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ABSTRACT In rampmetering methods, the ALINEA algorithm is a very effective way and has been applied
widely. But the critical occupancy in ALINEA algorithm is often difficult to obtain and not particularly
accurate. It will greatly affect the performance of ALINEA algorithm. In this paper, an improved ALINEA
algorithm, named CS-ALINEA, is proposed. In this method, the traffic flow is used to replace the occupancy
as the control parameter and the control rate can be selected according to the congestion status reclassified
adaptively. In the existing ramp control methods, to guarantee the traffic efficiency of mainstream, the impact
of ramp overflow on ground road traffic is often ignored. In order to resolve this issue, the segmented control
method is adopted in this paper. When the ramp queuing length exceeds the critical queue length, the signal
timing scheme is adjusted by selecting the control rate to avoid the ramp overflow. The SUMO simulation
platform is used to simulate the ramp control and test the CS-ALINEA algorithm. The experimental results
show that the proposed method can optimize the ramp queuing length and reduce waiting time of vehicles
while the efficiency of urban freeway can be guaranteed.

INDEX TERMS Ramp metering, ALINEA, congestion status, queuing length, SUMO.

I. INTRODUCTION
With the rapid development of urban transportation, traf-
fic congestion is becoming more and more serious. Now,
the main control methods that can effectively alleviate the
traffic congestion problem of urban freeways are rampmeter-
ing and variable speed limit control [1]. Zhang et al. [2]
proposed a cycle-based variable speed limit (CVSL) strategy.
In this method, the speed limit was reduced in part of the cycle
in order to create gaps on the mainstream artificially. This
will increase opportunities for on-ramp vehicles to merge
together. Reinforcement learning is also widely used in vari-
able speed limit research [3]–[5].

The rampmetering is the most widely used and most effec-
tive method for urban freeways traffic control. In this method,
the traffic flow can be controlled to enter the mainstream by
setting up the signal lights on the ramp in order to improve
the mainstream capacity [6], [7]. Many existing ramp control
algorithms mainly used traffic information such as traffic
flow density and occupancy as input for the algorithm [8].
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approving it for publication was J. D. Zhao .

Papageorgiou proposed a variety of improved ALINEA
algorithms including UP-ALINEA (Upstream-Occupancy
Based ALINEA), FL-ALINEA (Flow-based ALINEA) and
so on [9] to meet the needs of different actual scenarios.
In order to resolve cyclical shock effect of the occupancy
of ALINEA, and improve response speed caused by the
reduced lane numbers in downstream bottleneck segments,
the PI-ALINEA was proposed [10], but PI-ALINEA had
two parameters needing to be adjusted because of the added
proportional term. It made the control more complicated
and difficult to be implemented in real scenarios. By intro-
ducing an estimator of critical occupancy in the down-
stream of the mainstream, Smaragdis et al. [11] proposed the
AD-ALINEA to adaptively adjust the critical occupancy rate
in real time in order to adapt to real-time changing traffic
status better. Chi et al. [12] used iterative feedback adjustment
method and used downstream real-time traffic flow density
as input to adaptively adjust and optimize the control gain
Kr in the ALINEA according to the real-time I/O number.
The algorithm had better robustness and convergence. The
FF-ALINEA proposed by José Ramó n D [13] reduced traf-
fic crashes by predicting the bottleneck road density and
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modifying the control structure of the ALINEA. The Fuzzy
control method is also an important control method. The
mainstream density, speed, queuing length are fuzzed and
the fuzzy rule base is established to obtain a signal control
scheme according to fuzzy decision. But in fuzzy control
method, the fuzzy rules andmembership functions are always
set by empirical values. The robustness of system is not good
enough [14], [15]. Liang et al. [16] designed a traffic den-
sity controller based on LWR (Lighthill-Whitham-Richards)
model and RBF neural network, which could keep the free-
way traffic at a setting traffic density. Ivanjko et al. [17]
proposed a Q-learning-based ramp control algorithm using
downstream speed and ramp queuing length as the state
space. van de Weg et al. [18] combined ALINEA with vari-
able speed limit strategy to optimize the upstream and down-
stream speed boundaries and related parameters in ALINEA.
The traffic flow density was taken as import parameter. The
calculation time of MPC (Model Predictive Control) strat-
egy was reduced and the throughput capacity was improved.
Lu et al. [19] proposed another reinforcement learning based
system RAS, which not only improved the traffic efficiency
by defining the number of vehicles on the mainstream and
ramp as state space and optimizing the action and reward, but
also reduced the total time spent of freeway network from
uncontrolled conditions.

Nowadays, there are lots of intelligent control algorithms
in the field of traffic control. These algorithms have good
control effects on the testing platform. But in the actual traffic
control scenarios, these intelligent algorithms have much
problems such as long training time and initial values relying
on empirical data. It makes these algorithms rather difficult to
be implemented. Although the ALINEA algorithm is simple
and its stability is good. It does not need to rely on any
model information of the ramp and is easy to be implemented.
These characteristics make ALINEA very practical. But in
the ALINEA algorithm, its efficiency depends on the setting
of the critical occupancy, which is usually set through empir-
ical value. But the critical occupancy may always change in
actual scenarios. It is always difficult to obtain accurate value.

In this paper, an improved ALINEA method, named
CS-ALINEA (congestion status based ALINEA), is pro-
posed. In this method, the traffic flow is used to replace
the occupancy, and the clustering method is used to reclas-
sify the congestion status. According to different status,
the corresponding control rate can be selected adaptively
in order to achieve ramp control. In the actual traffic sce-
narios, the ground road traffic should be not affected while
the ramp control is performed. In the existing ramp con-
trol methods, to guarantee the traffic efficiency of main-
stream, the impact of ramp overflow on ground road traffic
is often ignored. In the improved algorithm proposed in this
paper, when the ramp queuing length exceeds the critical
queue length, the signal timing scheme is adjusted through
selecting the corresponding control rate and the maximum
value of the regulation rate is adopted to control the ramp
overflow.

The main content of this paper is arranged as follows:
Section 2 introduces the classification method of congestion
status in the urban freeway. Section 3 discusses the improved
CS-ALINEA based on congestion status. Section 4 uses the
SUMO simulation platform to verify the proposed algorithm.
Finally, the conclusion of this paper is given.

II. CONGESTION STATUS CLASSIFICATION
A. CONGESTION STATUS LEVEL
Congestion status on the mainstream of urban express can be
divided into six levels (speed km/h) according to the national
standards: very smooth (v > 65), smooth (50, 65], mild
congestion (35, 50], moderate congestion (20, 35], severe
congestion (5, 20], heavy congestion (0, 5]. The national
standards are more universal, but considering the number
of lanes in actual scenarios, lane width and other factors,
the congestion status of different urban freeways should be
classified according to the actual scenarios. In the actual
scenarios, when the urban freeway is in heavy congestion,
no more vehicles will be allowed to enter the ramp and the
ramp should be closed. That means the ramp metering is not
required. In the smooth and very smooth status, the main-
stream traffic is in good condition. The very smooth can
be regarded as a special smooth status with all-green signal
release. The left four situations can be divided into four levels
of speed: smooth (v > v1), mild [v2, v1), moderate [v3, v2),
and heavy (v < v3).

B. GAUSSIAN MIXTURE CLUSTERING METHOD
Gaussian mixture clustering is based on the Gaussian mixture
model, which is different from K-means and other cluster-
ing methods for calculating distance from the center point.
The probability model is used to represent the clustering
prototype in Gaussian mixture clustering. The probability
density function of Gaussian mixture distribution is shown in
equation (1):

p(x) =
K∑
k=1

πk .N(x|µk , 6k ) (1)

The distribution is composed of K mixed components, and
each mixed component represents a Gaussian distribution.
N(x|µk , 6k ) is the probability density function of the Gaus-
sian distribution, where µk is the mean vector and 6k is the
covariance matrix. The microwave data set used in this paper
is D = {x1, x2, · · · , xm}, in which xm is a two-dimensional
data, derived from the speed and flow data obtained by the
microwave detector. πk is a blending factor with a value
greater than 0 and

∑K
k=1 πk = 1. In the clustering algorithm,

each Gaussian distribution can be regarded as a congestion
status, and πk can be taken as the probability that the k th con-
gestion status is selected. Let zj ∈ {1, 2, · · ·K } represents
the Gaussian mixed composition of input traffic data xj,
the priori probability of zj is P(zj = k) corresponding to πk .
According to Bayesian theorem, the posterior probability
of zj is briefly shown as γjk , it can be calculated through
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equation (2):

γjk = πk . N(xj|µk , 6k )

/
K∑
l=1

πl N(xj|µl, 6l) (2)

The microwave data D can be divided into k congestion
status through Gaussian mixture clusters, and the division of
congestion is determined by the posterior probability. The
cluster mark λj of each sample can be calculated through
equation (3).

λj = argmax
k∈{1,2,···K }

γjk (3)

From equation (1), it can be seen thatµk , 6k , πk need to be
determined in advance. The maximum likelihood estimation
is used to find a set of parameters that maximize the like-
lihoods function and these parameters can be taken as the
most appropriate parameters. Firstly, the posterior probability
can be calculated based on current parameters in Gaussian
mixture model in EM algorithm, and then the model param-
eters can be updated according to equations (4), (5) and (6).
The calculation process will be continuously iterated until the
most suitable parameters can be obtained.

µk =

m∑
j=1

γjkxj

/
m∑
j=1

γjk (4)

6k =

m∑
j=1

γjk (xj − µk )(xj − µk )
T

/
m∑
j=1

γjk (5)

πk =
1
m

m∑
j=1

γjk (6)

III. IMPROVEMENT RAMP METERING METHOD
BASED ON CONGESTION STATUS
A. ANALYSIS OF RAMP METERING ALGORITHM
The vehicles on the ramp are controlled by the signal lights
installed at the junction of the ramp and the mainstream. The
timing scheme of the signal lights can be selected in order
to limit the on-ramp traffic confluence and ensure the main-
stream traffic. The schematic diagram of on-ramp control is
shown in Figure 1.

FIGURE 1. The schematic diagram of on-ramp control.

The ALINEA algorithm is a closed-loop feedback con-
trol algorithm that controls the vehicles import rate through
adjusting the rampmetering rate of traffic lights in actual sce-
narios. It is guaranteed that the downstream of themainstream

is always maintained at the expected occupancy.

r(k) = r(k − 1)+ kr [Ô− O(k − 1)] (7)

Equation (7) is the control rate of the ALINEA, r(k) is the
rampmetering rate of the k th cycle, kr is the regulator parame-
ter and is usually determined according to empirical values. Ô
is the expected occupancy of downstream, it is the occupancy
measured when the flow is equal to the capacity, which can
be obtained by analyzing the flow-occupancy graph.O(k−1)
is the actual measured occupancy value of the k-1th cycle
detector.

B. IMPROVEMENT OF ALINEA ALGORITHM
WITH UPSTREAM SPEED AND FLOW
The congestion status of the freeway can be judged according
to the upstream speed of the ramp measured for each control
cycle. Based on the analysis of congestion status, the signal
timing of the ramp can be adopted the corresponding control
rate. It is shown in equation (8).

r(k) =



min(r(k − 1)+ KF [
_q

− q̃out (k − 1)], rmax) if ṽk−1 > v1
max(r(k − 1)− KF [

_q
− q̃out (k − 1)], rmin) if v2 < ṽk−1 < v1
rmin if v3 < ṽk−1 < v2
0 if ṽk−1 < v3

(8)

Here, r(k) represents the ramp metering rate of the kth
cycle ramp; KF is the regulator parameter; rmax and rmin
are the maximum and minimum ramp metering rate of the
ramp signal control respectively; q̂ represents the expected
saturated flow in the mainstream of the freeway; ṽk−1 is
the mean speed of the upstream vehicles in the k-1th cycle;
q̃out (k − 1) is the flow coming from upstream and ramp to
downstream in the k-1th cycle.

Taking the upstream flow qin and ramp flow qr from the
previous cycle as input, the flow of the previous cycle entering
to the downstream can be calculated in equation (9).

q̃out (k − 1) = qin(k − 1)+ qr (k − 1) (9)

Through calculating the difference between this flow and the
expected saturated flow q̂, the flow of downstream that can
still be accommodated at the next cycle can be obtained. The
values in the early morning or peak period may be quite
different. In order to avoid large fluctuations in the control
rate, KF should be set a value less than 1. The saturated
flow qact can be obtained according to historical data. Firstly,
taking the weather into account, traffic accidents and other
interference factors, the capacity of the mainstream may be
lower. Secondly, considering that congestion usually occurs
in downstream and spreads to upstream, the expected satu-
rated flow q̂ should be set slightly less than the actual satu-
rated flow qact , so that the ramp can be controlled in advance.
The experimental results show that when q̂ = 0.8qact and
KF = 0.1, the control effect could be better.
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When the mainstream of urban freeway is in a status of
smooth flow, the downstream flow is not saturated. r(k) can
be risen and the green light phase can be constantly extended.
It can be explained in view of control rate that if the upper
bound is not set, r(k) can continue to rise in the early morning
or late at night with low traffic flow. So through setting rmax,
the growth of the r(k) can be controlled. The maximum r(k)
occurs when the signal lights are in all green release. That
means there is to no control.

When the mainstream is in the mild congested status,
r(k) should be reduced in order to limit the on-ramp traffic
entering the mainstream. Due to the normal distribution of
the flow, when the speed continues to decrease, the flow will
gradually decrease after increasing to a saturated flow. The
difference between qact and q̃out is still positive. If the control
rate is set to that of the smooth state, r(k) will continue to rise,
it will be opposite to the control target at this time. Therefore,
the ramp metering rate should be reduced as opposed to the
processing method in the smooth status. At the same time,
if the r(k) is set too small, the vehicles will stay on the ramp
too long. It will be easy to cause safety accidents. When the
rush hour is coming and traffic flow is increasing, r(k) should
be reduced continuously. But the minimum value rmin should
be prevented from reducing to 0. In a moderate congestion
state, the congestion increases and r(k) is set to rmin directly.
When the mainstream enters a status of heavy congestion,
the ramp is closed directly. At this time, signal does not need
to be controlled and r(k) is set to 0.

C. CONSTRAINTS ON RAMP QUEUING
Generally, the ramp queuing does not be constrained in
ALINEA. But in actual traffic control scenarios, the traffic
on the mainstream and the ground road will be congested at
the same time during rush hours. At this time, ramp metering
can alleviate the congestion of the mainstream effectively.
However, the queuing length of vehicles remaining on the
ramp will keep increasing because of the red light. It will
cause the congestion overflow to the ground. In the actual
scenarios, improving the capacity of the freeway mainstream
should guarantee that the vehicles queuing on the ramp will
not cause overflow to the ground and influence the ground
traffic. Yang et al. [20] studied the effect of different traffic
flow arrival modes on the ramp queuing and proposed a
method to calculate the cumulative queuing length by mea-
suring the arrival rate and export rate of each cycle. In this
paper, the checkpoint data and ramp metering rate are used
to calculate the number of vehicles arriving and moving out
in each cycle. Then the cumulative queue length can be
obtained. In the adjustment cycle k, the number of arriving
vehicles A(k) can be obtained through the checkpoint data,
the number of departing vehicles D(k) can be calculated
through the previous cycle ramp metering rate, the cumu-
lative number in kth adjustment cycle can be calculated in
equation (10):

Q(k) = Q(k − 1)+ (A(k)− D(k)) (10)

The cumulative queue length L ′ is shown in equation(11):

L ′ =
δ × Q(k)

λ
× µ (11)

In the equation (11), λ is the number of lanes on the ramp;
µ is the headway of the vehicles on the ramp queuing. When
the queue is emptied, Q(k) may be negative. Therefore the δ
is set to 0 when Q(k) is negative, otherwise the δ is set to 1.

Assuming that the total queuing length of the ramp is L,
in the segmented control method, the critical queue length is
set to L1, and the value is 0.6L. The maximum queue length
is set to L2, and the value is 0.9L [21]. When the queue length
exceeds L1, the green light phase should be increased appro-
priately in advance so that more vehicles will be released on
the mainstream. When the queue length is between (L1,L2],
the vehicles allowed entering ramp in the next cycle with
queuing length exceeding L1 can be calculated. The control
rate is shown in equation (12).

r ′(k) = r(k − 1)+ KF [
_q − q̃out (k − 1)+

(L ′ − L1)
µ

× λ]

(12)

When the queue length exceeds L2, the ramp queuing is
near overflow and it will affect the traffic on the ground road.
At this time, the ramp metering rate which takes rmax is used
to control the traffic. The ramp is shut down. It can effectively
avoid the ramp overflow and influencing on ground road
traffic. The signal control method combined with the length
of the ramp queuing can be obtained. The segmentation of
CS-ALINEA control rate based on the length of the ramp
queuing is shown in equation(13):

r̄(k) =


r(k) if L1 > L ′

max(r ′(k), r(k)) if L2 > L ′ ≥ L1
rmax if L ′ ≥ L2

(13)

IV. EXPERIMENTAL ANALYSIS
A. ANALYSIS OF CLUSTERING RESULTS
In this paper, the data set comes from the microwave data
between June 25, 2018 and July 6, 2018 including 10 working
days in Shangtang freeway, Hangzhou. In the data set, there
is no severe congestion data which will cause the entrance
ramp to be closed. Here, the cluster number k is set to 3 and
the data set will be clustered into three categories respectively.
The blue dots will indicate smooth, green dots indicate mild
congestion, and red dots indicate moderate congestion. For
microwave detection speed less than minimum speed in mod-
erately congested speed zones, it can be considered as in a
severe congestion status. It can be shown that the data set can
be roughly divided into three categories by speed in Figure 2.
In Table 1, the four speed intervals are corresponding to the
four congestion status.

B. ANALYSIS OF CONGESTION WITH
LIGHT BAND DIAGRAM
Here, the mean speeds of the historical data are used to
cluster and divide the congestion zone in the adjacent
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FIGURE 2. Gaussian mixture clustering result of congestion status.

TABLE 1. Speed intervals corresponding to the four congestion status.

road section. The analysis results are drawn on the same
timeline in Figure 3. Different colors for different periods
represent different congestion zones. The green line indicates
the smooth, the yellow line indicates the mild congestion,
the orange line indicates moderate congestion, and the red
line indicates the heavy congestion. The time points of the
transition zones in different congestion intervals are marked
with the indicators. The adjacent section of the freeway can
be analyzed and represented in the same way. The result
is shown in Figure 3. From the light band diagram, when
and where the congestion occurred, how fast the congestion
spread on the mainstream, and how the congestion dissipated.
This kind of ramp control has advantage in local intersection
congestion, but it is hard to solve the chain reaction caused
by multi-ramp congestion at the same time. It can be taken as
a useful analysis method for multi-ramp coordinated strategy
in the further.

C. ALGORITHM SIMULATION
In this paper, the open source simulation platform SUMO
(Simulation of UrbanMobility) is used in the experiment. The
simulation experiment is divided into four groups: no-signal
control, fixed timing control, ALINEA, freeway control algo-
rithm based on Q-learning [3] and CS-ALINEA. The simula-
tion experiment results are analyzed on the mainstream travel
time, mainstream average traffic throughout, ramp waiting
time and the length of the ramp queuing as the evaluation
index respectively.

The on-ramp from north to south in the section of Daguan
intersection on the Shangtang freeway is taken as a test-
ing object and the simulation model is built. It is shown
in Figure 4. The mainstream is of two lanes in both directions

TABLE 2. The model parameters of IDM.

and the entrance ramp is of two lanes. The vehicles will
converge in the acceleration lanes after passing the traffic
lights in the interwoven zone.

In SUMO, there are two simulation models. One is the
car-following model and the other is the import model. The
car-following model is used to analyze the driver’s driving
behavior. There are many car-following models in SUMO.
In this paper, the Intelligent Driver Model is used. The model
is shown in equations (14) and (15):

anflollow(1xn(t),Vn(t),1Vn(t))

= V̇n(t) = a[1− (
Vn(t)
V0

)4 − (
s∗(Vn(t),1Vn(t))

Dn(t)
)2] (14)

s∗(Vn(t),1Vn(t))

= V̇n(t) = s0 +max(0,Vn(t) · T +
Vn(t) ·1Vn(t)

2
√
ab

) (15)

where s∗(Vn(t),1Vn(t)) is the minimum expectation; V0 is
the expected speed;Vn(t) is the vehicle speed at time t;1Vn(t)
is the speed difference from the previous moment for this
vehicle at time t; a is the maximum acceleration; b is the
expected deceleration; s0 is the minimum distance when the
traffic gets congested; T is the response time. When the vehi-
cle type in the SUMO is configured, the model parameters
can be set in Table 2.

The number of vehicles entering the ramp is mainly related
to the distance between vehicles. Equations (16) and (17) are
used to calculate the distance before and after the vehicles
respectively. Only when the front gap gl and rear gap gf are
greater than the acceptable gaps gl,min and gf ,min, the vehicle
can be allowed to enter the ramp.

gl = gol − (vsDt −
bs
2D2

t
)+ vlDt (16)

gf = gof − (vfDt −
bf
2D2

t
)+ (vsDt −

bs
2D2

t
) (17)

where gol is the initial front vehicle distance and gof is the
initial rear vehicle distance; vs is the speed of the vehicle s;
vl is the speed of the front vehicle; vf is the speed of the
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FIGURE 3. Light band diagram based on congestion status classification in the section of Wenhui
intersection.

FIGURE 4. The simulation of ramp metering based on SUMO.

FIGURE 5. mainstream and on-ramp demands from traffic control
department of Gongshu District, Hangzhou.

rear vehicle; bs is the acceleration of the vehicle s; bf is the
acceleration of the rear vehicle.

The traffic flow data were provided by the traffic control
department of Gongshu District, Hangzhou, from 5:00 a.m.
to 9:00 a.m. on June 28, 2018 shown in Figure 5. The sim-
ulation input flow came from the microwave data on the
mainstream and the passing data came from the checkpoints
on the ramp. In order to guarantee the time granularity con-
sistency between the checkpoint data and the microwave
data, the traffic flow was collected every 5 minutes. The
real-time interaction between the simulation environment and
the algorithm was achieved through the TRACI plug-in that
comes with SUMO.

The no-signal control scheme can be achieved by setting
the all signal lights to green on the ramp. The fixed timing
control can use the actual on-ramp signal light timing scheme.
Here, the cycle was set to 60s, the green light phase was
set to 30s, the red light phase was set to 30s. ALINEA and
CS-ALINEA could be adjusted by the real-time monitoring
data. The freeway control algorithm based on Q-learning was

designed mainly to reduce the total travel time and main-
stream travel time by changing the upstream speed limit.
In this algorithm, the downstream density was taken as the
status and the speed limit was taken as the action. It con-
structed the reward function through Poisson distribution.
The reward was calculated according to the status in order to
select the action. It can select the best action in the learning
process.

It recorded the different values about mainstream travel
time, ramp waiting time, average queue length, and main line
traffic in Table 3.

According to the influences of four indexes on the control
effect of freeway, the corresponding weight coefficients are
set respectively. The main goals of freeway control are the
mainstream traffic average throughout and the mainstream
travel time. These weight ratios should be greater than that
of others. In this paper, the importance of ramp queuing is
improved. So, its weight ratio is near to the above two items.
The weight ratios of these four indexes are abbreviated as
Ttravel , Twait , Lramp, Fmainline and they are set to 0.3, 0.15,
0.25, 0.3, respectively. In the four indicators, the larger the
mainstream traffic is, the better the evaluation result is. This
is a positive reward. That means weighted average is always
positive. The other three indicators are opposite. They are
negative penalties. The weighted average can be calculated
in equation (18).

x̄ =
f1Ttravel + f2Twait + f3Lqueue + f4Fmainline

f1 + f2 + f3 + f4
(18)

It is shown in Table 3, when KF is set to 0.1, the evaluation
score is the largest. That means that when the evaluation
effect of mainstream traffic is optimal, the ramp waiting
time and the ramp average queue length are both optimal.
Meanwhile, it has a longer mainstream travel time and less
mainstream average traffic throughout compared to some of
others. So, the appropriate value of KF will be set to 0.1.

The mean speed in the upstream and the average queuing
length on the ramp can be obtained every 5 minutes by the
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TABLE 3. Different values of the four indicators under different KF values.

FIGURE 6. Upstream speed under four controllers.

FIGURE 7. Ramp queue length under four controllers.

detectors installed on the mainstream and ramps. In Figure 6,
and Figure 7, when the traffic flow is small, the upstream
speed under the control of the four different schemes has no
change much. During the peak periods, the no-signal control
scheme makes no restrictions on vehicles entering the ramp,

so the vehicles on the ramp enter the mainstream without
waiting time. This will make the mainstream congestion
worse and the mean speed is lower than that of other three
schemes. The optimization goal of ALINEA is to ensure the
mainstream traffic effect, the mean speed under ALINEA
control during rush hour is the fastest, but it forms a longer
queue because of the ignorance of the ramp queue.

The mainstream travel time, ramp waiting time, average
queue length and mainstream traffic throughout under the
four control schemes are shown in Table 4. In ALINEA
algorithm, travel time is reduced by 10.44s (15.28%) com-
pared to the uncontrolled scheme, and the mainstream traffic
average throughout is increased by 38.10%, but it was at
the expense of the traffic efficiency on the ramp. Compared
to the uncontrolled scheme, the mainstream travel time of
CS-ALINEA is reduced by 9.41s (13.77%), and the main-
stream traffic average throughout is increased by 36.19%.
The optimization goal of the Q-learning method is designed
to reduce the travel time of the mainstream. From the results,
the Q-learning algorithm achieves the best performance in
the travel time. It is reduced by 15.07s (22.05%) compared
to uncontrolled solution. At the meantime, the ramp queuing
length and the waiting time in this method are longer than that
of others. Taking the length of the ramp queue as the control
target, the travel time of the mainstream has increased a little
compared with ALINEA, while the average waiting time for
vehicles on the ramp has been reduced by 5.82s (17.31%)
and the average queue length has decreased by 20.35%.
Compared with Q-learning, CS-ALINEA has improved 4.88s
(14.94%) and 1.25m (14.52%) on the average waiting time
and the average queue length respectively.

In summary, the CS-ALINEA method can reclassify the
mainstream congestion status, and choice the corresponding
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TABLE 4. Four indicators at different control schemes.

control rate according to the classification standard designed.
Similar to ALINEA, CS-ALINEA is easy to be implemented
and has excellent effect in on-ramp metering. Unlike other
algorithms, the CS-ALINEA can guarantee traffic efficiency
in the mainstream while avoiding the ramp overflow. It will
effectively reduce the impact on the ground traffic caused by
the long queuing on the ramp.

V. CONCLUSION
In actual traffic control scenarios, the existing ramp con-
trol algorithms are often difficult to directly work on urban
freeways due to the restrictions on the acquisition of traffic
data and the guarantee requirements for ground road traf-
fic. The CS-ALINEA proposed in this paper reclassifies the
congestion status of the mainstream and adaptively selects
the control rate to ensure the maximum throughout on the
mainstream. At the same time, it can solve the problem of
ramp overflow. At present, the CS-ALINEA proposed in
this paper is aimed at local ramp metering control. In next
step, this method will be used in the urban expressway net-
work in order to solve the problem of coordinated control
of multi-ramp. In the research work of coordinated control
of multi-ramp, there are many challenging results, including
a non-parametric control technology for multi-agent based
on reinforcement learning proposed by Belletti et al. [22].
The algorithm based on the MWR (mutual weight regular-
ization) algorithm to alleviate the curse of dimensionality of
multi-agent control schemes by sharing experience between
agents [23], [24]. In the further, we will try to combine our
method with the reinforcement learning method above in the
coordinated control. The congestion status can be taken as
evaluation indicators in order to optimize the reward function
and the coordination strategies can be improved. How to
maximize the overall capacity of the urban freeway will be
the main task of the next stage.
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