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ABSTRACT Traffic congestion is a thorny issue to many large and medium-sized cities, posing a serious
threat to sustainable urban development. Recently, intelligent traffic system (ITS) has emerged as an effective
tool to mitigate urban congestion. The key to the ITS lies in the accurate forecast of traffic flow. However,
the existing forecast methods of traffic flow cannot adapt to the stochasticity and sheer length of traffic
flow time series. To solve the problem, this paper relies on deep learning (DL) to forecast traffic flow
through time series analysis. The authors developed a traffic flow forecast model based on the long short-
term memory (LSTM) network. The proposed model was compared with two classic forecast models,
namely, the autoregressive integrated moving average (ARIMA) model and the backpropagation neural
network (BPNN) model, through long-term traffic flow forecast experiments, using an actual traffic flow
time series from OpenITS. The experimental results show that the proposed LSTM network outperformed
the classic models in prediction accuracy. Our research discloses the dynamic evolution law of traffic flow,
and facilitates the decision-making of traffic management.

INDEX TERMS Traffic flow forecast, time series analysis, deep learning (DL), long short-term memory
(LSTM).

I. INTRODUCTION
Owing to economic growth and urbanization, many large and
mid-sized cities are increasingly troubled by traffic conges-
tion, which brings a series of social problems (e.g. long travel
time, frequent traffic accidents, and severe environmental
pollution) [1]. Many measures have been developed to mit-
igate urban congestion, namely, improving transport infras-
tructure, charging congestion fee, providing route guidance,
promoting public transit, and implementing traffic control
[2], [3]. However, it is difficult to ease traffic congestion by
adding road facilities, if the transport infrastructure in a city is
already complete. In this case, the traffic congestion could be
effectively reduced by improving the traffic management in a
digitized and intelligent manner, i.e. building an intelligent
traffic system (ITS) [4]. Being a key aspect of the ITS,
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the short-term traffic flow forecast is the basis and premise
of traffic management measures (e.g. traffic planning, route
guidance, and traffic control). The effectiveness of the ITS
relies on the accurate and reliable forecast of short-term
traffic flow.

The short-term traffic flow forecast aims to predict the
traffic state of a road section or intersection in the near future
based on the historical traffic data and travel experience.
It has long been a research hotspot in the field of the ITS.
The early methods for traffic flow forecast are model-driven,
which work only if the data and model parameters satisfy
specific assumptions. As a result, the model-driven meth-
ods cannot describe the complex nonlinearity of the traffic
system, and have not been widely applied [5]. In this era
of big data, many scholars have attempted to predict traffic
flow based on the massive traffic data, eliminating the need
for multiple assumptions, creating and implementing lots of
data-driven forecast methods [6], [7]. The typical data-driven
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forecast methods are machine learning (ML) tools like neural
networks (NNs). Currently, novel traffic forecast methods
are emerging constantly. Among them, deep learning (DL)
strategies stand out for its effective use of massive raw data.

Despite the extensive studies and fruitful results on traffic
flow, the complex evolution of traffic flow on surface roads
is not yet clear. There is no definite answer to the following
questions: Whether the traffic flow time series is continuous?
Does the traffic flow time series share the same statistical
features with other time series? Whether the traffic flow
is predictable? How far in advance could the traffic flow
be predicted? The time series analysis provides a possible
solution to these questions. Over the years, much attention
has been paid to the analysis of classic and nonlinear time
series, and the analysis results have been successfully applied
to traffic management like traffic control and route guidance.

Considering the superiority of the DL in processing the
big data on traffic, this paper identifies the periodicity and
stationarity of traffic flow time series measured on roads
in Changsha, Central China’s Hunan Province, and then
constructs a traffic flow forecast model based on the long
short-term memory (LSTM) network. The proposed model
was compared with two classic forecast models at different
prediction periods, in rush hours, and in non-rush hours. Our
research discloses the dynamic evolution law of traffic flow,
facilitating the decision-making of traffic management.

The remainder of this paper is organized as follows:
Section 2 reviews the literature on traffic flow forecast;
Section 3 introduces the proposed model and two contrastive
models; Section 4 evaluates the performance of our model
with real-world data; Section 5 puts forward conclusions and
looks forward to the future research.

II. LITERATURE REVIEW
In recent years, the limited road resources in many cities
can no longer accommodate the surging number of vehicles.
The imbalance between travel demand and transport capabil-
ity has worsened urban congestion. The ensuring problems
severely bottleneck the sustainable development of urban
transport, including the rising traffic accidents, growing envi-
ronmental pollution and reduced travel efficiency.

As mentioned before, traffic flow forecast is the precon-
dition for traffic management measures like traffic planning,
route guidance, and traffic control. The accurate forecast of
future traffic flow makes it possible to evaluate the economy
and effectiveness of the ITS. To ensure the forecast accuracy,
the daily mean traffic flow must be sufficiently smooth. The
smoother the daily mean traffic flow, the lower the forecast
error.

The application of time series analysis in traffic flow fore-
cast can be traced back to the 1970s [8]. Time series analysis
enjoys immense popularity in the real world, because its
model is simple and only relies on traffic flow time series.
There are currently three kinds of traffic flow methods based
on time series analysis: model-driven methods, data-driven
methods, and combinatory models.

The model-driven methods mainly include the autoregres-
sive integrated moving average (ARIMA) model [9]–[11],
seasonal ARIMA (SARIMA)model [12], [13], Markov chain
(MC) [14]–[17], Bayesian network (BN) [18]–[20], and
Kalman filter (KF) [21]–[23]. These methods cannot perform
normally without several preconditions, e.g. the model struc-
ture is predefined, the residuals obey the normal distribution,
and the time series is stationary. These preconditions fail
to demonstrate the nonlinearity and randomness of actual
traffic flows. Hence, themodel-drivenmethods have a limited
applicable scope in the transport field.

The emerging technique of artificial intelligence (AI) has
made it possible to manage traffic based on big data. Thus,
the data-driven methods have become the mainstream strat-
egy for traffic flow prediction. The most famous data-driven
method is the NNs, which consist of fully-connected layers
and radial basis functions (RBFs) [24]–[27]. Nonetheless,
the traditional NNs are too shallow to effectively handle a
massive amount of long time series.

Recently, more and more scholars have implemented the
DL in traffic flow forecast. The DL can effectively utilize
the information in the videos, images, time series, and spatial
series of traffic data, which greatly enhances the forecast
accuracy [28]–[36]. Lv et al. [37] designed a stacked auto
encoder (SAE) model for traffic flow forecast, and proved
the superiority of the SAE model over multilayer percep-
tron (MLP). Xiang et al. [28], [38] developed stacked de-
noising auto encoder (SDAE) to predict the traffic flow with
missing data. Xie et al. [39] and other scholars analyzed the
transport problem by a deep belief network (DBN) [40]–[43].
Sun et al. [44] and other scholars applied convolutional neu-
ral network (CNN) to process time series data for traffic fore-
cast [45]–[47]. Hu et al. [48] and other scholars demonstrated
the excellence of recurrent neural network (RNN) in traffic
flow prediction based on time series analysis [49]–[55].

Adding a feedback loop to the hidden layer, the RNN can
handle the correlations between data at different moments
well. If the time series is very long, however, vanishing gra-
dient and exploding gradient may occur in the RNN training.
To solve the problems, Hochreiter and Schmidhuber [56]
proposed the LSTM network, in which the traditional hidden
layer neurons are replaced with a memory block. The block
prevents vanishing and exploding gradients in prolonged
trainings. Hence, the LSTM enables the RNN to process
long time series. Many LSTM-based DL models have been
successfully applied to forecast traffic flow based on time
series [57]–[63]. However, it remains a challenge to forecast
traffic flow accurately and reliably in the complex, nonlinear,
time-varying traffic system.

Each forecast model has its merits and defects, and spe-
cific applicable scope. To combine the merits and resolve
the defects, single models have been integrated into various
combinatory forecast models. For example, Luo et al. [64]
proposed a short-term traffic flow forecast model based on
the k-nearest neighbors (k-NN) algorithm and the LSTM.
Guo et al. [65] combined support vector regression (SVR)
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and the LSTM into a hybrid forecast model for traffic flow.
Based on the RNN and the LSTM,Wang et al. [50] presented
a combinatory forecast model for traffic flow on ground-level
roads, and verified its forecast performance of the proposed
model. Despite their high forecast accuracy, the combinatory
models are not widely applied in traffic engineering, because
of their complexity and poor real time performance.

To sum up, the model-driven methods predict the future
traffic flow by setting up accurate mathematical models based
on the statistical features of the raw data. These models are
easy to interpret, but many parameters and assumptions need
to be determined in advance. Thus, few model-driven meth-
ods can adapt to the stochastic traffic flows, or make highly
accurate predictions. Combinatory models are more accurate
than model-driven methods. However, these models are not
widely applied in traffic engineering, due to their complexity
and poor real time performance. By contrast, the ML-based
forecast methods are not constrained by preconditions and
strong in nonlinear approximation and self-learning. Among
them, artificial neural networks (ANNs) are well received,
owing to their mature theories and good predictive perfor-
mance. The LSTM, a superior DL network for time series
analysis, has attracted a growing attention from researchers
engaging in traffic flow forecast.

III. PREDICTION MODELS
The time series of traffic flow is a set of observations arranged
in chronological order. If the observations only contain one
variable, the series is a univariate time series. To analyze the
time series, a basic assumption is required: the future traffic
flow is affected by the past values. Unlike other models, time
series models take the target variable as predictor variable.

In this paper, three representative time series analysis
methods, namely, ARIMA model, backpropagation neural
network (BPNN) and LSTM, are compared in the effi-
ciency of traffic flow forecast. The ARIMA model has been
broadly adopted to forecast traffic flow, for its strong potential
for online implementation. The BPNN is the most popular
method to process traffic data without an accurate mathemat-
ical model. However, the shallow structure of BPNN has a
low efficiency in handling massive data. Many DL models
have been developed to deal with massive data in an effective
manner. Among them, the LSTM is the most promising one
for time series analysis.

A. ARIMA MODEL
The ARIMA model provides a regression method for time
series: First, the model judges whether the target time series
is stationary; if the time series is non-stationary, it will be sub-
jected to differential treatment and modified into a stationary
one for modelling. For the traffic flow on roads, the continu-
ous observations are correlated in the time series. The traffic
flow datamight be non-stationary, due to the stochasticity and
complexity of the traffic system. Hence, the ARIMA model
has often been used to predict the traffic flow based on the
time series [66].

If the traffic flow time series Xt is stationary, the time series
can be described as a linear combination of the previous traf-
fic flows by autoregressive moving average (ARMA) model:

Xt = ϕ1Xt−1 + ϕ2Xt−2 + · · · + ϕpXt−p
+µt − θ1µt−1 − θ2µt−2 − · · · − θqµt−q (1)

where, p and q are the orders of the model; ϕ1, ϕ2, · · · , ϕp are
autoregressive coefficients; θ1, θ2, · · · , θq are moving aver-
age coefficients; ut is the residual at time t . By introducing
the backshift operator B and BjXt = Xt−1, formula (1) can be
simplified as:

φ (B)Xt = θ (B) ut (2)

where, φ (B) = 1 − φ1B − φ2B2 − · · · − φpBp; θ (B) =
1− θ1B− θ2B2 − · · · − θqBq.
Since most traffic flow time series are non-stationary, the

differential treatment is implemented by replacing Xt with
(1− B)d Xt , where d ≤2 is the difference coefficient of Xt .
Thus, the ARIMA model can be formulated as:

(1− B)d φ (B)Xt = θ (B) ut (3)

The key to ARIMA modelling is to determine the values of p
and q. The values of parameters like φi and θi can be derived
through least squares estimation, moment estimation, maxi-
mum likelihood estimation, etc. Once the parameter values
are identified, the ARIMA model can be employed to predict
the future traffic flow.

B. BPNN
The BPNN is a multi-layer feedforward NN, in which the
signal propagates forward and the error propagate backwards
through each layer. In the BPNN, the neurons on the current
layer only affect the state of those on the next layer. The signal
passes from the input layer through the hidden layer to the
output layer.Meanwhile, the error passes through the network
in the opposite direction, and adjusts the weight and bias of
each layer, thereby optimizing the model continuously. In this
way, the prediction of the BPNN gradually approaches the
desired value [24], [26].
To describe the iterative learning of the BPNN, the fol-

lowing parameters were defined: the input x; the input of
the hidden layer hi; the output of the hidden layer ho; the
input of the output layer yi; the output of the output layer
yo; the desired output do; the connection weight between the
input layer and the hidden layer wih; the connection weight
between the hidden layer and the output layer who; the bias
of each hidden layer neuron bh; the bias of each output layer
neuron bo. Then, the learning process of the BPNN can be
explained as follows:
Step 1. Network initialization
According to the prediction target and the known condi-

tions, determine the number of neurons on each layer, define
the biases and initial weights of the hidden layer and output
layer, and specify the calculation precision ε and maximum
number of iterations M.
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FIGURE 1. Structure of the RNN.

Step 2. Hidden layer calculation
Derive ho from x, wih and bh.
Step 3. Output layer calculation
Derive yo from yi, who and bo.
Step 4. Error calculation
Derive error of the BPNN e from yo and do.
Step 5. Weight update
Update the weight and bias of each layer based on e.
Step 6. Termination
Terminate the iterative learning if the error satisfies the

calculation precision or the maximum number of iterations is
reached. The trained BPNN is ready to predict new samples.

C. LSTM NETWORK
As mentioned before, the RNN (Figure 1) relies on the
feedback loop in the hidden layer to clarify the correlation
between data at different moments, where xt , ht and ot are
the values of input, hidden layer and output. But the standard
RNN may suffer from vanishing and exploding gradients in
the training process, if the data form a long time series. Hence,
the RNN was extended by Hochreiter and Schmidhuber [56]
into the LSTM network. Compared with the RNN, the LSTM
network has a memory block instead of hidden layer neurons,
which effectively prevents vanishing and exploding gradients
in prolonged trainings.

In the LSTM network, several gates are introduced to con-
trol the memory of the RNN. During the training, the weight
and bias of each gate are learned from the historical time
series, and the features of historical states are identified
and memorized. On this basis, the trained network can esti-
mate the future state from new input samples. As a result,
the LSTM network [28] can fully consider the long-term cor-
relations between traffic flows, and make effective forecast of
future traffic flow.

As shown in Figure 2, the memory block, the core of the
LSTMnetwork, consists of a memory cellCt , an input gate it ,
a forget gate ft , and an output gate ot . The operations of the
memory block are explained as follows:

1) FORGETTING
The redundant information in long-term cell states is dis-
carded by the forget gate. Based on the input xt , the forget
gate ft output a matrix xt of elements ∈(0, 1). Each element
is multiplied with the corresponding element in the cell state
matrix Ci−1:

ft = σ
(
Wf · [ht−1, xt ]+ bf

)
(4)

FIGURE 2. Structure of the memory block in the LSTM.

2) MEMORIZATION
The new information is stored as long-term cell states in
three steps: first, each tanh function creates a new candidate
vector; next, the sigmoid function of the input gate it updates
some elements of each candidate vector; after that, the new
information is added to long-term cell states:

C ′t = tanh (Wc · [ht−1, xt ]+ bc) (5)

it = σ (Wi · [ht−1, xt ]+ bi) (6)

Ct = ft ⊗ Ct−1 + it ⊗ C ′t (7)

3) INFORMATION OUTPUT
The sigmoid function determines the output information ht :
the long-term cell states are processed by the tanh function,
and thenmultipliedwith the information filtered by the output
gate ot :

ot = σ (Wo · [ht−1, xt ]+ bo) (8)

ht = ot ⊗ tanh (Ct) (9)

where, C ′t is the updated cell state at time t; Ct and Ct−1 are
the outputs at time t and time t − 1, respectively; Wc and bc
are the weight and bias of the cell, respectively; it , ft , ot and
ht are the outputs of the input gate, the forget gate, the output
gate and the hidden layer at time t , respectively; xt is the input
at time t; ht−1 is the output of the hidden layer at time t − 1;
Wi, Wf and Wo are the weights of the input gate, forget gate
and output gate, respectively; bi, bf and bo are the biases of
the input gate, forget gate and output gate, respectively.

The activation functions sigmoid and tanh can be respec-
tively expressed as:

f (x) =
1(

1+ e−x
) (10)

f (x) =

(
ex − e−x

)(
ex + e−x

) (11)

IV. EXPERIMENTS AND RESULTS ANALYSIS
A. DATA PREPROCESSING
Downloaded from OpenITS, the original data were collected
at an interval of 5min in 10 days (September 17-26, 2013)
by an inductive loop deployed beneath the road surface
at No.1 Yuanda Road, Changsha, and the SCATS Traffic
Reporter.

VOLUME 8, 2020 82565



J. Zheng, M. Huang: Traffic Flow Forecast Through Time Series Analysis Based on Deep Learning

FIGURE 3. Our traffic flow time series.

FIGURE 4. Autocorrelation curve of our traffic flow time series.

The original data were transformed into 960 samples
(Figure 3) with 15min intervals, i.e. 96 sampling points per
day. Then, the data of the first eight days were taken as
the training set to build up forecast models, and the data of
the other two days were taken as the test set to verify the
effectiveness of each model. Hence, the training set and the
test set respectively contain 768 samples and 192 samples.

As most traffic flow time series, the preprocessed data
change periodically between days, and have similarities
between some periods on the same day [67]. Morning and
evening rush hours are clearly seen from the daily variation
in traffic flow. The periodicity of traffic flow is a feature of the
traffic system that should be considered to achieve accurate
prediction of future traffic flow.

To judge if our traffic flow time series is periodic, autocor-
relation analysis was carried out. The autocorrelation coeffi-
cient rk can be computed by:

rk =

∑n−k
t=1

(
Xt − X

) (
Xt−k − X

)∑n
t=1

(
Xt − [X

)2 (12)

where, Xt−k is the traffic flow time series that lags Xt by k
intervals; X is the mean traffic flow; n is the length of time
series.

According to the autocorrelation curve (Figure 4), our
traffic flow time series has significant periodicity. Despite the
fluctuations, the data in the series tend to be stable.

B. PARAMETER SETTINGS
The LSTM network for our experiments contains five layers,
including an input layer, three hidden layers and an output
layer. Every layer contains 96 neurons. The preprocessed
data was normalized as a time series with zero mean and
unit variance. During training, there is one interval difference
between each input and each output: if the input is xt , then the

FIGURE 5. The predicted results of the ARIMA model on the samples of
September 25th, 2013.

FIGURE 6. The predicted results of the BPNN on the samples of
September 25th, 2013.

output will be xt+1. The maximum number of iterations was
set to 200, the gradient threshold was set to 1, and the learning
rate was initialized as 0.005. After 100 iterations, the learning
rate was reduced to the product between the initial value and
a drop factor of 0.2. The dropout on each layer was set to 0.2.

For the ARIMA model, p, d and q were all set to 1. Mean-
while, the BPNN was configured as a three-layer network
with one input layer neuron, ten hidden layer neurons and
one output layer neuron.

C. RESULTS ANALYSIS
Based on the above parameters, our experiments were con-
ducted on the MATLAB. Each forecast model, namely,
the ARIMA model, the BPNN and the LSTM network, was
trained by the training set and verified by the test set.

Two plans were designed to compare the forecast effects
of the three models: (1) The daily predictions of the three
models were compared to reveal how the prediction perfor-
mance changes with the elapse of time; (2) The 2h-interval
predictions of the three models were compared to disclose
the difference in prediction performance between rush hours
and non-rush hours.

Firstly, the ARMIA model, BPNN and LSTM network
were tested by the 96 samples on September 25th, 2013.
The predicted values, actual values and residual errors of
the three models are displayed in Figures 5-7, respectively.
It can be seen that the LSTM network achieved the best
prediction performance (i.e. the smallest deviation between
the predicted value and the actual value), followed in turn by
the BPNN and the ARIMA model.

Secondly, the ARMIA model, BPNN and LSTM network
were tested by the 96 samples on September 26th, 2019.
The predicted values, actual values and residual errors of
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FIGURE 7. The predicted results of the LSTM network on the samples of
September 25th, 2013.

FIGURE 8. The predicted results of the ARIMA model on the samples of
September 26th, 2013.

FIGURE 9. The predicted results of the BPNN on the samples of
September 26th, 2013.

FIGURE 10. The predicted results of the LSTM network on the samples of
September 26th, 2013.

the three models are displayed in Figures 8-10, respectively.
It can be seen that the LSTM network achieved the best
prediction performance (i.e. the smallest deviation between
the predicted value and the actual value), followed in turn by
the BPNN and the ARIMA model.

The prediction performance of each model was mea-
sured by three metrics: mean absolute error (MAE), mean
absolute percentage error (MAPE) and root mean square
error (RMSE):

MAE =
1
n

∑n

t=1

∣∣yt − ŷt ∣∣ (13)

TABLE 1. The metrics of the three models.

FIGURE 11. The RMSE curves of three models with 2h intervals.

MAPE =
1
n

∑n

t=1

∣∣∣∣yt − ŷtyt

∣∣∣∣× 100% (14)

RMSE =

√
1
n

∑n

t=1

(
yt − ŷt

)2 (15)

where, yt is the actual traffic flow; ŷt is the predicted traffic
flow; n is the number of samples. The three metrics are
negatively correlated with the goodness-of-fit and prediction

Table 1 lists the metrics of each model on daily predictions.
It can be seen that the LSTM network achieved the best
RMSE, MAE and MAPE, followed in turn by the BPNN
model and the ARIMA model. Hence, the LSTM network
boasts the best prediction performance. For different time
steps, the LSTM predictions on September 26th, 2013 were
less accurate than those on September 25th, 2013, indicating
that a long time step suppress the prediction accuracy. On the
samples of both days, the LSTM network outperformed
the two contrastive models, showcasing the superiority
of the DL.

Figure 11 presents the RMSE curve of each model with 2h
intervals. The 4th and 16th intervals (7-9am) are the morn-
ing rush hours of September 25 and September 26, 2013,
respectively; the 10th and 22nd intervals (7-9pm) are the
evening rush hours of September 25 and September 26, 2013,
respectively. Obviously, the ARIMA model had a far greater
RMSE in the morning and evening peak hours than that in the
non-peak hours. Thus, this model cannot accurately forecast
the traffic flow in peak hours. The BPNN model also showed
a large RMSE in in the morning and evening peak hours,
but not as high as that of the ARIMA model. The LSTM
network controlled the RMSE at a low level in the morning
and evening peak hours, an evidence of its excellent forecast
effect on long time series.
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FIGURE 12. Comparison between predicted values and observed
value.

V. CONCLUSION
Traffic flow forecast is critical to measures of traffic man-
agement, such as route guidance and traffic control. The
significance of traffic flow forecast is growingwith the prolif-
eration of the ITS and autopilot. Currently, lots of traffic flow
data are available thanks to the development of information
technology (IT) and big data. Thus, it is very meaningful
to mine out the evolution law of traffic flow through time
series analysis, and make accurate forecast of future traffic
flow. Therefore, this paper compares the traffic flow forecast
effects of the LSTM network, BPNN model and ARIMA
model on time series captured at a single point. The main
conclusions are as follows:

(1) The contrastive experiments show that the LSTM net-
work outperformed the ARIMA model and the BPNN model
in prediction accuracy: the mean RMSEs of the ARIMA,
BPNN and LSTM were 61.1699, 26.8773 and 14.4438,
respectively.

(2) For different time steps, the RMSE of the LSTM net-
work was 12.9668 on September 25, 2013 and 15.7832 on
September 26, 2013. Hence, the prediction accuracy of the
LSTM network was higher on the first day, which reflects the
high correlation between adjacent data in time series.

(3) For 2h intervals, the ARIMAmodel had relatively large
prediction errors in morning and evening peak hours. This
is because the traffic flow tends to fluctuate in peak hours
under various disturbances, while the ARIMA is not good at
predicting highly volatile data.

(4) As shown in Figure 12, the predicted values of the
three models basically agreed with the observed value, due to
the relative stability of traffic flow time series under normal
conditions. The LSTM network made the most realistic pre-
diction. Besides, the superiority of the DL in traffic flow pre-
diction was confirmed by the results in Table 1: the MAPEs
of the ARIMA, BPNN and LSTM were 20.97%, 9.06% and
4.82%, respectively.

The proposed LSTM network can accurately predict the
traffic flow based on the relatively stable time series under
normal conditions. However, the traffic system on roads
is stochastic and complex, and often affected by abnormal
factors like bad weather, traffic accident and large events.
Therefore, the future research will fully utilize the abilities of
the ML (e.g. big data processing and self-learning) to predict
the traffic flow under various influencing factors.
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