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ABSTRACT In this paper, we propose a fast solution method of the generalized radial basis functions
interpolant for global interpolation. The method can be used to efficiently interpolate large numbers of
geometry constraints for implicit surface reconstruction. The basic idea of our approach is based on the
far field expansion of the kernel and the preconditioned Krylov iteration using the domain decomposition
method as a preconditioner. We present a fast evaluation method of the matrix-vector product for the linear
system. To minimize the number of iterations for large numbers of constraints, the multi-level domain
decomposition method is applied to improve overlap using a nested sequence of levels. The implemented
solution algorithm generally achieves O(NlogN ) complexity and O(N ) storage. It is kernel independent
both in the evaluation and solution processes without analytical expansions. It is very convenient to apply
various types of RBF kernels in different applications without excessivemodifications to the existing process.
Numerical results show that the fast evaluation method has a good performance for the evaluation of the
matrix-vector product and the preconditioned Krylov subspace iterative method has a good convergence rate
with a small number of iterations.

INDEX TERMS Radial basis functions, generalized radial basis functions, far field expansion, domain
decomposition method, implicit surface reconstruction.

I. INTRODUCTION
Radial basis functions (RBFs) are widely used in large-scale
scattered data interpolation and approximation. Applications
include surface reconstruction of dense point clouds, solution
of partial differential equations and particle interactions in
computational physics.

The generalized radial basis functions (GRBF) inter-
polant [1]–[3] is initially developed to exactly interpolate the
Hermite data (a set of points with normals). Various types of
the interpolation constraints, including gradient constraints
and tangent constraints, are developed to satisfy different
application needs [4]–[6]. As a special case of the GRBF
interpolant, the Hermite radial basis functions (HRBF) [7]
can exactly interpolate the gradient directions of an implicit
surface. However, the direct solution methods of the inter-
polation equation cost O(N 3) complexity and O(N 2) storage.
For a large number of constraints (more than a few thousand
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points), it is too expensive to solve the interpolation equation
using a globally supported basis function.

In recent years, great progress has been made to effi-
ciently solve the large-scale linear system for the RBF-based
methods. The domain decomposition-based iteration method
(e.g., the Fast RBF method [8]) is a kind of efficient solu-
tion method. The optimal domain decomposition strategy is
helpful to improve the convergence of iteration. However,
as the evaluation process is different, the existing global
interpolation methods cannot be applied to the generalized
radial basis functions interpolant directly. The previous works
focus on solving the radial basis functions interpolant only
with domain constraints (the constraints with specified func-
tion values). Besides the domain constraints, the directional
constraints (e.g., the gradient constraints and the tangent
constraints) should be interpolated efficiently. It is necessary
to develop efficient methods for the evaluation and solution
of GRBF.

In this paper, based on a multilevel domain decomposi-
tion method, we develop a fast global solution method for
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the GRBF interpolant with globally supported radial basis
functions. It is an extension of the fast radial basis functions
interpolationmethod. Similar to the fast radial basis functions
interpolation method, the idea of this method is based on the
far field expansion of the RBF kernel and the preconditioned
Krylov iteration using the domain decomposition method as
a preconditioner.

To solve the dense linear system efficiently, a fast evalu-
ation method of the matrix-vector product for GRBF is pre-
sented. We expand the evaluation of the domain constraints
and the difference constrains into several sums with different
source points and evaluation points respectively. Each sum
is efficiently evaluated using the black-box fast multipole
method (FMM) [9] for a wide class of RBF kernels. Then
the whole evaluation of the matrix-vector product consists of
the evaluations of several sub-matrix blocks. Based on the
fast evaluation method, the preconditioned Krylov subspace
method is used to solve the linear system iteratively. The flex-
ible generalized minimal residual (FGMRES) method [10]
with variable preconditioners is used as the outer iterative
method. And the result of the domain decomposition method
at each iteration step is used as the variable preconditioners.
To minimize the number of iterations for large numbers of
constraints, the multi-level domain decomposition method is
applied to improve overlap using a nested sequence of levels.

We apply this method to efficiently recover an implicit
surface using the GRBF interpolant with large numbers of
geometry constraints. The interpolation constraints are con-
verted into geometry constraints by constructing a signed
distance field (SDF) [11]. As an example, the Hermite data
can be approximated using the domain constraints and the
difference constraints of the gradient [5]. Numerical results
show that the solution process converges with a small number
of iterations by specifying a precision.

The paper is organized as follows. The previous works are
studied in Section II. Section III gives a brief description of
the GRBF interpolant. In Section IV, the evaluation of GRBF
is decomposed into several fast summations with different
source points. Based on the fast evaluation method, we use
a multilevel domain decomposition method as a precondi-
tioner to efficiently solve the linear system in Section V.
In Section VI, the fast solution method is implemented to
validate the performance and optimal parameters of the algo-
rithm. The limitations and extensions of the method are dis-
cussed in Section VIII.

II. RELATED WORKS
In the past two decades, a number of efficient numerical
methods such as radial basis functions have been proposed for
scattered data interpolation. One of the common approaches
is to adjust the support radius as a function of the data
density using the compactly supported basis functions (e.g.,
Wendland’s CSRBF [12]). There are several ways for local
interpolation. One of the extensions is to decompose the set of
interpolation centers into a nested sequence of subsets using
a multilevel method [13]. The advantage of this approach is

that the compactly supported basis functions lead to a sparse
linear system by ignoring the effects of farther interpolation
centers and it is easy for implementation [14]. Moreover,
these local interpolation methods can be simply applied to the
GRBF interpolant. As an example, Liu et al. [15] proposed a
fast HRBF interpolation method by automatically adjusting
the support sizes of radial basis functions. However, the
compact support bases are inferior to the global bases in some
applications. The approximation of ignoring the effects of
farther interpolation centers may lead to an impact that is dif-
ficult to estimate, especially in sparse and uneven data envi-
ronments. In fact, as a more general approach, the compact
support bases can be directly used in the global interpolation
method.

For the global bases, it is necessary to implement a fast
evaluation for computing matrix-vector product. Based on
the idea of low rank approximation, the kernel-based sum-
mation can be efficiently evaluated using far field expansion,
which is known as the fast multipole method [16], [17]. The
fast multipole method was originally developed for the fast
summation of the potential fields. At present, a number of
expansion methods have been proposed for the RBF ker-
nels, including polyharmonic splines [18], generalized mul-
tiquadrics [18] and thin-plate splines [20]. The fast Gauss
transform (FGT) [21] is used to compute the summation
for Gaussian-type kernels. The expansions of these classical
methods depend on the kernel in an analytic way. In recent
years, the kernel independent FMMmethods are developed to
expand a wide class of kernels. Ying [22] proposed a FMM
method which can expand various types of RBF kernels in
both two and three dimensions. More recently, the black-box
FMM method proposed by Fong and Darve [9] can expand
the kernel using only the kernel values without analytical
expansions.

In the past two decades, several efficient solution methods
for the RBF interpolation with globally supported radial basis
functions have been proposed. These methods usually utilize
the preconditioned Krylov subspace iterative method (e.g.,
the conjugate gradient method or the generalized minimal
residual method). Note that many traditional preconditioners
cannot be used directly for GRBF. The preconditioner should
satisfy the matrix-free environment as the linear system isn’t
stored explicitly. The development of some preconditioning
strategies for RBF greatly improves the convergence of the
iteration. There are two kinds of preconditioning technology
for RBF. One is to change for a better basis using the approx-
imate cardinal basis functions (ACBFs) [23], the related
researches can be found in [24]–[26]. The other is to decom-
pose the whole domain into subdomains using the alternating
projection method. As an example, Beatson et al. [27] pro-
posed a two-level domain decomposition method to improve
the convergence. Recently, Yokota et al. [28] developed a
parallel algorithm for radial basis functions interpolation
using the restricted additive Schwarz method (RASM) as a
preconditioner. The strategy of domain decomposition can be
also applied in the meshfree method [29].
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As the efficient global evaluation of the GRBF interpolant
is difficult, the common approach is to solve the interpola-
tion equation using the compactly supported basis functions.
Wendland [30] studied the fast evaluation of large generalized
interpolation problems based on the far field expansion. How-
ever, the derivation of the kernel is complex and kernel depen-
dent. Considering the difference constraints can be used to
approximate the differential constraints, we try to evaluate the
GRBF interpolant efficiently by expanding the corresponding
constraints into several sums. It provides a novel approach
for the fast global solution of the generalized radial basis
functions interpolant.

III. GRBF INTERPOLANT
The GRBF interpolant is built upon the theory of Hermite-
Birkhoff interpolation with RBFs [3]. To exactly interpo-
late the different values between unknown function values,
the difference operator can be used to construct the difference
constraints.We shall first briefly review this method. Thenwe
describe the fast solution method of GRBF interpolant.

To simplify the problem, we only consider the domain
constraints and the difference constraints of the gradient.
Given a set of scattered data pointsP = {x1, x2, . . . , xN }with
N = µ+ σ interpolation constraints (the domain constraints
and the difference constraints of the gradient), the GRBF
interpolant tries to approximate an unknown function f by
the interpolant

s (x) =
µ∑
j=1

aj8(x, xj)+
σ∑
k=1

bk1′n8
(
x, xµ+k

)
+ p (x) (1)

where aj and bk are weight coefficients to be determined.
8
(
x, x′

)
can be viewed as a common radial basis function

ϕ(x) : R3 7→ R.
The superscript and subscript are used to distinguish the

different effects of the difference operator [5].1n acts on the
first variable x = (x, y, z) of8

(
x, x′

)
and1′n acts on the sec-

ond variable x′ = (x ′, y′, z′) of 8
(
x, x′

)
. The subscript n

represents the normal direction at the corresponding variable.
The low degree polynomials p (x) consist of monomials

p (x) =
∑Q

s=1
gsps (x) (2)

where gs, 1 ≤ s ≤ Q are weight coefficients to be determined
and ps (x) , 1 ≤ s ≤ Q are monomials. The number of
terms Q is determined by the degree of polynomials. All the
unknown coefficients can be computed by the interpolation
conditions and orthogonality conditions.

For the domain constraints {xi, f (xi)}
i=µ
i=1 , the GRBF inter-

polant satisfies

∑µ

j=1
aj

A︷ ︸︸ ︷
8(xi, xj)+

∑σ

k=1
bk

B︷ ︸︸ ︷
1′n8(xi, xµ+k )

+

P︷︸︸︷
p(xi) = fi, 1 ≤ i ≤ µ (3)

where fi, 1 ≤ i ≤ µ are function values of the unknown
domain at xi.

For the difference constraints of the gradient
{xi,1nf (xi)}

i=µ+σ
i=µ+1 , the GRBF interpolant satisfies

∑µ

j=1
aj

BT︷ ︸︸ ︷
1n8(xi, xj)+

∑σ

k=1
bk

D︷ ︸︸ ︷
1n1

′
n8(xi, xµ+k )

+

F︷ ︸︸ ︷
1np(xi) = δi, µ+ 1 ≤ i ≤ µ+ σ (4)

where δiµ + 1 ≤ i ≤ µ + σ are different values of the
unknown domain at xi.

For the orthogonality constraints, the GRBF interpolant
satisfies

∑µ

j=1
aj

PT︷ ︸︸ ︷
ps(xj)+

∑σ

k=1
bk

FT︷ ︸︸ ︷
1nps(xµ+k ) = 0, 1≤s≤Q

(5)

The above constraints lead to a linear system A B P
BT D F
PT FT 0

 ab
g

 =
 f
δ

0

 := Ã̃x = f̃

where a =
[
aj
]µ
j=1, b = [bk ]σk=1, g = [gs]

Q
s=1, f = [fi]

µ
i=1 and

δ = [δi]
µ+σ
i=µ+1.

The direct solution methods (e.g., LU decomposition)
cost O

(
N 3
)
operations and O

(
N 2
)
memory usage. When

the number of domain constraints and difference constraints
becomes large (more than a few thousand constraints), both
the evaluation and solution of the interpolant are unbearable
in the case of globally supported basis functions.

IV. FAST EVALUATION
A. FAR FIELD EXPANSION
To solve the linear system efficiently, we first consider a fast
evaluation method for GRBF. Taking the 1-D kernel function
as an example, the evaluation of the matrix-vector product
involves a sum of N kernel function

f (x) =
∑N

j=1
ωjK

(
x, yj

)
(6)

where ωj, 1 ≤ j ≤ N are coefficients of the source/center
points and K (x, y) is a kind of kernel function. For con-
venience, we distinguish between the two variables of the
kernel function K (x, y). The first variable x in K (x, y) is
viewed as an evaluation point (or target point) and the second
variable y is viewed as a source point. Every evaluation of
such sum costs O (N ) operations and the evaluation of f (x)
at N evaluation points obviously costs O

(
N 2
)
operations.

To compute the matrix-vector product efficiently, fast sum-
mation methods are required to implement. Among them,
the fast multipole method in O(logN ) or even constant time
is a promising method. It is based on a far field expansion of
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FIGURE 1. A simple case of the far field and near field when evaluating
at x. The red point is viewed as an evaluation point and the blue points
are viewed as source points.

the kernel function. We can expand the kernel K (x, y) using
a low-rank approximation in the form

K (x, y) =
∑p

n=1
φn(x)ψn(y)+ Rp (x, y) (7)

where p is the number of items in the expanded series φn and
ψn. Rp (x, y) is a residual that satisfies Rp (x, y) −→ 0 for
‖x − y‖2 −→∞ and/or p −→∞. This expansion of a finite
series serves as a separation of variables. Such kernels are
also known as degenerate kernels or finite rank [16].

First, we can pre-compute the moments

9n(y) =
∑N

j=0
ωjψn(yj) (8)

Second, we can approximate f (x) at each evaluation point
efficiently using the pre-computed moments

f (x) ≈
p∑

n=1

φn(x)
N∑
j=1

ωjψn(yj) =
p∑

n=1

9n(y)φn(x)

Then the evaluation of f (x) at N evaluation points costs
O(pN ) operations if they are well separated from the source
points. Since p is a small constant, the complexity of the
evaluation points is linear in the best case. In practical appli-
cations, the source points should be decomposed into the
well separated points (far field) and not well separated points
(near field) using the adaptive multilevel FMM method [31],
as shown in Figure 1. The source points in near field will be
evaluated using direct summation.

B. KERNEL INDEPENDENT FMM
To expand an arbitrary kernel of the GRBF interpolant conve-
niently, it is necessary to use a kernel independent or black-
box fast multipole method. The black-box FMM proposed by
Fong and Darve [9] is a promising method which can be used
to expand the low-rank approximation of a kernel function
without analytical expansions.

The basic idea of black-box FMM is to interpolate the
kernel function using interpolation bases (e.g., Chebyshev
polynomials). Taking the 1-D black-box FMMas an example,

the first variable of the kernel function can be interpolated by
fixing the second variable

K (x, y) ≈
∑p

n=1
K (x̄n, y) Sp(x̄n, x) (9)

where {x̄n}
p
n=1 are the p interpolation nodes corresponding to

the first variable and Sp(x̄n, x) is the interpolating function at
the node x̄n. The second variable of K (x̄n, y) can be interpo-
lated in the same way

K (x, y) ≈
p∑

n=1

p∑
m=1

K (x̄n, ȳm) Sp(x̄n, x)Sp(ȳm, y)

where {ȳm}
p
m=1 are the p interpolation nodes corresponding to

the second variable and Sp(x̄n, x) is the interpolating function
at the node ȳm. Then we can approximate f (x) efficiently by
changing the order of summation

f (x) ≈
N∑
j=1

ωj

p∑
n=1

p∑
m=1

K (x̄n, ȳm) Sp (x̄n, x) Sp
(
ȳm, yj

)

=

p∑
n=1

Sp (x̄n, x)

 p∑
m=1

K (x̄n, ȳm)

 N∑
j=1

ωjSp
(
ȳm, yj

)
=

p∑
n=1

9n(y)φn(x)

where
9n(y) =

p∑
m=1

k(x̄n, x̄m)

 N∑
j=1

ωjSp(ȳm, yi)


φn(x) = Sp(x̄n, x)

The interpolation-based scheme can achieve the same
effect of far field expansion. As the expansions are defined by
the kernel values, this method is very useful to expand kernels
with complex analytical expansions.

To utilize the fast summation method, we should first
expand the constraints. The evaluation of the domain con-
straints can be simply decomposed into three sums with
different evaluation points and source points

aA+ bB+ cP

=

µ∑
j=1

aj8
(
xi, xj

)
+

σ∑
k=1

bk1′n8
(
xi, xµ+k

)
+ p (xi)

=

µ∑
j=1

aj8
(
xi, xj

)
+

σ∑
k=1

bk8
(
xi, x+µ+k

)
−

σ∑
k=1

bk8
(
xi, x−µ+k

)
+ p (xi) , 1 ≤ i ≤ µ

where x+µ+k and x
−

µ+k are the two offset points by projecting
along the gradient direction at xµ+k via the definition of the
difference operator [5]. The polynomial part can be calculated
in linear time.

Similarly, the evaluation of the difference constraints of
the gradient can be decomposed into six sums with different
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TABLE 1. The expansions of the constraints lead to nine summations with different evaluation points and source points.

evaluation points and source points BT + bD+ cF, as shown
at the bottom of this page, where x+i and x−i are the two offset
points by projecting along the gradient direction at xi via the
definition of the difference operator [5].

Table 1 shows the nine summations corresponding to dif-
ferent kernels. Compared to the differential operator, the dif-
ference operator changes the evaluation points and source
points instead of the kernel type. This ensures that the RBF
kernel retains its original properties (e.g., strictly positive def-
inite or conditionally positive definite). And we can expand
the nine kernels using a low-rank approximation respectively.

It is worth noting that the RBF kernel with the same source
points has the same pre-computed moments 9n(y). Accord-
ing to the analysis of the expansions in Table 1, the source
points can be classified into three categories xj, x+µ+k and
x−µ+k . Therefore, we can represent the nine summations as
three kinds of RBF kernels with different evaluation points,
which can simplify the amount of calculation.

V. FAST SOLUTION
A. PRECONDITIONING
We have solved the fast evaluation problem of matrix-vector
product for GRBF, and we can now solve the linear sys-
tem efficiently using the Krylov subspace iterative methods.
The common iterative methods used for RBF are the conju-
gate gradient method and the generalized minimum residual
method. There are several possible preconditioning technolo-
gies that can be used to improve the rate of convergence of the
linear system. Since the evaluation process still takes a lot of

time per iteration for large problems, the number of iterations
must be reduced as much as possible and the preconditioning
technology is required to be implemented. The precondition-
ing strategy is crucial for satisfactory convergence.

Different from the existing methods, we use the Flexible
GMRES iterative method with variable preconditioners to
solve the linear system. The FGMRES method also stores an
orthonormal basis of the Krylov subspace to form the con-
jugate vectors at each iteration step. One difference between
GMRES and FGMRES is that the latter is represented by a
linear combination of the different preconditioned residual
vectors. For a linear system Ã̃x = f̃ , taking the right pre-
conditioned GMRES as an example, the Arnoldi iteration is
used to recursively construct an orthonormal basis of the right
preconditioned Krylov space

span
{
r0, ÃM−1r0, . . . ,

(
ÃM−1

)m
r0
}

where r0 = Ã̃x0 − f̃ is the initial residual vector, x̃0 is the
first trial vector (usually zero), m is the number of iteration
and M is the right preconditioner. The FGMRES method
allows changes for the preconditioner to enhance robustness
at each iteration step, and its right preconditioned Krylov
space becomes

span
{
r0, ÃM−11 r0, . . . ,

(
ÃM−1m

)m
r0
}

whereMk , k = 1, . . .m are the different preconditioners.
One of the benefits is that any iterative method can be

used as a preconditioner, which is known as an inner-outer

BT + bD+ cF =
µ∑
j=1

aj1n8
(
xi, xj

)
+

σ∑
k=1

bk1n1
′
n8

(
xi, xµ+k

)
+1np (xi)

=

µ∑
j=1

aj8
(
x+i , xj

)
−

µ∑
j=1

aj8
(
x−i , xj

)
+

σ∑
k=1

bk8
(
x+i , x

+

µ+k

)
−

σ∑
k=1

bk8
(
x−i , x

+

µ+k

)
−

σ∑
k=1

bk8
(
x+i , x

−

µ+k

)
+

σ∑
k=1

bk8
(
x−i , x

−

µ+k

)
+ p

(
x+i
)
− p

(
x−i
)
, µ+ 1 ≤ i ≤ µ+ σ
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FIGURE 2. A schematic diagram of the overlapping subdomains. For each
subdomain X i, there is an inner point that is not contained in any of the
other subdomains.

preconditioned GMRES method. Then we can take the result
of each iteration step as a different preconditioner in the inner
iteration. And we can expect a more accurate preconditioner
along with the process of outer iteration. It is a useful method
to reduce the number of iterations for the Krylov subspace
method.

B. DOMAIN DECOMPOSITION METHOD
Now we can use an iterative algorithm that is more suitable
for radial basis functions as a preconditioner. As a variant of
the two-level domain decomposition method for RBF pro-
posed by Beatson et al. [27], a multilevel domain decompo-
sition method is analyzed to improve overlap using a nested
sequence of levels.

The basic idea of the domain decomposition method is
to divide the whole domain X into overlapping subdomains
X i, i = 1, . . . ,D such that X = ∪Di=1X i and X i∩X j 6= ∅,
until the subdomains become simple enough to be solved
directly. Note that the domain refers to a set of interpolation
centers. The number of interpolation centers in X i is denoted
as Ni = |X i|. The interpolation centers in each subdomain
are classified as inner points (non-overlapping part) and outer
points (overlapping part), as shown in Figure 2. The solutions
to the subdomains are then combined to give a solution to the
whole domain using the alternating projection method [3].
The alternating projection method interpolates a subdomain
to correct the associated local residual and then interpolates
the next subdomain with the corrected residual in sequence.
The global residual will converge within a specified accuracy
ε in finite cycles only if the subdomains are weakly distinct.
Details about the convergence theory of the alternating pro-
jection method can be found in [3], [27].

The number of iteration is strongly affected by the size
of the inner points and outer points in each subdomain.
To further improve the convergence, a two-level method [27]
can be employed to reduce the spectral radius of the linear
system. The divided subdomainsX i are viewed as a fine level.
In addition to the correction of the fine level, this method adds
a correction of coarse level Y by randomly choosing some
inner points from each subdomain X i in a certain ratio ρ1.

FIGURE 3. A schematic diagram of the multilevel domain decomposition
scheme. The whole domain X is decomposed into a nested sequence of
levels X l , l = 1, . . . ,L.

Both the results of fine level and coarse level are combined
to give a solution to the whole domain using the alternat-
ing projection method. The coarse level improves the over-
lap between subdomains globally. Numerical experiments
show that the added coarse level correction can significantly
improve the convergence rate which becomes better as the
ratio of the coarse level points, or the amount of overlap,
is increased.

Since the coarse level is selected in a certain ratio over
the whole domain X , the interpolation centers in coarse level
would be too large to solve directly. If the coarse level is
viewed as a new whole domain, it is natural to apply the two-
level method to the multiple levels recursively. This allows
us to turn a larger domain into subdomains that are easy to
solve. The multilevel domain decomposition method decom-
poses the whole domain X into a nested sequence of levels
X l, l = 1, . . . ,L such that X l ⊂ X l+1, l = 1, . . . ,L − 1
and XL = X . Each level X l is divided into overlapping
subdomains X i,l, i = 1, . . . ,Dl such that X l = ∪

Dl
i=1X i,l and

X i,l∩X j,l 6= ∅.X l is constructed by randomly choosing some
inner points from each subdomain X i,l+1 in a certain ratio ρ1
recursively. The coarse level Y is constructed by randomly
choosing some inner points from each subdomain X i,1 in a
certain ratio ρ1. The number of interpolation centers in X i,l
is denoted as Ni,l =

∣∣X i,l
∣∣ and in X l is denoted as Nl = |X l |.

Then the results of multiple levels are combined to give a
solution to the whole domain using the alternating projection
method.
The simplified pseudo code of the extension to the mul-

tilevel domain decomposition method is given below. sg, x̃g
and f̃ g will denote the current approximateGRBF interpolant,
the current solution coefficients and the current residual. sl ,
x̃l and f̃ l denote the same meaning at each level.
Input: The whole domain X and the divided subdomains

X l, l = 1, . . . ,L, accuracy ε > 0, right-hand side of the
linear system f̃ .

C. SOLUTION PROCEDURE
According to the above analyses, the fast solution method
of GRBF includes three key parts: a fast evaluation method
for computing the matrix-vector product and the residuals,
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sg← 0, x̃g← 0, f̃ g← f̃
while

∥∥̃f g∥∥ ≥ ε
for l = L, . . . , 1 do

sl ← 0, x̃l ← 0, f̃ l ← f̃ g
for i = 1, . . . ,Dl do

Solve the subdomain X i,l corresponding to the residual f̃ l and set the solution coefficients of inner points to
x̃l . The divided subdomains can be solved using a direct solution method in parallel.

end for
To satisfy the orthogonal condition, correct the coefficients x̃l such that it is orthogonal to the polynomial
space.
Form the fine level interpolant s1,l using the corrected coefficients x̃l .
Solve the coarse level Y corresponding to the residual f̃ l − s1,l and form the coarse level interpolant s2,l
using the solution results.
sl ← s1,l + s2,l
sg← sg + sl
f̃ g← f̃ g − sl

end for
end while
Output the final solution coefficients x̃g.

for l = L, . . . , 1 do
Divide the space of the subdomain X l into rectangular boxes using a balanced kd-tree data structure. Form overlapping
subdomains X i,l via the rectangular boxes.

end for
Form the coarse level Y via the subdomains X i,1.
Expand the kernels for each level using the fast evaluation method.
Compute the initial residual vector r0 = Ã̃x0 − f̃ , v1 = r0

/
‖r0‖2.

for k = 1, 2, . . . do
Compute the preconditioned vector zj = M−1k vk . Note that the preconditionerMk isn’t stored explicitly. zj is the
solution result of one cycle of the multilevel domain decomposition method.
Compute vk+1 via Arnoldi process.
Define Zk = [z1, . . . , zk ].
Compute x̃k = x̃0 + Zkyk where yk can be computed by minimizing the residual.
if ‖rk‖2

/
‖r0‖2 < ε then

stop.
end if
end for

Output the final solution coefficients x̃k .

an inner iteration method for preconditioning and an outer
iteration method. In this paper, we use the black-box FMM
as the fast evaluation method, the multilevel domain decom-
positionmethod as the inner iterationmethod and the Flexible
GMRES iterativemethod as the outer iterationmethod. As the
number of interpolation centers at each level is large, the fast
evaluation method is also used to evaluate the residuals in the
process of inner iteration.

For a given linear system of GRBF and the desired accu-
racy ε, a simplified procedure of the fast solution method is
given below. rk and x̃k are a sequence of the residual vectors
and solution vectors for FGMRES.

VI. NUMERICAL RESULTS
We have implemented the algorithm of the fast solution
method using some open source libraries, especially the

ScalFMM library [32]. The black-box FMM in ScalFMM
was used to implement the fast evaluation process. To speed
up the process of iteration, the solution of subdomains was
implemented with Intel Math Kernel Library (Intel MKL) in
parallel.

We tested the solution method on several data sets com-
posed of Hermite points. The data sets were randomly sam-
pled from several real objects, as shown in Figure 4. Based
on the method of implicit surface reconstruction [5], the sam-
pling points can be converted into the domain constraints and
the sampling normals can be converted into the difference
constraints of the gradient. To recover the implicit surface,
we can efficiently interpolate these constraints (including
the domain constrains and the difference constraints of the
gradient) for the solution process of implicit surface
reconstruction.
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FIGURE 4. The red points were randomly sampled from several real objects and the green lines were
the estimated normals.

FIGURE 5. Comparison of the performance using the direct method with the fast method.
Both the number of domain constraints and difference constraints varied from 100 to 500
(µ = σ ). The desired accuracy for the fast method is 10−4.

The solution method utilizes several parameters, the num-
ber of levels L, the overlapping ratio ρ1, the number of
interpolation centers NY in coarse level, the max number of
interpolation centers Ni,l in X i,l and the ratio of inner points
in one subdomain ρ2. Most of them are used to divide the
multilevel subdomains. To ensure each subdomain is solved
efficiently using a direct method, the value of Ni,l should be
small enough. However, a small Ni,l leads to a large number
of subdomains. Under the premise of equalization efficiency
and convergence, a good choice is to divide the subdomains
automatically. We use the following set of parameter values
for all the numerical examples: ρ1 = 0.1 ∼ 0.2, ρ2 =
0.2 ∼ 0.3, NY = 1024 ∼ 2048 and Ni,l = 128 ∼ 256.
The number of levels L can be approximated by the value of
ρ1, ρ2 and NY . The actual values are adjusted according to
the distribution of the data, which is related to the uniformity
of the data distribution. In the following examples, we used
the triharmonic spline as the basic function. For the far field
expansion, the number of items in the expanded series was
set to 10.

To validate the viability and performance of this method,
we compared the results with the direct solution method

(LU decomposition method) and tested on a Windows 64-bit
PC with 3.00 GHz Intel(R) Core(TM) i5-7400 and 8GB
RAM. The performance of the solution method mainly
depends on the number of constraints and the desired accu-
racy. Figure 5 and Figure 6 reported the timings of the
solution process of the direct method and the fast method.
As expected, the improved efficiency is significant both in
the evaluation and solution processes. For the problems with
larger than 10,000 interpolation centers, the direct solution
method will be very time consuming. Though the direct
solutionmethod cannot be used to solve large-scale problems,
it has better performance for smaller data sets, especially the
problems with less than 1000 interpolation centers. This is
also the basis for the choice of subdomain size Ni,l .

The convergence rate of the fast solution method mainly
depends on the division of the whole domain X . The method
converges with a small number of iterations as long as a suf-
ficient overlap is created, as shown in Figure 7 and Figure 8.
More importantly, the solution failure of a subdomain will
result in the interruption of the whole solution process. There-
fore, the method requires that each subdomain is solvable.
The failure example occurs in trivial solutions when the
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FIGURE 6. Comparison of the performance using the direct method with the fast method.
Both the number of domain constraints and difference constraints varied from 1000 to 5000
(µ = σ ). The direct method was out of memory when µ = σ = 5000. The desired accuracy for
the fast method is 10−4.

FIGURE 7. Convergence rate of the solution method using the two-level domain decomposition method. Both the
number of domain constraints and difference constraints varied from 1000 to 9000 (µ = σ ).

FIGURE 8. Convergence rate of the solution method using the multi-level domain decomposition method. Both the
number of domain constraints and difference constraints varied from 5000 to 30000 (µ = σ ).

right-hand side of the linear system is zero. For example, a
subdomain only contains the domain constraints with zero
function values. To avoid trivial solutions, we should ensure
that the domain constraints and the difference constraints are
uniformly distributed in subdomains at each level.

Table 2 showed that the correction of coarse level has a
great impact on the convergence for the two-level domain
decomposition method. The number of iterations increases
remarkably as the ratio of the coarse level points is reduced.
However, a large number of the interpolation centers in coarse
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TABLE 2. Number of iterations and performance of the FGMRES iteration method using the two-level domain decomposition method. The number of
interpolation centers in coarse level was 1024, 2048 and 4096 respectively.

TABLE 3. Number of iterations and performance of the FGMRES iteration method using the multi-level domain decomposition method. The number of
the levels was 2.

TABLE 4. Number of iterations and performance of the FGMRES iteration method using the multi-level domain decomposition method. The number of
the levels was 2.

level would be too large to solve directly. The multilevel
domain decomposition method converges with a coarse level
of roughly 1024 ∼ 2048 points, as shown in Table 3 and
Table 4. The multilevel method improves the overlap using
a nested sequence of levels instead of the ratio of the coarse
level points. It avoids the number of interpolation centers in
the coarse level to be too large to solve. As mentioned earlier,
the solution method is kernel independent both in the evalu-
ation and solution processes. It is very convenient to imple-
ment the solution method with different RBF kernels for the
selection of most adequate kernel [33]. Table 5 shows the per-
formance of the solution method with different RBF kernels,
including thin-plate spline (TPS), biharmonic spline (BIS)
and triharmonic spline (TRS).

VII. DISCUSSION
The method still has several limitations that await further
investigation and improvement. One of themain limitations is

that the subdomains are solved using the natural basis instead
of a better basis. For the radial basis function interpolation
problem, it is well known that the interpolation equation is
frequently ill-conditioned [34], even when the number of
interpolation centers is small. For larger data sets, it is worth
noting that the ill-conditioning can influence the accuracy of
evaluation and reduce the convergence rate of the iterative
method. For example, the algorithm will not converge with
a small number of iterations. To improve the robustness of
the iterative method, the natural basis should be changed to
reduce the condition number of the interpolation equation.
The approximate cardinal basis functions preconditioning
technology are recommended to be extended for the GRBF
interpolant. Another limitation of the fast solution method is
that it can only be used to interpolate the domain constraints
and difference constraints.

An important extension to the fast solution method is to
improve the performance of the evaluation process. The same
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TABLE 5. Number of iterations and performance of the FGMRES iteration method using different RBF kernels. The number of the levels was 2.

number of the difference constrains costs more time than the
domain constraints. In the evaluation process, we evaluate the
several summations respectively. In fact, there is a certain
relationship between these summations. If we can evaluate
these summations in a more general way, we can further
improve the efficiency of the evaluation. To further improve
the solution performance, the optimum division of subdo-
mains can be investigated to reduce the number of iterations.

Although we only consider the fast solution of the GRBF
interpolant with domain constraints and difference con-
straints, the solution of the differential constraints (including
the gradient constraints and the tangent constraints) can be
studied in the same way. As the derivation of the RBF kernel
hinders the fast summation, the main problem that needs to
be solved is to evaluate the differential constraints efficiently.

VIII. CONCLUSION
We have presented a fast solution method of the generalized
radial basis functions interpolant for global interpolation. The
method can be used in the GRBF interpolant with large num-
bers of domain constraints and difference constraints. One of
the main features is that the implemented solution algorithm
generally achieves O(NlogN ) complexity and O(N ) storage.
Moreover, it is kernel independent both in the evaluation and
solution processes. It is very convenient to apply various types
of RBF kernels in different applications without excessive
modifications to the existing process. The preconditioning
technology is the key to the numerical stability of solution.
The optimum division of subdomains and the appropriate
overlap rate of subdomains can improve the convergence
significantly. Compared to the two-level method, the multi-
level domain decomposition method has a better convergence
rate for larger data sets by improving the overlap rate of
coarse level. Numerical results showed that the fast evaluation
method has a good performance for the evaluation of GRBF
and the preconditioned Krylov subspace iterative method has
a good convergence rate with a small number of iterations.
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