularly tested on the recog-
nition and evaluation of double-profile spectra using several
datasets from the LAMOST survey.

C. ROADMAP
The remaining content in this paper is arranged as follows:
Sec. II introduces the related works about classification, con-
cept lattice, and SVM. In the Sec. III, the primary knowl-
edge and proposed method of classification are given. The
methodology of the SVM-Lattice in this paper is introduced
in Secs. IV and V. The experiment and analyses are shown
in the Sec. VI from different perspectives. The summary of
this paper is in the Sec. VII. Finally, the acknowledgement
of this paper including data resource and projects is shown in
the Sec. VII.

II. RELATED WORKS
The double-peaked profiles are meaningful for the research
of the galaxies even universe. The search of the objects
from massive celestial data is an important work. So the
methods of the search are needed to be developed, including
classification, clustering, and other mathematical methods.
The previous works of double-peaked profiles dedicated to
the specific objects, such as the reference [9]–[11], etc.
The machine learning based on parallelized hadoop is used
to identify the double-peaked profiles on Hα line in the
LAMOST [12]. In the SDSS(Sloan Digital Sky Survey),
a method involved a cross-correlation technique is proposed
to detect the double-peaked or multi components profiles
in galaxies [13]. However, the search of the double-peaked
profiles data from massive spectra is a different work. The
datawith double-peaked profiles includes 345 spectra accord-
ing to the previous search [14], [15]. Thus, developing an
effective method for the search of double-peaked profiles is
meaningful for the formation and evolution of universe, using
the existing data conditions.

Classification algorithms are used to detect required data
with some characteristics. In the past, different classifica-
tion methods are applied widely in various fields. A combi-
nation of deep transfer learning CNN (Convolutional Neu-
ral Network) and web data augmentation based on feature
presentation is proposed to address the problem of over-
fitting on small datasets [3]. The CNN is a more pop-
ular method due to effective kernels in other application
scenarios [16]–[18]. Amachine learning algorithm of random
forests is used to generate spatial and texture metrics for

land-use mapping, which is achieving higher accuracy and
superior coefficients compared to those of other approaches
[19]. The rough set theory is developed with a similarity-
basedmethod to create a weight matrix scoring system, which
produces a high accuracy with overall converge 67.47% [20].
A pattern classification accuracy improvement method is
proposed with a local quality matrix and is estimated based
on the KNN (K-nearest neighbour) method. Outlier detection
[21] and the clustering method [22] are also regarded as clas-
sification tasks. There are several other classificationmethods
exhibiting high performance, including SVM (support vector
machine) [23], DNNs (deep neural networks) [24], GAN
(generative adversarial network), and so on. In addition, clus-
tering methods are used for tasks of classification, including
transfer clustering [25], deep clustering [26], and so on.

As an unsupervised classification method, the SVM (sup-
port vector machine) algorithm is applied widely in different
fields. A prediction of phage virion proteins (PVPs) based on
support vector machine is trained with 136 optimal features,
which displays superior performance [27]. The kernel func-
tion is a key component in the construction of classification
models, and some of the latest research efforts involve pursing
the improvement of kernel functions to obtain better andmore
efficient training models [28]–[30]. The mixture kernel func-
tion is employed to search for the optimal model parameters
in the achievement of China’s carbon intensity target based
on SVM [23]. The SVM algorithm also is used as a powerful
classification tool for cancer genomic classification [31]. In
addition to the single algorithm, a combination classification
schema of SVM with other methods is applied to improve
convective and stratiform classification, including random
forest [32], logistic repression [33], neural network [34], etc.
For the popularization of high-dimensional data, the SVM
is employed to construct a classification model based on
the feature selection or extraction method [1], [35], [36].
By comparing other classifiers (random forest and KNN),
SVM outperforms in terms of accuracy, with the least sen-
sitivity to the training sample size [37].

Formal concept analysis (FCA) or formal concept lattice
(FCL), an effective tool for data analyses and knowledge
extraction, was first proposed by German mathematician
Wille in 1982 [38]. The operations of the concept lattice itself
are the topic of general research, such as the reduction of
multi-adjoint concept lattice [39]. In addition to the above
research, a hierarchical case-based classifier is proposed
by introducing a concept lattice to hierarchically organize
cases [40]. In recent years, the FCL method has also been
frequently combined with data mining methods [41]. Fuzzy
clustering and formal concept lattice are used to research pub-
lic security [42]. K-medoids clustering is used to compress
an approximate concept lattice, which serves as robustness
analysis of the proposed method [43]. The formal concept
lattice based on the support vector machine is also employed
to address the problem of heuristic flame image feature selec-
tion and detection, which proves the enhanced recognition of
features compared with manual work [44]. Rough set theory
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and the concept lattice are combined to research the feature
reduction, which provides a new reduction machine [45].
An algorithm for constructing a concept lattice based on cross
data links can successfully cluster web pages [46]. Classifica-
tion methods based on a concept lattice are proposed for dif-
ferent applications, including diabetes [47], educational data
mining [48], spatial statistical services [49], etc. However,
there are few papers pertaining to searching for the combi-
nation of support vector machine and concept lattice for the
classification of special data with particular characteristics.

It is seen that the concept lattice is a popular and effective
method for data processing, which is fixed with respect to
our data requirements. In viewing of the above methods
for classification and concept lattice, there is little existing
research about constructing a grid or lattice of hyper-plane
based on the support vector machine. The notes in the grid
comprise two parts, representing the association of objects
and attributes. Thus, a method named the SVM-Lattice is
proposed to provide a classifier for different characteristic
combinations and obtain an efficient evaluation measurement
method for classifiers.

III. PRIMARY KNOWLEDGE
The classification method DoPS is applied to train a classi-
fier using the training sample. Meanwhile, the hyperplanes
obtained from each combination of different features are used
to construct a SVM-Lattice, which memorizes various hyper-
planes trained by the dataset with the feature combinations.
After obtaining a complete lattice, the meaningless nodes
are reduced according to an association rule. Thus the final
SVM-Lattice is a streamlined classifier with additional fea-
tures.

A. DoPS METHOD
Support Vector Machine, adapted for rare positive samples,
can be used to generate a classifier for rare data with high
dimensionality [50]. Thus approach aims to find an optimal
hyperplane with maximal margin between the separating
hyperplane and other data [51]. DoPS is proposed based on
SVM to fit the spectra double-peaked profiles. Thus, the goal
of DoPS is to find the minimum value of 2/ ‖ www ‖, which is
represented by the following equation:

min
1
2
‖www‖2

s.t. yi(wxiwxiwxi + b) ≥ dic i = 1, 2, . . . , n (1)

where www = {w1,w2, . . .wi, . . . ,wn} is a row vector, while
is a matrix composed of the weights of all support vectors,
and xi is the ith object in the dataset, which is a column
vector. In (1), n denotes the length of training dataset and
b is a constant computed by multiple iterations in training
process. dic represents a distance threshold between positive
and negative support vectors, which is set manually.

To find the optimal support vectors, the Lagrange factors
are introduced into the computation of www and b. The solution
of this process is a dual problem, which is converted to a new

equation as follows:

min
α

n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyj(xi · xjxi · xjxi · xj)

s.t.


n∑
i=1

αiyi = 0

αi ≥ 0 i = 1, 2, . . . , n

(2)

where αi is the optimal Lagrange multiplier produced from
the iterations. (2) is a linear objective function, but it is not
suitable for the non-linear data. Thus, a factor is applied
into the computation, the kernel function, which can map the
input dataset into higher dimensional space. In the new space,
the dataset is linearly separable using the kernel function. The
Lagrange objective equation for adding kernel functions is as
follows:

min
α

n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyjK (xixixi,xjxjxj)

s.t.


n∑
i=1

αiyi = 0

0 ≤ αi ≤ C i = 1, 2, . . . , n

(3)

where K (xixixi,xjxjxj) is the kernel function selected before train-
ing process. As an important factor for the training result,
the kernel function is considered as the one ofmost significant
parameters. There are several types of kernel functions, such
as the linear kernel, Gaussian kernel, and sigmoid kernel.
Among them, the first is the easiest kernel, which requires the
least running time. TheGaussian kernel is themost frequently
used in the process of training the classification model. How-
ever, the increased running time is the one shortcoming when
the Gaussian kernel function is applied in the SVM. Through
the experimental analysis, it is found that the the results with
Gaussian are largely consistent with the ones with linear
function. Thus, the linear kernel function is applied in DoPS.

In (3), C is a parameter named penalty factor, which is
the tolerance for the error. C is introduced into the objective
function because the hard margin does not tolerate the classi-
fication error. The soft marginwithC has greater tolerance for
misclassified objects. The higher C is, the lower the accepted
tolerance and the easier over-fitting becomes. The smaller
C is, the easier fitting becomes. If C is too large or small,
the generalization ability will become worse.

After joining the kernel function and soft margin, the pre-
diction classifier trained by training data is constrained as
follows:

f (x) =
L∑
i=1

m∑
j=1

Piwijxij (4)

where xixixi is a data object to be classified, which is designed
by the value of f (x). Pi is the probability of the ith feature
in feature subspace of DoPS. If f (x) is close to positive line,
then the object is considered to be a positive sample. It will
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be designed as a negative sample when its predicted value is
close to the negative line.

In the classification of DoPS, the positive and negative
samples are divided into areas aside the hyperplane. In other
words, the object above the positive line (under the negative
line) is considered to be in the positive class (negative class).
The remaining objects between two lines represent the fuzzy
data, which can be determined by other effective methods,
such as the sort algorithm and fuzzy set algorithm.

B. FORMAL CONCEPT LATTICE
The concept lattice was first proposed by Wille in 1982 to
provide an effective tool for data analyses and knowledge
extraction [52]. There are some obvious properties in the
total concept lattice, including completeness, intuitiveness,
simplicity and so on. Thus, this approach is more popular in
the data processing field due to its non-negligible advantages.

The construction of the concept lattice is based on a form
background [53], which is a triple of K = (O,F, I ). Giving a
formal description for K is the main target of concept lattice.
The definition of the formal background is as follows:
Definition 1: There are two sets O,F and a binary rela-

tionship I in a given form background K = (O,F, I ). O and
F are data set and feature set respectively, and I ⊆ O× F is
a binary relationship of object set and feature set. The object
o ∈ O is existed with feature f ∈ F if (o, f ) ⊆ I or ′oIf ′.
In Definition 1, relationship I is composed of an object and

feature. The formal concept lattice is constructed according to
the background in Definition 1.

A number of nodes is included in the concept lattice, repre-
senting the component elements in the total lattice structure.
The introduction of each node is seen in the follow definition.
Definition 2: Each node is represented by a formal con-

cept J , which is an order (W ,N ). TheW ∈ O and N ∈ F are
extent and intent respectively.W is a largest subset of objects
with intent N , meanwhile, N is a subset of common feature
including W .

The formal concept in Definition 2 is used to construct a
formal concept lattice, which is defined in Definition 3.
Definition 3: In a formal background K = (O,F, I ),

the relationship between any two formal concepts is a par-
tial order relationship, which is represented by (A1,B1) ≤
(A2,B2) ⇐⇒ A1 ⊆ A2 ⇐⇒ B2 ⊆ B1. The all formal
concepts and their partial order relationships are made up a
formal concept lattice named < L(O,F, I ),≤>.
A complete lattice is obtained according to the formal con-

text, including the formal concept and their order relationship.
In the concept lattice, the parent nodes and child nodes are
mutually corresponding. The definition of these nodes are in
Definition 4.
Definition 4: Two different nodes n1(A1,B1), n2(A2,B2),

n1 < n2 ⇐⇒ B2 ⊂ B1 ⇐⇒ A1 ⊂ A2. If there are no other
nodes n3 with n1 < n3 < n2, n2 is the parent node(parent
concept) of n1, meanwhile, n1 is the child node(child concept)
of n2.

There are a number of levels in a concept lattice according
to the feature combination. Any node in a concept lattice has
at least one related node, which is the parent or child node.
For the child nodes in the next level, the intents (features)
are the intersections of the intents in parent nodes. In a
word, the nodes in the concept lattice are interpretable and
completed.

IV. SVM-LATTICE FRAME
A. HYPERPLANE LATTICE
The extent and intent of each node in the concept lattice indi-
cate the direct relationship according to the formal context.
The intent is the common feature of the extent, which can
be viewed in the provided formal context. A new mapping
is introduced to express the relationship between extent and
intent in our proposed method. Each node of the lattice is
an independent concept using every hyperplane obtained by
DoPS training dataset. Thus, the hyperplanes using datasets
with different feature combinations will constitute a new
lattice called the SVM-Lattice.

1) COMPLETED SVM-LATTICE
In a given dataset with high dimensions, the rare character-
istics appear in different locations. The characteristics that
exist in the data are combined randomly to make up different
training datasets, including positive and negative samples.
Different training datasets will be used for constructing clas-
sification model due to the uncertainty of characteristic loca-
tions. Thus, the certified known sample with characteristics
will be labelled to show which exist in an object. The labelled
sample is used to combine the positive dataset with char-
acteristic combination. After obtaining the training dataset,
a classification model with one characteristic combination is
trained by the DoPS. This means that a hyperplane will be
obtained using the training dataset.

The definition of the new extent is shown in Definition 5,
which is determined to represent the positive sample upper
hyperplane.
Definition 5: The hyperplane HP is obtained from the

DoPS using the training dataset TR. The testing dataset is
used to test the effectiveness ofHP. The objects upperHP are
regarded as positive sample to be the extent of new concept,
abbreviated PS.

Another component of the formal concept is intent, the sup-
port vectors in formal context. The definition of the new intent
is shown in the follow Definition 6.
Definition 6: The SVM-Lattice is a new lattice obtained

by SVM due to the redefined intent. Different support vec-
tors (SV) are calculated by training processing, which are
regarded as the new labels on characteristic combinations.
Each combination of support vectors is the intent of each node
in SVM-Lattice on different characteristic combinations.

The obtained hyperplane with characteristic combinations
is a boundary line between positive and negative data. The
predicted positive sample above hyperplane is regarded as
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the extent of a node(formal concept), meanwhile the intent
of node is the support vectors on characteristic combinations.
The redefined formal concept is called the hyperplane con-
cept, whose structure is shown as Definition 7.
Definition 7: Two nodes n1 = (N1,N2), n2 = (M1,M2)

are sequences with Definition 3 to make up a SVM-Lattice
< L(PS, SV ,HP),≤> according to Definition 4. The HP is
denoted a relation between PS and SV , which means PS is a
dataset selected by relation HP on intent SV .

2) PRUNING THE SVM-LATTICE
All of the nodes on characteristic combinations are included
in a completed SVM-Lattice. However, users devote less
attention to some nodes or useless information due to
the actual situation. The hyperplane concepts regarded
as reduced nodes should be removed from the complete
SVM-Lattice. The association rule algorithm is applied as
the pruning method for our SVM-Lattice. The association
rule is a machine learning method based on rules, and it
is used to find the implicit relationship (A ⇒ B) between
transactions from a sample. The method can find the rela-
tionship between basket data and other data types, including
medical diagnosis [54], web data [55], risk assessment [56],
and so on.

Two steps are included in the process of the association
rule: finding frequent items and association rules [57]. The
first step is a comparison between items and support threshold
S. All items obtained by scanning the database are compare
with S to represent frequent items, which are used for finding
associations rules in the next step. Different rules produced
according to the frequent items are shown with values of
confidence. The confidence threshold C is set to select the
most reliable rules with higher C . The values of S and C are
set before beginning association rules, being compared with
the support confidence of items. The computations of the two
values are as follows:

Support(X ) =
#X
n

Confidence(X ⇒ Y ) =
Support(X ∪ Y )
Support(X )

(5)

where Support(X ) is the support of item X and the
Confidence(X ⇒ Y ) is the confidence of rule X ⇒ Y .
In addition, the #X and n are the frequency of item X and
the length of the database.

The detailed steps of finding association rules are shown
in Algorithm ??.

The pruning algorithm using the association rule method
is a reduction of the completed SVM-Lattice. The scanning
process included in the reduction occurs for each determina-
tion of the support of the items. The repeated scans require
more memory and time; however, this can be ignored in this
paper due to the smaller size of the formal context. Thus,
the Apriori method is used as an association rule for mining
the rules.

Algorithm 1 Pruning Method Based on Association Rule
Input: formal context FC, support threshold S and confi-

dence threshold C.
Output: Reduced intents
1: Scanning database CL to find the 1-items;
2: Computing the frequency of 1-items to get the frequent

1-items by comparing with S;
3: for 1<k<length of FC do
4: Connecting the (k-1)-items to produce the k-items;
5: Pruning k-item using the prior knowledge to remove

the useless item from k-items;
6: Obtaining the frequent k-items by comparing the

support with S;
7: end for
8: Producing the rules and computing their confidence

according to (5);
9: Recording the confidence of subsection of each rules;
10: Selecting the subsections with higher confidence as the

final intents;
11: Return reduced intents.

B. NATURES OF THE SVM-LATTICE
The extent of concepts in the SVM-Lattice is mapped indi-
rectly using support vector machine. Properties of formal
concept lattice are considered to be the natures of the
SVM-Lattice. In addition, the generalization and specializa-
tion of relationship between nodes in different layers should
also be analysed from several angles. The natures of the
SVM-Lattice are analysed in the following descriptions.

1) NUMBER OF NODES
The number of nodes and edges in SVM-Lattice are smaller
than those in the formal concept lattice. Any intent in formal
concept lattice is all the support vectors on feature combina-
tions of the initial formal context. However, the intents in the
SVM-Lattice are composed of the support vectors attracting
users and not include those useless. Thus, the number of
intents in the SVM-Lattice is smaller than that in the initial
lattice. The edges in a lattice are related to nodes due to the
binary relationship I in the SVM-Lattice. Thus, the number
of nodes and edges in the SVM-Lattice are smaller than those
in the formal concept lattice.

2) COMPLEXITY
The complexity of the SVM-Lattice is lower than that of
the formal concept lattice. The process of pruning for the
formal concept lattice is included in the construction of
SVM-Lattice, in which the number of nodes and edges is
smaller than those in the formal concept lattice according
to the first nature of the SVM-Lattice. Thus, the complexity
of the SVM-Lattice is lower than that of the general lattice
structure.
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The relation between nodes and layers can serve as context
to help detect hidden information. The finding of detection
is an important step in classification of data with rare char-
acteristics. Thus, the classification using the SVM-Lattice
exhibits greater complexity than DoPS classification due to
the process of finding the context.

3) COMPLETENESS
In a formal concept lattice < L(O,F, I ),≤>, the order
sequence (concept) is completed with respect to the relation-
ship I . A given order P(O,F) is constrained by the complete-
ness as follows:

O = {o ∈ O|∀f ∈ F, oIf } (6)

F = {f ∈ F |∀o ∈ O,OIF} (7)

A given node P′(O′,F) in the SVM-Lattice, correspond-
ing to P, is also constrained by the above two conditions.
∀o ∈ O(f ∈ F) is satisfied relationship oIf if f ∈ F(o ∈ O).
O′ is a positive sample within the upper hyperplane from
DoPS, and thus, it is regarded as a corresponding mapping
as follows:

O′ = {o′ ∈ O′|∀f ∈ F, o′If } (8)

F = {f ∈ F |∀o′ ∈ O′,O′IF} (9)

Completeness is a basic property of our SVM-Lattice
indicating that the sequence with the largest expansion will
appear in the lattice structure. A node in the formal concept
lattice is mapped into another lattice space by the DoPS.
If a concept P(E, I ) is a directed map in the formal concept
lattice, E and I meet the above conditions. Meanwhile, in the
SVM-Lattice, node P’s indirectedmapping still satisfies com-
pleteness.

The nodes in the SVM-Lattice are the subset of completed
lattice due to the pruning process. It is necessary to remove
the nodes with lower confidence, which are useless for data
searching. The removed nodes are regarded as meaningless
points by combining expert knowledge. Thus, evenwith prun-
ing, the completeness of the SVM-Lattice still exists.

4) RELATION BETWEEN NODES
Nodes in the same layers are relatively independent, while
those on different layers are connected and related. On the
same layers, the intents of nodes are support vectors on
different characteristic combinations selected as meaning-
ful information for users. These nodes from at least one
same father node include crossed characteristics, which are
the intersections of their father’s intents. However, nodes in
the same layer from different fathers are rarely related. For
the nodes of different layers, on the one hand, the node is
a child of another node on the upper layer. On the other
hand, their father nodes are not the same nodes and are not
related.

For a brief addition to the above description, it is assumed
that two nodes P1(O1,F1) and P2(O2,F2) exist. If P1 and
P2 are on the same layer, the possible relationship of the two

FIGURE 1. Relationship of position between nodes in the same layer.

nodes is shown in Figure 1. The top sub-figure in Figure 1
represents a non-crossed relationship in which P1 and P2 are
from different father nodes. It is observed from Figure 1(a)
that P1 and P2 are relatively independent. The intents of P1
and P2 are with F1 ∩ F2 = ∅. The crossed relationship
between P1 and P2 exists in the bottom sub-figure, in which
Q1 is the crossed parent node of P1 and P2. There is at least
one common characteristic of P1 and P2 with F1∩F2 = F ′,
meaning that P1 and P2 are characteristic expansions based
on Q1. There is more intent and less extent in P1 and P2
due to the characteristic expansion. In addition, the extents
of two nodes are related by node Q1 with O′ ∩O′′ = O1 and
O′ ∩ O′′′ = O2. This observation indicates that the O1 v O′

and O2 v O′, and it is possible with O1 ∩ O2 = ∅.
The upper and lower relationships are shown in Figure 2,

in addition to the same layers of P1 and P2. The top plot
is a non-relationship between P1 and P2, which are from
upper layer and lower layer, respectively. The intent of P2 is
composed ofQ1 andQ2 in 2(a), while P1 does not participate
in the formation of P2. In contrast, P2 is the child node of
P1 in 2(b). The intent of P1 is the subsection of P2 accord-
ing to the construction process of the lattice. Thus, F2 is a
combination of F1 and other intents and is named F2 ⊆ F1.
P2 is denoted as a hyperplane node including characteristic
combination F2 and positive sample O2 selected by DoPS.
The two hyperplanes ofP1 andP2 are trained by their training
samples, which are on characteristic combination. P1 and P2
are related with their characteristics due to the crossed intents.
For the extents of these nodes, O2 is a dataset constrained by
F1 based on F ′. Thus, O2 is the intersection of P1 and Q1
with O1∩O′ = O2. The size of O2 is smaller than O1 due to
the greater feature constraint. Thus the more characteristics
there are, the smaller training objects are.
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FIGURE 2. Relationship of position between nodes in upper and lower
layer.

5) RELATION BETWEEN LAYERS
The generalization and specialization of relationship between
different layers in the SVM-Lattice are analysed according to
the searching path and distance between layers. The search
of best intent for a given object is initiated from the bottom
node of the SVM-Lattice. Each node in the SVM-Lattice is
shown with a confidence according to the association rules
algorithm. In the searching process, the distance between the
upper and lower layers is computed to determine whether the
search ends.

The prediction of object o on the ith node in the lower layer
is obtained by the DoPS with pre(oi, c). oi and c are predic-
tions of o on the ith node and confidence, respectively. All
predictions of the lower layer are included in a prediction set
with pre = {pre(oi, c)}. Node n in the lower layer is obtained
by min(pre) with higher confidence. Node m with minimal
prediction in the upper layer is also obtained by using the
same process as that of the lower layer. The distance between
the lower and upper layer is computed by dis(m, n), which is
the distance between two nodes m and n. The search process
can be ended according to the distance between two layers.
It is assumed that, for three layers L1,L2,L3 from bottom to
top, the search will be ended if dis(L1,L2) < dis(L2,L3).
There is no need to continue the calculation of the remaining
layers, which reduces the search time and complexity.

6) USAGE
The SVM-Lattice can serve as an evaluation of classification
results for special data with rare characteristics according
to hyperplane on every characteristic combination. After
forming a SVM-Lattice, every node in the lattice denotes a
hyperplane of its characteristic combinations. The accuracy

of the classifier for one intent is added into the node as addi-
tional information to offer an evaluation of classification with
respect to this characteristic combination. All nodes in the
SVM-Lattice are used to build a grid to provide a reference for
users. In the grid, every point is a hyperplane representing a
classification result for a characteristic intent. A given sample
can be compared with the point in the grid to help determine
which intent is more valid. The larger the distance is between
the computed hyperplane and existed hyperplane, the less
believable is the classification of the characteristic of this
node. This evaluation system is meaningful for determining
the best classification characteristic combination of special
sample.

V. DESCRIPTION OF THE SVM-LATTICE
A. BUILD OF SVM-LATTICE
The introduced algorithm in this paper is referred to as the
SVM-Lattice algorithm, which is utilized to build a classifi-
cation lattice for special data with rare characteristics. This
method is proposed to form a grid based on the DoPS and
formal concept lattice. Each node in the lattice is denoted as a
hyperplane by the training dataset, including positive samples
and characteristic combination. The algorithm description is
available in Algorithm 2.

Algorithm 2 SVM-Lattice Build Algorithm
Input: Training sample D, characteristic combination F,

characteristic matrix FM with 1 and 0
Output: A SVM-Lattice
1: for each characteristic f in FM do
2: select point with 1 on characteristic f;
3: add f to the characteristic combination F;
4: end for
5: for each feature combination f in F do
6: select training sample on f from D;
7: select a type of kernel function K;
8: matrix the training data;
9: generate a matrix of kernel value KM;
10: obtain an initial matrix of Lagrange factors α;
11: update the α according to function (3);
12: produce the optimal α by iterations by DoPS;
13: produce the support vectors SV on f by DoPS;
14: filter out positive sample upper the hyperplane to be

as extent on f;
15: ensure SV as the extent of this node;
16: end for
17: remove out the reduced nodes from completed SVM-

Lattice by association rule according to Algorithm ??;
18: return a reduced SVM-Lattice.

In Algorithm 2, a characteristic matrix is firstly produced
by using the positive sample, including 1 and 0. If the
double-peaked profiles appear in ith data on jth characteris-
tic, the value of these positions in the characteristic matrix
are set as 1. In contrast, the values are 0 for ith data with
respect to the jth characteristic. The matrix is used to find all
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feature combinations for which the rare characteristics
appear. On different characteristic combinations, there are
various sample sizes for training the classifier. There are two
parts in the algorithm: finding characteristic combinations
and training the classifier on each characteristic combination.
In the first process, the time complexity of constructing fea-
ture combination F is O(L) in which L is the characteristic
length of the characteristic matrix. The training process of
SVM in the second part is the main component of con-
structing the SVM-Lattice. On each combination, the time
complexity of the training part is O(n · d) with the linear
kernel function, while n and d are the lengths of sample and
characteristic. This parameter is O(n2 · d) when the kernel
function is non-linear. The total time complexity of the entire
process of constructing a SVM-Lattice is O(n · d · FL),
in which FL denotes the maximum length of characteristic
combinations. The special data with rare characteristics are
extremely rare in massive data, so less time is required to
construct a SVM-Lattice.

B. EVALUATION PROCESS OF THE SVM-LATTICE
As an efficient classification evaluation method, the
SVM-Lattice in this paper is constructed according to the
formal context. The special data with rare characteristics are
applied to build a lattice for the recognition and evaluation
of classification. The data used for the classification should
be analysed with respect to the dimensions, characteristics,
and profiles, among others. Based on this type of data,
a SVM-Lattice for the classification method is built from
the formal context to begin the total process. First, a for-
mal context is given which includes the existence on each
characteristic of characterised data, which is the known data
certified by field experts. Second, the formal context is used
to generate all nodes in the SVM-Lattice, including intent and
extents by the DoPS. Third, the association rule algorithm is
applied to find the redundant nodes, aiming to remove the
nodes with lower confidence from the set of all nodes. Finally,
an evaluation method of classification results is provided for
the data with rare characteristics using the SVM-Lattice.

Within a given dataset that must be assigned one character-
istic combination, the shortest distance from the hyperplane
of each node can be found. The distance between layers for
given data is computed to judge the search for the best layer.
The search of the best layer is started from the first layer, and
it is ended when next layers are more distant. The search is
interrupted when it is not necessary for the next nodes to be
compared continuously. Therefore, all of the layers and nodes
in the SVM-Lattice are denoted with meaningful information
of the hyperplane by the DoPS.

The evaluation process of the SVM-Lattice is shown in
Algorithm 3, which is a detailed search process for a given
object.

C. THEORETICAL ANALYSIS
The twomain tasks of the proposed SVM-Lattice in this paper
are classification of special data with rare characteristics and

Algorithm 3 Evaluation Process of SVM-Lattice
Input: a SVM-Lattice, unknown data D, prediction value

threshold σ
Output: evaluation information of D
1: Building an evaluation grid using the nodes in SVM-

Lattice;
2: for each object o in D do
3: Generating a new data nd according to the intent of

node n;
4: Computing the prediction value pre(nd, n) on the

intent of n;
5: Obtaining the confidence c(n);
6: if pre(nd, n)in[−σ, σ ] then
7: Jumping to the related node rn in the next layer;
8: Repeating the previous two steps;
9: if c(n) > c(rn) then
10: Determining o is between the node n and rn;
11: else
12: o is on the node n;
13: end if
14: else
15: Jumping to the next node;
16: Repeating the step 2 to 11;
17: end if
18: end for
19: Return the closed nodes with confidence of D.

evaluation for classification. The two parts are sequentially
performed by the SVM-Lattice. For a given object that needs
to be assigned, each node in the SVM-Lattice is computed
from upper to lower layers. The node is denoted as a hyper-
plane by the DoPS, where the prediction value of the object
is obtained. The distance between object and hyperplane is
obtained by prediction, which is the basis for determining the
closet node. In addition to the distance between the object
and each node, the distance between nodes are calculated to
measure the similarity of different nodes. Moreover, the dif-
ferences between layers for a given object can be computed
to find the nearest layer.

The trained hyperplane of each node is obtained with a
fixed confidence to judge the credibility of classification with
respect to the intent. The association rules method is used to
obtain the confidence according to operations on character-
istic sets. The higher the confidence is, the more reliable the
classification result is. The information of one node includes
not only the classification components but also the evaluation
system. After obtaining the prediction of each, the distances
between nodes are used to find the nearest node on one layer.
Therefore, the two aspects of classification and evaluation
are interdependent. The classification process begins with the
top node in the SVM-Lattice, while it is not ended at the
lowest node. When the number of characteristics involved
in the calculation increases, the accuracy and precision rate
become higher than one the single characteristic combination.
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FIGURE 3. The recognition and evaluation flowchart.

The build of the final SVM-Lattice is completed by com-
bining all characteristic combinations, which costs more
time due to the training process of the classification model.
However, the SVM-Lattice will not be changed once it is
built. The classification of unknown data simply traverses the
SVM-Lattice. Overall, the classification based on the
SVM-Lattice is more efficient and accurate.

The build and evaluation process is shown in Figure 3.
The SVM-Lattice is built with two roles, recognition and
evaluation of the data with rare characteristics. In the recog-
nition process, it is a classification in each node for a given
data. The object is compared with each node from top to
bottom until the best location is found. Each node denotes
a DoPS classifier on one characteristic combination, which
is a threshold of the classification. The confidence is given
in each node to provide the evaluation of classification result
for users. The object is matched on different characteristic
combinations to adopt the characteristics of the object. The
best location is on a node or one between nodes and layers.
The final result of object is a location with a confidence,
instead of a classification predict than other methods.

As an example, three characteristics in characteristics spec-
tra, [OIII]λλ4959,5007, Hβ, are selected from 8 character-
istics to show the search process for a given object. The
process of finding the best location is shown in Figure 4.
The top node is ignored due to the empty intent. Therefore,
the blue point is started at the first node, labelled 1. However,
this is not the best node for the point. It then jumps to
the second node, labelled 2, which is the first finding node
after computing the prediction. Node 3 is selected to be com-
pared with the last node. Finally, the point is located between

FIGURE 4. A search process example based on three characteristics. The
first part in each node is the extent dataset, and the second one is the
intent on characteristic F. The blue point is a given object, beginning with
the top node. Labelled 1, 2, and 3 aside point are the sequence of the
search process.

two nodes, 1 and 2. The confidence of this position is given
as a judgement of the search result.

VI. EXPERIMENTS ANALYSIS
A. DATA PREPROCESSING
The spectral data with double-peaked emission lines, mean-
ingful for researching the formation and evolution of galaxies,
and even the universe, are used to test the availability of our
method. It is significant to search the double-peaked emission
lines spectra for finding some rare celestial bodies including
galaxies pairs, double black holes etc. The obvious charac-
teristics of double peaks generally exist on emission lines,
which are composed of two or more peaks within specific
wavelength ranges.

Finding spectra with double-peaked emission lines is dif-
ferent due to several reasons, as follows: First, high dimen-
sionality is included in a spectrum. The dimension number
reaches up to 4000 in each spectrum, leading to the difficultly
of searching for rare double peaks. Second, the dimensions
showing double peaks are very small relative to the total spec-
tra. Thus, the search for double peaks from high-dimensional
data is difficult when using conventional methods. Finally,
in a double-peaked emission lines spectrum, the double peaks
always exhibit different profiles.

Based on the above characteristics of data with double-
peaked emission lines, data preprocessing is worked out
before experiments. A characteristic extraction method based
on relevant subspace (RS) is used to obtain the characteristics
related with double peaks [1], [36], [58]. A dataset including
345 spectra with double-peaked emission lines, which are
known and identified currently, is selected from LAMOST
DR5 to extract the useful characteristics [14], [15].

First, a new dataset is obtained by data normaliza-
tion and wavelength intercept. Second, the local dataset
LDS(o, d) of object o on dimension d is computed by KNN
(K-nearest neighbour) algorithm. Third, a global density
matrix is built by using the local density of each object on
all dimensions. Fourth, the difference between dimensions
is calculated by the density matrix to measure the differ-
ence between attributes. Finally, the attributes with higher

VOLUME 8, 2020 80987



H. Yang et al.: SVM-Lattice: Recognition and Evaluation Frame for Double-Peaked Profiles

TABLE 2. Formal context of double-peaked emission lines spectra.

difference are extracted as the members of the relevant sub-
space. A characteristic subspace of length 8 is obtained by
analysing the relevant subspace. Eight emission lines are con-
sidered as the characteristics likely to appear as double peaks,
including Hα, [OIII]λλ4959,5007, Hβ, [NII]λλ6548,6584,
[SII]λλ6717,6731. The dimensions of each line are listed
in Tabel 2, including the beginning and ending values of
wavelength.

Data preprocessing of relevant subspace is a meaning-
ful process that reduces the dimensions of data and time
complexity. The dimensional disaster in massive and high-
dimensional data can be effectively avoided. Meanwhile,
the most useful information for searching of double peaks
is extracted from all dimensions, which centralizes the data
information. The dataset after characteristic extraction is used
to the build the SVM-Lattice for double-peaked emission
liens.

B. SVM-LATTICE CONSTRUCTION
Among the 345 spectra with double-peaked emission lines,
341 spectra include all 8 characteristics, while the remaining
spectra are shown without the last 2 characteristics due to a
larger redshift. To ensure that all characteristics are contained
in the spectra, 341 spectra with all features are applied in the
construction of the SVM-Lattice.

1) INITIAL LATTICE
A formal context containing characteristics and objects
must be provided before constructing a formal concept lat-
tice. In this paper, a double-peaked emission lines sam-
ple including 341 objects is selected as a dataset of
formal context. The characteristics in the formal con-
text are Hα, [OIII]λλ4959,5007, Hβ, [NII]λλ6548,6584,
[SII]λλ6717,6731. For each characteristic, 341 spectra are
labelled according to the existence of objects with these char-
acteristics. The formal context of our spectra data is shown
in Table 3, composed of values 1 and 0. The first column is
the index of samples with double-peaked emission lines from
1 to 341. The rest of the columns are labels of objects on each
characteristic. The value of 1 denotes that the double peaks

exists for the ith object with respect to the jth characteristic,
while 0 indicates the opposite.

According to the formal concept in Table 3, an initial con-
cept lattice L including 256 nodes can be built. The intent of
the root node on the initial lattice is null; meanwhile extent is
all of the samples. The last node is connection of all character-
istics and objects on these characteristics. In the initial lattice,
8 layers exist, with several numbers of nodes according to the
formal concept lattice. The complete drawing of the initial
lattice is shown in Figure 5. It is observed that the nodes
in the ith layer represent a subsection of i − 1 nodes in the
upper layer. On the same layer, the number of characteristic
combination of each node is the same. In Figure 5, the nodes
with single intent are on the second layer. Below the third
floor, at least two characteristics are contained in the nodes
in each layer. There are 9 layers on the diagram, in which
the node numbers on the first and last layers are 1. The node
in the first layer is a combination of all objects with null
characteristic, while several objects and all characteristics are
contained in the last last.

For a more intuitive understanding of the initial lat-
tice, several characteristics are selected to serve as a
specific example, as shown in Figure 6. A subsample
including 341 objects on F2[OIII]λ4959), F3([OIII]λ5007),
F4([NII]λ6548), F6([NII]λ6584) is used to construct a sub-
lattice as an sample. There are 5 layers in Figure 6, composed
of 16 nodes in total. One characteristic is represented by each
node on the second layer, containing 4 nodes. The nodes with
the same number are in the fourth layer, with 3 characteristics
in combination. The layer with the most nodes is the third, for
which there are subsections of each of the two nodes on the
last layer. In addition, the nodes on the last two layers are
connected by 3 and 4 nodes, respectively. The example can
serve as a reference for the total lattice.

2) COMPLETED SVM-LATTICE
The extents in the initial lattice are from formal context and
must be mapped by the DoPS. In each node, the extents are
replaced by positive sample from SVM as new extent. The
training dataset in the training process of SVM is determined
by the positive sample with respect to characteristics accord-
ing to the formal context. For one characteristic combination,
the numbers of positive and negative samples are the same for
training and testing datasets. A hyperplane is obtained from
the training dataset using the DoPS. The positive sample in
the testing dataset upper hyperplane is regarded as the new
extent of the node. DoPS is used as a mapping method for the
SVM-Lattice, which is a completed lattice.

The mapping process of each node h(o, f ) in the initial
lattice is as follows. Extent o is regarded as the positive train-
ing dataset PD on characteristic f . Select negative sample
ND without double-peaked emission lines on characteristic
f ; combine two-thirds of PD and ND to be training dataset
TR on characteristic f , meanwhile, the remaining third serves
as the testing dataset TE on characteristic f ; train a classifier
(hyperplane) for double-peaked emission lines data using
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TABLE 3. Formal context of double-peaked emission lines spectra.

FIGURE 5. An expendable legend of the completed lattice.

TR; record the support vectors and the testing sample upper
hyperplane, named SV and PT on f , respectively; obtain
the accuracy and recall rate by TE to serve as reference
values; construct a hyperplane concept including SV and PT
as the intent and extent of h respectively; and add the new
node h′(PT , SV ) to the SVM-Lattice with the accuracy and
recall rate.

A new lattice named SVM-Lattice is constructed by the
DoPS method, which is the main work in the construction
process. For each node in the SVM-Lattice, the accuracy
and recall rate are recorded as additional information regard-
ing evaluation of the classification result on characteristic

combinations of this node. All node information is listed
in Table 4, including the intent, extent, accuracy, recall rate,
and shapes of training and testing datasets. In the construction
of the concept lattice, the intent is the common characteristic
set owned by extents. Thus, in the first node, the intent is
empty due to the extent including all samples of formal
context.

3) REDUCED LATTICE
According to the formal context in Table 3, all character-
istic combinations are considered to be intents in the com-
pleted SVM-Lattice. However, users are attracted by parts
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FIGURE 6. An example lattice for 341 objects on 4 features.

TABLE 4. The information of nodes in the SVM-lattice.

of the lattice, instead of the complete lattice. For enhanced
convenience for users, the pruning process is considered to
reduce the completed SVM-Lattice. The association rules
method finds meaningful correlation rules with specific
coefficient between objects from massive data. To obtain
a reduced SVM-Lattice, the Apriori method is applied to
remove the characteristic combinations with lower coeffi-
cients. After setting the support threshold s, the mining of
frequent items is premise of rule finding. A rule of the form
X ⇒ Y is analysed according to its coefficient c for deter-
mining the useful characteristic combinations.

In the pruning process, the most frequent items are deter-
mined by the set of support threshold s. Therefore, the value
c must be set before finding frequent items. In addition,
the coefficient threshold c must be determined manually

when the removed characteristics are selected. In this paper,
s and c are set as 0.2 and 0.5, respectively, according to
background knowledge. The nodes removed from the SVM-
Lattice by pruning are listed in the Table 5.

There are 66 nodes included in Table 5, that are not rela-
tively meaningful for users. The first column in this table rep-
resents the numbers of removed nodes in the SVM-Lattice.
The last two columns are the characteristic combinations
and the positive sample upper hyperplane in testing dataset,
respectively. The new lattice is named reduced SVM-Lattice,
for which a final lattice has been pruned. The pruning process
is also worked when a completed SVM-Lattice is built during
pruning, instead of after building the lattice. The time cost is
reduced when pruning occurs during the build of the SVM-
Lattice instead of outside of construction.

80990 VOLUME 8, 2020



H. Yang et al.: SVM-Lattice: Recognition and Evaluation Frame for Double-Peaked Profiles

TABLE 5. Pruning nodes in SVM-lattice.

C. EVALUATION RESULT
The SVM-Lattice is used as a classifier for data with double-
peaked emission lines, meanwhile, the confidence of each
node is also proposed. First, we give a classification result of
the SVM-Lattice based on a dataset of size 10000. The best
node for each object is found by comparing the nodes in the
SVM-Lattice. The index of nodes for several objects is listed
in Table 6. The confidence of each classification result is
given according to the basic information of the SVM-Lattice.

The best node close to each point is found by iterating
through all nodes in the SVM-Lattice. Table 6 shows the
best node number and the corresponding confidence for each
object. In fact, the best node just is simply the node with the
smallest distance to the object. The point may be between
two nodes due to the natures of the SVM-Lattice. To offer
an intuitive perspective, the node closest to each point is pro-
posed in this table. In the SVM-Lattice, each node is shown
with the corresponding confidence by the association rules
algorithm. Confidence is a judgement value of the credibility
of a classification result. The higher the confidence value is,
the more reliable the result is.

D. AN EXAMPLE FOR SPECIFIC FEATURES
The profiles of double peaks are composed of at least two
peaks in a specific location in spectra. A spectrum with
double-peaked emission lines is selected as an example,
as shown in Figure 7. Part of a total spectrum is drawn
in Figure 7, in which the horizontal and vertical coordinates
denote the wavelength and normalized flux of a spectrum,
respectively. The obvious double peaks exist on [OIII ]λ4959
and [OIII ]λ5007, while this characteristic is weak on Hβ.
A sample of classification for the three characteristics is given
to show the results obtained using the SVM-Lattice.

Before classification of the spectrum, a small SVM-Lattice
is built using a sub-dataset with Hβ(F1), [OIII ]λ4959(F2)
and [OIII ]λ5007(F3). The location of the object in new
SVM-Lattice is shown in Figure 8. The object matches
node in the SVM-Lattice according to the recognition and

TABLE 6. Classification result of double peaks.

FIGURE 7. An example of double-peaked emission lines.

FIGURE 8. Classification result of F1FF3. The blue point is denoted the
final location of classification for the spectrum with strong double peaks
on F2 and F3.

evaluation process. The distance between object and node
is calculated to be a measurement of the matching result.
The dis(o,F) denoted the distance between object o and
node with F . The dis(o,F3) is 2.5, which is smaller than
dis(o,F2) with 2.8 and larger than dis(o,F2F3) with 1.2.
Thus, the object is located between the nodes with F3 and
F2F3. The node with F2F3 have the confidence 0.8, which
denotes the credibility of classification on this node.

E. RESULT DISCUSSION
To test and verify the usability of the proposed method, mul-
tiple sets of data sample are used in our experiment. A sample
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TABLE 7. Comparison of advantages between two methods.

is selected randomly from LAMOST to test the effectiveness
of our SVM-Lattice compared with the template matching
method. In this paper, the spectra with double-peaked emis-
sion lines are the main testing data for the experiments. For
each characteristic combination, the positive sample with
double-peaked emission lines is regarded as a template to be
matched with the testing sample. The distance between one
object in testing sample and positive sample are separately
computed to choose a minimum value as the matching result.
A given object in the testing sample is compared with all
template data for each characteristic combination. The testing
data are assigned to a class in which the matching template is
nearest to the classed object.

Compared with template matching, the SVM-Lattice
presents some advantages that are absent in the last method.
The SVM-Lattice can find the best intent on one certain layer
to provide an accurate classification of given object. More-
over, the distance between layers can be computed accord-
ing to the SVM-Lattice. In addition to the distance between
layers, the distances between nodes on the same layer are
obtained from the SVM-Lattice to be compared with others.
The distances can be obtained from the SVM-Lattice, but not
from template matching, are listed in Table 7.

It can be observed that the first four distances can be
obtained based on the layers in the SVM-Lattice. The dis-
tance between the objects according to template matching
is computed by appending the single object instead of data
combinations. However, in the SVM-Lattice, it is determined
according to the distance between the object and hyperplane,
which is different from the previous result. The search process
will be interrupted when the smallest distance occurs. It is not
necessary to continue searching after the best result is found.
Thus, the short circuit exists in the SVM-Lattice, aiming to
reduce the search cost. The last line in Table 7 shows the
superior performance of the SVM-Lattice versus template
matching, which is due to the reduced time complexity.

The spectra from LAMOST for each characteristic combi-
nation are selected randomly to be matched with the model
template including 341 positive objects. In the matching pro-
cess, Gaussian fitting is used to transform the object to a
Gaussian profile due to the specifics of double-peaked emis-
sion lines. For every node, each point of the testing dataset is
fitted by a Gaussian function to be matched with one fitted

from model data. The two Gaussian functions are computed
to obtain similarity between unknown data and template. The
best node is found, for which the testing data are similar with
respect to the template. On the best node, the testing data are
most similar with the template compared with those of other
nodes.

The testing data are computed to determine the nearest
node according to the distance with respect to negative and
positive templates. The steps of the matching method for the
ith testing object are as follows: obtain Gaussian functions
f (xi) and g(xj) fitted by ith tested object and jth template on
each node; compute the distance between ith tested object and
all templates by f (x)−g(x), which are named Dis(i); find the
template nearest to the ith object on each node; compose the
smallest distance between ith and template on all nodes; and
select the best intent that has the greatest similarity between
the testing object and template.

All predictions from DoPS of the testing dataset on differ-
ent nodes are compared with each other to find the closest
hyperplane for one intent. To find an optimized node for a
given object from the SVM-Lattice, the nodes with different
intents are computed from top to bottom. For a detail compar-
ison process, the lattice in Figure 6 is shown as an example.
The intent of F2F3 on the third layer is the intersection of
two intents with F2 and F3. The more that are characteristics
included in a node, the more useful the information is in the
data, and the greater the credibility is of the classification
result. Each node is denoted as a unique hyperplane by DoPS,
which represents a measurement factor for a given object.
The similarity calculation of distance between the object and
different hyperplanes is initiated from the second layer. The
smaller the similarity is between one hyperplane and object,
the more possible it is for the object to the applied in the
intent.

The results of finding the best node obtained by the
SVM-Lattice and model matching method are listed
in Table 8, including the similarity between template match-
ing and prediction according to the SVM-Lattice of each
testing object.

The 30 objects in the testing data are selected to find the
best node among 256 nodes due to the large dataset. The
negative predictions are all included in Table 8 due to the
prediction function obtained from DoPS. The predictions
are regarded as the similarity between testing object and
hyperplane. The smaller the predicted value is, the closer the
distance is between the hyperplane and objects. The best node
is found by comparing all distances to obtain the minimum
distance. Thus, the intent with the smallest distance is con-
sidered the best node of one object existing in Table 8.

F. EFFECTIVENESS TESTING
To test the effectiveness of the SVM-Lattice, the subtraction
of SVM-Lattice and template matching is obtained to observe
the consistency of the two methods. The function with
y = o(p) − o(s) is computed as a measurement of the
consistency, where o(p) and o(s) are the closed objects found
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TABLE 8. Finding result of model matching method.

FIGURE 9. Comparison of consistence.

on each node using SVM-Lattice and template matching,
respectively. The closer to 0 y is, the higher the consistency
is. The dataset including 10000 objects is selected to obtain a
histogram, which is drawn in Figure 9.

In Figure 9, it is observed that the histograms near 0 are
denser. Gaussian fitting is used to fit the trend of the denser
areas. The histogram with 0 is the highest, and the others are
closer to 0. In total, it can be concluded that our SVM-Lattice
is effective by comparing with template matching.

To verify the effectiveness of the SVM-Lattice, four
methods are used to demonstrate the stability, includ-
ing FABC [59], Local projection [60], TSCM [61],
LC-KNN [62], RUTSVM-CIL [63] andQLSTSVM [64]. The
dataset sized 10000 from LAMOSTDR5 is selected to obtain
the accuracy, recall and reduced rate of methods, which is
shown in the Figure 10. It is seen that the recall and reduced
rate of SVM-Lattice are higher than others. Meanwhile,
the accuracy of SVM-Lattice is also better than other methods
with less than 0.1. Overall, the SVM-Lattice shows better

FIGURE 10. Comparison of SVM-lattice and other algorithms.

performance form the figure, which tests the effectiveness of
the SVM-Lattice.

G. EFFICIENCY TESTING
The SVM-Lattice in this paper is an evaluation method for
special data with characteristics. To test the efficiency of
this proposed method, five datasets with different sizes on
three characteristic combinations are used for analysis of
running time. Datasets sized 100, 500, 1000, 5000, 10000,
from LAMOST DR5, are applied to verify the efficiency
of the SVM-Lattice. Compared with template matching, the
SVM-Lattice is built based on theDoPS, which is ahead of the
prediction of testing data. The running time of two methods,
shown in Figure 11, are quantified with respect to intents
for different sizes of datasets. Data1, data2, data3, data4 and
data5 denote five testing datasets including 100, 500, 1000,
5000, and 10000 objects, respectively.

Figure 11 shows the running times of two methods with
five datasets for three characteristic combinations. The three
sub-figures 11(a), 11(b), and 11(c) exhibits intents including
50, 100, and 256 nodes, respectively. It is seen that the
running time of the SVM-Lattice is always less than that
of template matching; meanwhile, the time cost is stable
regardless of the dataset size. For different number of nodes,
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FIGURE 11. Running time of two methods.

the SVM-Lattice exhibits better performance on various test-
ing datasets than template matching does.

VII. SUMMARY
In this paper, we propose a novel method, SVM-Lattice,
which is based on the DoPS and formal concept lattice,
to perform a systematic evaluation of the classification results
for special data with rare characteristics. The main works
pertaining to the method in this paper are as follows: first,
the definition of the new hyperplane concept asmapped based
on the DoPS is given, including the intent and extent of each
node generalized and specialized by relationship between
layers; second, the SVM-Lattice building algorithm, prun-
ing algorithm based on the association rules and evaluation
algorithm are proposed to complete the total method; and
finally, the double-peaked emission lines spectra data are
used to build a SVM-Lattice as an example of special data
with characteristics. The effectiveness and efficiency of our
method are proven on five datasets with different sizes of
various intents. Eight characteristics are included in the for-
mal context, which contains 341 objects with double-peaked
emission lines. An evaluation of the accuracy and recall rate
of the classification for double peaks is given for different
characteristic combinations, which can serve as an evaluation
of DoPS classification from several characteristic angles.
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