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ABSTRACT As an extension of the n-dimensional hypercube Qn, the n-dimensional folded hypercube
denoted as FQn, which can be structured from Qn adding an edge to every pair of vertices with comple-
mentary addresses.FQn possesses many properties superior to those of Qn, such as diameter, fault diameter,
connectivity, and so on. In this paper, let FFe denote the set of faulty edges in FQn and assume that each
vertex is incident to at least three fault-free edges in FQn − FFe. Then, we show that FQn − FFe contains a
fault-free Hamiltonian cycle of length 2n, where n ≥ 3 and |FFe| ≤ 3n− 7.

INDEX TERMS Interconnection networks, hypercubes, folded hypercubes, Hamiltonian cycle.

I. INTRODUCTION
Since processors in multiprocessor systems are communi-
cated by an interconnection network (network for short),
the demand performance of designing networks are impor-
tant and indispensable. Therefore, a large number of net-
work topologies are widely designed by researchers. Among
the previously proposed well-known network topologies, the
hypercube [1] has several excellent properties such as recur-
sive structure, symmetry, small diameter, regularity, rela-
tively short mean internode distance, low degree, and much
small edge complexity, which are very important for design-
ing massively parallel or distributed systems [2]. Since the
hypercube structure has many excellent properties, many
variant or extended structures by the hypercube have been
proposed [3]–[5]. Among them, one of the excellent topol-
ogy is folded hypercubes [3], which is an extension of the
hypercube, constructed by adding an edge to every pair of
vertices that are the farthest apart. The folded hypercube has
been shown that which can improve the performance of the
hypercube in many measurements [3], [6].

The embedding of the guest network G into the host net-
work H is a one-to-one mapping from the vertex set of G
into the vertex set H [2]. Cycle (Linear array), which is an
important network for parallel and distributed computing.
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Cycle is suitable for designing simple algorithms with low
communication costs, and which is also can be used as
control/data flow structures for the distributed computing in
arbitrary networks [2], [7]. Therefore, these excellent appli-
cationsmotivate us to embed the cycle properties in networks.

Since edges and/or vertices may fail when a network is
put into use, it is meaningful to consider faulty networks.
Usually, two models are used to consider the fault-tolerant
embedding properties in faulty networks. One is the standard
fault model, which means that the distribution of faulty edges
and/or faulty vertices are not restricted; the other one is the
Latifi’s conditional fault model [8], which means that each
vertex in networks is incident to at least g fault-free neighbors,
where g ≥ 2. In order to describe conditional fault model with
different condition g conveniently, we denote g-conditional
to represent that each vertex is incident to at least g fault-free
neighbors in a faulty network. In this paper, our research topic
is focusing on the edge fault-tolerant cycle embedding prop-
erty in the n-dimensional folded hypercube network FQn.
Previously, properties of the fault- tolerant cycle embedding
in FQn has been studied in [6], [9]–[21]. Let FFv and FFe
denote the sets of faulty vertices and faulty edges in FQn,
respectively. We briefly summarize of previously reported
properties by researchers and our main property of this paper
for fault-tolerant cycle embedding in FQn as Table 1.
The rest of this paper is organized as follows: In Section 2,

some necessary definitions and notations are presented.
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TABLE 1. A briefly summarize of the fault-tolerant cycle embedding properties in FQn.

Section 3 provides themain property of theHamiltonian cycle
embedding in folded hyperucbes. Conclusions are given in
Section 4.

II. PRELIMINARIES
The topology of an interconnection network usually can be
conveniently represented as a graph G. Let G = (V ,E)
be a graph in which V is a finite set and E is a subset of
{(u, v) | (u, v) is an unordered pair of V }. We can say that V
is the vertex set and E is the edge set. The sets of V (G) and
E(G) can be denoted as the vertex set and the edge set of G,
respectively. The number of vertices and edges in G can be
denoted as |V (G) | and |E (G) |, respectively. Vertices u and v
are adjacent if the edge (u, v) ∈ E (G). Vertices u and v are
called the end-vertices of an edge e = (u, v). We call u is
adjacent to v, and vice versa. Furthermore, we also call u
(or v) is incident to e = (u, v). Let Fe and Fv denote the sets
of faulty edges and faulty vertices in G, where Fe ⊆ E (G)
and Fv ⊆ V (G), respectively. We use G− Fv−Fe to denote
the subgraph which obtained by deleting Fv and Fe from G.
A graphG = (V 0∪V1,E) is bipartite ifV0∩V1 = φ and every
edge in E (G) joins V0 with V1. We also call V0 and V1 with
different partite sets. A path P [v0, vm] = 〈v0, v1, . . . , vm〉
is a sequence of adjacent vertices in which all the vertices
v0, v1, . . . , vm are distinct. We call v0 and vm are the end-
vertices of the path. Further- more, a path may contain a sub-
path, denoted as 〈v0, v1, . . . , vi,P[vi, vj], vj, vj+1, . . . , vm〉,
where P[vi, vj] = 〈vi, vi+1, . . . , vj− 1, vj〉. The length of a

path P[v0, vm] can be denoted as l(P [v0, vm]) which means
the number of edges in P [v0, vm]. A cycle in G is a sequence
of vertices 〈v0, v1, . . . , vm, v0〉, m ≥ 2, where all the ver-
tices v0, v1, . . . , vm are distinct and any two consecutive
vertices are adjacent. A Hamiltonian cycle is a cycle with
length |V (G) | and a Hamiltonian path is a path with length
|V (G)| − 1. An isomorphism from G to H is a one-to-one
and onto function π : |V (G)| → |V (H)| such that (u, v) ∈
|E (G) | if and only if (π (u), π(v) )∈ |E (H) |. Therefore,
we can denote that G ∼= H , if there is an isomorphism from
G to H . An automorphism of the graph G is an isomorphism
from G to G. An edge is fault-free if the two end-vertices
and the edge between them are not faulty. A path is fault-
free if it contains no faulty edges. A graph G is Hamiltonian-
connected if there is a Hamiltonian path joining any two
vertices ofG [5]. A bipartite graphG isHamiltonian-laceable
if there exists a Hamiltonian path between any two vertices
from different partite sets. A Hamiltonian-laceable graph
G=(V0∪V1,E) is strong [25] if there is a path of length |V0|+
|V 1| − 2 between any two vertices of the same partite set.
A Hamiltonian-laceable graph G = (V0 ∪ V1,E) is hyper-
Hamiltonian laceable [26] if for any vertex v ∈ Vi, i ∈ {0, 1},
there is a path inG−v between any two vertices of V1−i with
length |V0|+ |V 1|−2. For graph-theoretic terminologies and
notations not mentioned here, see [27].
Let n be a positive interger. The graph of the

n-dimensional hypercube (Qn for short) contains 2n vertices.
Every vertex of Qn is labeled by an n-bit binary strings
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V (Qn) = {xnxn−1 . . . xi . . . x1|xi ∈ {0, 1} , 1 ≤ i ≤ n from
00 . . . 0︸ ︷︷ ︸

n

to 11 . . . 1︸ ︷︷ ︸
n

. Every edge e = (u, v)∈E (Qn) connects

two vertices u and v if and only if u and v with different
labels in exactly one bit, i.e., u = bnbn−1 . . . bk . . . b1 and
v = bnbn−1 . . . bk . . . b1, where bk is the 1’s complement of
bk . We call that e is an edge of dimension k . Clearly, In Qn,
each vertex has degree n, each dimension possesses 2n−1

edges, and |E (Qn)| = n× 2n−1.
Let u = unun−1 . . . ui . . . u1 and v = vnvn−1 . . . v . . . v1 are

two n-bit binary strings; and let v = u(k), where 1 ≤ k ≤ n,
if vk = 1 − uk and vi = ui for all i 6= k and 1 ≤ i ≤ n.
Furthermore, let v = ū if vi = 1 − ui for all 1 ≤ i ≤ n.
The Hamming distance dH (u, v) between two vertices u and
v is the number of different bits in the corresponding strings
of the vertices. The Hamming weight hw (u) of the vertex
u = unun−1 . . . ui . . . u1 is the number of i’s such that ui = 1,
where 1 ≤ k ≤ n. Note that Qn is a bipartite graph with
two partite sets {u | hw (u) isodd} e and u|hw (u) iseven}. Let
dQn (u, v) be the distance of the shortest path between two
vertices u and v in Qn. Then, dQn (u, v) = dH (u, v).
An n-dimensional folded hypercube (FQn for short) is a

regular Qn augmented by adding an edge (also called com-
plementary edge) to every pair of vertices that are the farthest
apart, i.e., A vertex whose address is u = unun−1 . . . u1,
it now has one more edge to the vertex ū = ūnūn−1 . . . ū1,
in addition to its original n edges in Qn. Therefore, FQn has
2n−1 more edges thanQn. We use Ec to denote the set of these
complementary edges, and use Er to denote the set of regular
edges in FQn. Formally, Er = E1 ∪ E2 ∪ . . . ∪ En, where
Ei denote the i-dimensional edge set in FQn, 1 ≤ i ≤ n.
Therefore, E(FQn) = Er ∪ Ec = {e = (u, v) |dH (u, v) =
1 ∈ Er and dH (u, v) = n ∈ Ec. Examples of FQ2 and
FQ3 are shown in Figure 1. It has been shown that FQn is
(n+1)-regular, (n+1)-connected, vertex-transitive, and edge-
transitive [22]. Moreover, FQn has been shown that for every
odd n ≥ 3 is bipartite [26].

FIGURE 1. Graphs (a) FQ2 and (b) FQ3, in which complementary edges
are represented as dashed lines.

A regular hypercube Qn can be partitioned into two sub-
cubes Qn−1 along dimension i, where 1 ≤ i ≤ n. We denote
the subcubes as Q0i

n−1 = ∗
n−i0∗i−1 and Q1i

n−1 = ∗
n−i1∗i−1,

in which the values of the ith bit of the vertices are 0 and
1, respectively. Formally, Q0i

n−1 (respectively, Q
1i
n−1) is a sub-

graph of FQn induced by {xn . . . xi . . . x1 ∈ V (Qn) |xi = 0

(respectively, {xn . . . xi . . . x1 ∈ V (Qn) |xi = 1}). In brief,
we denote the subcubes Q0i

n−1 (respectively, Q1i
n−1) as Q

0
n−1

(respectively, Q1
n−1) if the dimension i is not ambiguity.

Definition 1: [28] An i-partition on FQn, where 1 ≤ i ≤ n,
partitions along dimension i into two subcubes Q0i

n−1 (briefly,
Q0
n−1) and Q

1i
n−1 (briefly, Q1

n−1). Moreover, every comple-
mentary edge in Ec joins Q0

n−1 with Q
1
n−1.

In this paper, let Fe (respectively, FFe) denote the set of
faulty edges in Qn (respectively, FQn). In FQn, let Fc denote
the set of faulty complementary edges in Ec; and for 1 ≤
i ≤ n, let Fi denote the set of i-dimensional faulty edges
in Er . Then, |FFe| =

∑n
i=1 |Fi| + |Fc|. By Definition 1, if we

execute an i-partition on FQn to form two (n−1)-dimensional
hypercubes Q0

n−1 and Q
1
n−1, than F

0
e = FFe ∩ E(Q0

n−1) and
F1
e = FFe ∩ E(Q1

n−1). Hence, FFe = F0
e ∪ Fi ∪ Fc ∪ F

1
e ,

where 1 ≤ i ≤ n.
In the remainder of this section, we consider some previ-

ously reported properties in Qn or FQn, which are useful to
our main proof.
Lemma 1: [6] FQn−FFe contains a Hamiltonian cycle of

length 2n, where |FFe| ≤ n− 1 and n ≥ 2.
Lemma 2: [23] FQn − FFe for n ≥ 3 contains a Hamil-

tonian cycle of length 2n if |FFe| ≤ 2n − 3 and each
vertex in FQn − FFe is incident to at least two fault-free
edges.
Lemma 3: [29] Qn − Fe for n ≥ 5 and |Fe| ≤ 3n − 8

contains a Hamiltonian cycle of length 2n if the following two
constraints are satisfied:

1. each vertex in Qn − Fe is incident to at least two fault-
free edges;

2. there do not exist a pair of non-adjacent vertices in a
4-cycle whose degree are both two.

Lemma 4: [22] In FQn, there is an automorphism π of
FQn such that π (Ei) = Ej and FQn − Ej ∼= Qn for i,
j ∈ {1, 2, . . . , n, c.
Lemma 5: [22] Let u and v are any two different vertices in

Qn with |Fe| ≤ n− 2, where n ≥ 2. Then, Qn − Fe contains
a fault-free path P[u, v] of length l with dQn (u, v)+ 2 ≤ l ≤
2n − 1 and (l − dQn (u, v)) is a multiple of 2.
According to the above Lemma 5, the following corollary

can be directly derived.
Corollary 1: Let u and u are any two different vertices in

Qn with |Fe| ≤ n− 2, where n ≥ 2. Then, Qn−Fe contains a
fault-free path P[u, v] of length 2n−1 or 2n−2when dQn (u, v)
is odd or even, respectively.
Lemma 6: [26] n ≥ 3 be an integer. The n-dimensional

hypercube Qn is hyper- hamiltonian-laceable.

III. EMBEDDING HAMILTONIAN CYCLE IN
FAULTY FOLDED HY- PERCUBES
In this section, assume that |FFe| ≤ 3n − 7 nd each vertex
is incident to at least three fault-free edges in FQn − FFe.
We show that FQn − FFe contains a fault-free Hamiltonian
cycle of length 2n, where n ≥ 3.
Lemma 7: For n ≥ 3, FQn − FFe contains a fault-free

Hamiltonian cycle of length 2n if |FFe| ≤ 3n − 7 and each
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vertex in FQn − FFe is incident to at least three fault-free
edges.

Proof: We consider the cases for n = 3, n = 4, and
n ≥ 5.
Case 1: For n = 3. Since |FFe| ≤ 3× 3− 7 = 3− 1 = 2,

by Lemma 1, there exists a fault-free Hamiltonian cycle of
length 2n in FQ3 − FFe.
Case 2: For n = 4. Since |FFe| ≤ 3 × 4 − 7 = 2 × 4 −

3 = 5 and each vertex in FQn − FFe is incident to at least
three fault-free edges, by Lemma 2, there exists a fault-free
Hamiltonian cycle of length 2n in FQ4 − FFe.
Case 3: For n ≥ 5. In this case, by Lemma 4, we can

assume that the distribution of faulty edges in FQn as that
|Fc| ≥ |Fn| ≥ . . . ≥ |F1|. Since

∑n
i=1 |F i| ≥ |Fc| =

|FFe| = 3n − 7 ≥ n + 3 for n ≥ 5 and |Fc| ≥ |Fn| ≥
. . . ≥ |F1|, we have that |Fc| ≥ 2, the number of faulty
edges in FQn − Ec ∼= Qn is at most 3n − 9 and each vertex
in FQn − Ec ∼= Qn is incident to at least two fault-free
edges. Furthermore, in FQn − Ec ∼= Qn, there is at most one
pair of non-adjacent vertices in a 4-cycle whose degree are
both two. If there are two pair of non-adjacent vertices in a
4-cycle whose degree are both two in FQn − Ec ∼= Qn, then
|FFe| ≥ 4 (n− 2) = 4n − 8 > 3n − 7, for n ≥ 5, which
contradicts the assumption that |FFe| ≤ 3n−7. (see Figure 2)

FIGURE 2. Illustration of Case 3 in the proof of Lemma 7.

Therefore, we have the following scenarios.
Case 3.1: In FQn − Ec ∼= Qn, there is no pair of

non-adjacent vertices in a 4-cycle whose degree are both two.
Since the number of faulty edges in FQn−Ec ∼= Qn is at most
3n−9 < 3n−8 and each vertex in FQn−Ec ∼= Qn is incident
to at least two fault-free edges, by Lemma 3, there exists a
fault-free Hamiltonian cycle of length 2n in FQn − FFe.
Case 3.2: In FQn − Ec ∼= Qn, there exists one pair of

non-adjacent vertices in a 4-cycle whose degree are both two.
Without loss of generality, we can assume that these two
non-adjacent vertices in a 4-cycle are labeled as u and v,
and their degree are exactly both two in FQn − Ec ∼= Qn.
Moreover, vertices u and v are both incident to the fault-free
i-dimensional edge and j-dimensional edge to form the
fault-free 4-cycle, where i 6= j and i, j ∈ 1, 2, . . . , n. Then,
the 4- cycle can be represented as 〈u, u(i)

(j)
= v, v(j) =

u(j), u〉 in FQn − Ec ∼= Qn. (see Figure 3) Note that

FIGURE 3. Illustration of Case 3.2 in the proof of Lemma 7.

|Fn| ≥ |Fn−1| ≥ . . . ≥ |F1| in FQn − Ec ∼= Qn, without
loss of generality, we can assume that i = 1 and j = 2.
Since each vertex in FQn is incident to at least three fault-free
edges, we know that (u, ū) and (v, v̄) are both fault-free in
FQn − FFe. Then, we consider the following subcases.

FIGURE 4. Illustration of Case 3.2.1 in the proof of Lemma 7.

Case 3.2.1: For n = 5. In this case, |FFe| ≤ 3 ×
5 − 7= 8. Since |Fc| ≥ |F5| ≥ . . . ≥ |F1| and there
exists one pair of non-adjacent vertices in a 4- cycle whose
degree are both two in FQ5 − Ec ∼= Q5, we have that
|Fc

∣∣= |F5
∣∣= |F4

∣∣= |F3
∣∣ = 2 and |F2

∣∣= |F1
∣∣ = 0 in FFe.

By Definition 1, FQn can be partitioned along dimension 1 to
form two subcubesQ0

4 andQ
1
4 such that the vertex sets u, u

(2)

and u(1), v are in different subcubes. Without loss of general-
ity, we can assume that u, u(2) ⊆ V (Q0

4) and u
(1), v ⊆ Q1

4.
Note thatFQ5 is a bipartite graph. The vertex sets u, v
and u(1), u(2), ū, v̄ are in different partite sets. Since every
edge in

(
u, u(1)

)
, (u, ū) ,

(
u, u(2)

)
, (v, v̄) ,

(
u, u(2)

)
, (u(1), v)}

is fault-free and |Fc| = 2, we know that the distribu-
tion of the remaining six faulty edges are three of them
all incident to u in Q0

4, and the other three of them all
are incident to v in Q1

4. Moreover, if we eliminate the ver-
tices u and v in Q0

4 and Q1
4, respectively. Then, Q

0
4 − u

and Q1
4 − v are both fault- free. Therefore, by Lemma 6,

there exists fault-free paths P0[u(2), v̄] and P1[u(1), ū] of
length 24 − 2 in Q0

4 − u and Q1
4 − v, respectively. Then,

〈u, u(2),P0[u(2), v̄], v̄, v, u(1),P1[u(1), ū], ū〉 forms a Hamilto-
nian cycle of length 2× (24 − 2)+ 4 =25. (see Figure 4).
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Case 3.2.2: For n ≥ 6. In this case, by Definition 1,
FQn can be partitioned along some dimension k ∈

{3, 4, . . . , n to form two subcubes Q0
n−1 and Q1

n−1 such that(
u, u(k)

)
is a faulty edge. Obviously,

(
v, v(k)

)
is also a faulty

edge because of there are only three fault-free edges
(
v, v(1)

)
,(

v, v(2)
)
, and (v, v̄) incident to v. Since k /∈ 1, 2}, we know

that the 4-cycle 〈u, u(1), v, u(2), u〉 will be in the same sub-
cube. Without loss of generality, we can assume that k = n
and the 4-cycle 〈u, u(1), v, u(2), u〉 is inQ0

n−1.Note that |Fc| ≥
|Fn| ≥ . . . ≥ |F1| and 〈u, u(1), v, u(2), u〉 is in Q0

n−1, we have
that |Fc| ≥ 2, |Fc| + |Fn| ≥ 4, 2(n−3) ≤F0

e ≤ 3n− 11, and
F1
e ≤ (3n− 7)− 2 (n− 3)−4 =n− 5, for n ≥ 6. Therefore,
|Fc|+|Fn|+F

1
e ≤ n−1. Furthermore, we can choose a faulty

edge
(
u, u(i)

)
∈ F0

e or
(
v, v(j)

)
∈ F0

e such that
(
u(i), u(i)

)
or(

v(i), u(i)
)
is fault-free, where i, j ∈ {3, 4, . . . ,n− 1}. (Note

that u(i) 6=v(j)) inQ0
n−1 because of dH

(
u(i), v(j)

)
= 2 or 4 6= 0,

where , j ∈ {3, 4, . . . ,n− 1}. If such a faulty edge does not
exist, then |Fc| ≥ 2(n−3), which contradicts the assumption
that |Fc

∣∣+ |Fn| + |F1
e

∣∣ ≤ n − 1, for n ≥ 6. Without loss of

generality, let
(
u(4), ¯u(4)

)
is fault-free. We assume that the

faulty edge
(
u, u(4)

)
is temporarily fault-free, then there is no

pair of non- adjacent vertices in a 4-cycle whose degree are
both two in Q0

n−1. Note that 3n−7− 2 (n− 3)−4 ≤n − 5,
we have that each vertex except u and v is incident to at least
three fault-free edges in Q0

n−1. Since
(
u, u(4)

)
is temporarily

fault-free, F0
e ≤ (3n− 11)−1 < 3 (n− 1)−8. By Lemma 3,

there exist a fault-free Hamiltonian cycle C0 of length 2n−1

in Q0
n−1. Then, we have the following subcases.

FIGURE 5. Illustration of Case 3.2.2.1 in the proof of Lemma 7.

Case 3.2.2.1:
(
u, u(4)

)
∈ C0. In this case, C0 can be

represented as 〈u,P0[u, u(4)], u(4), u〉 in Q0
n−1. Note that(

u(4), u(4)
)

and (u, ū) are both fault-free. Since F1
e ≤

n − 5 < (n− 1) − 2 = n − 3 for n ≥ 6 and
dH
(
u(4), ū

)
is odd, by Corollary 1, there exists a fault-free

path P[ ¯u(4), ū] of length 2n−1 − 1 in Q1
n−1. Therefore,

〈u,P0[u, u(4)], u(4),P1[u(4), ū], ū, u〉 forms a Hamiltonian
cycle of length (2n−1−1)+2+(2n−1−1) = 2n. (see Figure 5)
Case 3.2.2.2:

(
u, u(4)

)
/∈ C0. We can choose an edge

(a, b) ∈ C0 such that (a, ā) and
(
b, b̄

)
both are fault-free.

(If no such an edge exists, then |Fc| ≥
[
2n−1
2

]
= 2n−2 >

n − 1 for n ≥ 6, which contradicts the assumption that
|Fc

∣∣+ |Fn| + |F1
e

∣∣ ≤ n−1) Therefore,C0 can be represented
as 〈a,P0[a, b], b, a〉 in Q0

n−1. Then, the proof of this case is
similar to that in Case 3.2.2.1.

By combining above cases, we complete the proof.Q.E.D.
Theorem 1 Let FFe denote the set of faulty edges in FQn

and assume that each vertex is incident to at least three
fault-free edges in FQn − FFe. Then, FQn − FFe contains
a fault-free Hamiltonian cycle of length 2n, where n ≥ 3 and
|FFe| ≤ 3n− 7.

IV. CONCLUDING REMARKS
In recent years, with the development of Very Large Scale
Integration (VLSI) and Wafer- Scale Integration (WSI), it is
necessary to design more processors on the wafer. There-
fore, the multiprocessor system becomes more and more
important and prevalent. As the number of processors increas-
ing in a multiprocessor system, the reliability of the parallel
computing system becomes a significant issue. Therefore,
the reliability analysis problems of the fault-tolerant embed-
ding research field has played an important role and a mean-
ingful research topics. Many researchers have focused on the
vertex fault-tolerant, edge fault-tolerant, or both vertex and
edge fault-tolerant embedding properties of some specific
multiprocessor network topologies. In this paper, we consider
the highly edge fault-tolerant Hamiltonian cycle embedding
in the extended n-dimensional hypercube structure, which
is called the n-dimensional folded hypercube FQn. We let
FFe denote the set of faulty edges in FQn and assume that
each vertex is incident to at least three fault-free edges in
FQn−FFe. Then, we show that a fault-free Hamiltonian cycle
of length 2n can be embedded in FQn − FFe, where n ≥ 3
and |FFe| ≤ 3n− 7.
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