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ABSTRACT The realization of a novel human gesture recognition algorithm is essential to enable the
effective collision avoidance of autonomous vehicles. Compared to visible spectrum cameras, the use of
infrared imaging can enable more robust human gesture recognition in a complex environment. However,
gesture recognition in infrared images has not been extensively investigated. In this work, we propose amodel
to detect human gestures, based on the improved YOLO-V3 network involving a saliency map as the second
input channel to enhance the reuse of features and improve the network performance. Three DenseNet
blocks are added before the residual components in the YOLO-V3 network to enhance the convolutional
feature propagation. The saliency maps are obtained by multiscale superpixel segmentation, superpixel
block clustering and cellular automata saliency detection. The obtained five scale saliency maps are fused
using a Bayesian based fusion algorithm, and the final saliency image is generated. The infrared images
composed of 4 main gesture classes are collected, each of which contains several approximated gestures
in morphological terms. The training and testing datasets are generated, including original and augmented
infrared images with a resolution of 640 × 480. The experimental results show that the proposed approach
can enable real time human gesture detection for autonomous vehicles, with an average detection accuracy
of 86.2%.

INDEX TERMS Human gesture recognition, autonomous vehicles, deep learning approach, infrared images,
saliency maps.

I. INTRODUCTION
Human detection, as a key technology for autonomous vehi-
cles, has attracted considerable research attention. In addi-
tion, human gesture recognition is necessary to predict the
trend of human behavior, which is significantly important
information to formulate effective collision avoidance strate-
gies for autonomous vehicles.

At present, most methods for human gesture recognition
involve the following processes: data collection, data prepro-
cessing, feature quantity extraction and classifier learning,
among which, feature extraction is the most important com-
ponent. Researchers are constantly improving and develop-
ing this link to improve the accuracy of gesture recognition
models. To enable the feature extraction of human gestures,
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several researchers have proposed various methods. Hemati
and Mirzakuchaki [1] focused on recognizing human ges-
tures by considering the appearance (Harris features) and
motion information (oriented optical flow) by constructing
spatiotemporal features. Luvizon et al. [2] presented a frame-
work for human gesture recognition, taking into account the
depth maps of skeleton sequences by using spatial and tem-
poral local features from the subgroups of joints aggregated
using a robust method based on the VLAD algorithm and a
pool of clusters.Murtaza et al. [3] used the features pertaining
to the histograms of oriented gradients (HOG) to describe
the motion history image (MHI) low dimensional represen-
tation to enable silhouette based view independent human
gesture recognition. Ghamdi et al. [4] reported on the use
of a space-time extension of the scale invariant feature trans-
form (SIFT), which was originally applied to 2 dimensional
(2D) volumetric images, for human gesture application.
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Murray et al. [5] proposed a multiview human gesture recog-
nition model that relies entirely on the active acoustic sonar
data to infer human action. Palhang et al. [6] addressed the
problem of categorizing human gestures by devising bag of
words models based on the covariance matrices of spatiotem-
poral features, with the features obtained using the histograms
of optical flow. Dawn and Shaikh et al. [7] presented a com-
prehensive review regarding STIP based methods for human
gesture recognition and concluded that STIP based detectors
could robustly detect the interest points from video in the
spatiotemporal domain. Li et al. [8] proposed a framework
combining the fast HOG3D features and self-organization
feature map (SOM) network to enable gesture recognition
from unconstrained videos, thereby bypassing the demanding
preprocessing required for human detection, tracking or con-
tour extraction. However, these methods usually involve
handcrafted feature extraction, which requires researchers
to have a deep understanding of the acquired data features
and feature extraction algorithms. In addition, in general, the
performance of handcrafted feature extraction approaches is
not sufficiently stable owing to the complexity of environ-
mental factors (weather changes, illumination changes, back-
ground changes, etc.), and thus, human gesture recognition
under such conditions is challenging when using traditional
methods.

In recent years, the use of convolutional neural networks
[9], [10] in visual recognition has become increasingly popu-
lar, and their excellent performance in such tasks has been
demonstrated. To enable the feature extraction of human
gestures, Kim et al. [11] proposed a modified convolu-
tional neural network (CNN) having a three dimensional
receptive field, to generate a set of feature maps from the
human gesture descriptors derived from a spatiotemporal
volume. Le et al. [12] presented a framework for human
gesture recognition by using the temporal and spatial features
extracted simultaneously by utilizing a fine to coarse (F2C)
CNN architecture optimized for human skeleton sequences.
Wang et al. [13] proposed a visual attribute augmented 3D
CNN framework that integrated the visual attributes (includ-
ing detection, encoding and classification) to enable gesture
recognition in trimmed videos. Meng et al. [14] presented
a hierarchical dropped CNN architecture with a dropped
CNN (d-CNN) to extract deep human gesture features from
a probabilistic speed insensitive color image; furthermore,
the authors extended the d-CNN to a hierarchical structure
(h-CNN), in which multiple scales of temporal information
are encoded, to enhance the temporal discriminative power.
Meng et al. [15] proposed a deep learning network for gesture
recognition, which integrated a quaternion spatiotemporal
convolutional neural network (QST-CNN) and long short
term memory network (LSTM); in this approach, a quater-
nion expression for an RGB image was employed, and the
values of the red, green, and blue channels were considered
simultaneously as a whole in a spatial convolutional layer,
thereby avoiding the loss of spatial features. Yang et al. [16]
proposed a sequential convolutional neural network to extract

the effective spatiotemporal features of human gesture from
videos, thereby incorporating the strengths of both convolu-
tional and recurrent operations. Li et al. [17] proposed an
end to end deep convolutional neural network in which the
skeleton sequences were transformed into images, and the
spatial temporal information was learned to enable 3D human
gesture recognition. Ji et al. [18] developed a novel 3D CNN
model to enable gesture recognition by extracting features
from both the spatial and temporal dimensions by performing
3D convolutions, thereby capturing the motion information
encoded in multiple adjacent frames. Sun et al. [19] proposed
a human gesture recognition approach by using factorized
spatiotemporal convolutional networks that factorize the orig-
inal 3D convolution kernel learning as a sequential process
of learning the 2D spatial kernels in the spatial convolutional
layers, followed by the learning of the 1D temporal kernels in
the temporal convolutional layers. Bhattacharjee andDas [20]
reported upon the exploration of a two stream convolutional
neural network (2S-CNN) architecture involving the fusion
of the dense optical flow features of the RGB frames and
the salient object regions detected using a fast space-time
saliency method to categorize the human gestures in videos.

In general, most of these methods are based on RGB
images. However, visible light cameras require proper illu-
mination to function effectively. In contrast, infrared cameras
produce images based on the heat radiated by the human
body; consequently, these cameras can be used regardless of
the external illumination conditions, and they can overcome
the influence of illumination changes, while still achieving
satisfactory results under partial occlusion and overlap con-
ditions. Figure 1 shows a comparison of the RGB images
and infrared images with different human gestures in some
specific scenes.

Figure 1 indicates that under the conditions of rain and
foggy weather, the colors of the background and human
clothes being similar, occlusion and overlap, evening, and
night time, the features of the humans (contour, brightness,
orientation, etc.) in infrared images have a higher degree of
differentiation with respect to the background, compared to
in RGB images. However, research regarding human motion
recognition methods based on infrared images is still insuffi-
cient. Akula et al. [21] demonstrated the use of IR cameras in
the field of ambient assisted living and discussed its perfor-
mance in human gesture recognition. Li et al. [22] proposed
a human gesture silhouette energy histogram algorithm by
using the statistical background model and background sub-
traction method to extract the human gesture silhouettes to
address the problem of night time human gesture recognition.
Osada et al. [23] proposed a human gesture pattern moni-
tor (HPM) constructed using a film infrared sensor (MFI),
without employing a monitor camera to ensure the clients’
privacy, as a tableware system.

The contribution of this work is threefold:
• Considering the low resolution of convolutional fea-
ture maps, three DenseNet blocks were added before
the residual components in the YOLO-V3 network to
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FIGURE 1. Comparison of human gestures in RGB images and infrared images under conditions of: (a) foggy weather; (b) occlusion;
(c) background and targets having similar colors; (d) evening time with street light; (e) night time without street lights; (e)–(i) show the
corresponding infrared images of the RGB images shown in (a)–(e).

enhance the convolutional feature propagation, thereby
developing a novel human gesture detection network
architecture;

• Infrared images lack information regarding the sharp
edges and boundaries of variable human gestures.
In addition, the temperature changes considerably influ-
ence the imaging results. To address this problem,
the saliency maps of infrared images were detected as an
additional input channel to the gesture detection network
to improve the robustness of the proposed model;

• An infrared image dataset of human gestures in four
main categories (‘‘squatting’’, ‘‘lying’’, ‘‘standing’’, and
‘‘walking’’) in an outdoor environment was generated
for training and testing the human gesture detection
network.

The remaining article is organized as follows. Section 2
describes the proposed human gesture detection algorithm,
along with the improved YOLO-V3 algorithm and infrared
image saliency detection algorithm. Section 3 describes the
creation of the human gesture infrared image dataset, includ-
ing the process of obtaining the original infrared image and
image dataset enhancement methods. The experimental con-
tent and results are described in detail in Section 4. Section 5
summarizes the employed methods and conclusions of this
work.

II. METHODOLOGY
The architecture of the proposed human gesture detection
model for infrared images is illustrated in Figure 2.

The input of this human gesture detection model includes
infrared images with a resolution of 640 × 480, as obtained
using an infrared camera in outdoor environments. These
images are processed and resized into grayscale images and
saliency images, each with a resolution of 416 × 416, as the
inputs of the proposed network. The feature maps from the
two modalities are concatenated, and the 1 × 1 convolution
operation is performed on the concatenated feature maps to
reduce the dimensions and linearly merge the features. Fur-
thermore, the parameters of the 1× 1 convolution kernel are
trained to reduce the dimensions of the concatenated feature
maps to 52 × 52 × 128.

Considering the lower resolution of the convolutional
layers in traditional YOLO-V3, three DenseNet blocks are
added before the residual networks to improve the net-
work performance from the perspective of feature reuse.
The transfer function Hi (i = 1, 2, 3, 4) employs the fol-
lowing network architecture: BN-ReLU-Conv, where BN
denotes the batch normalization. The transfer functions
H1,H2,H3 and H4 enable the nonlinear transformation of
x0, [x0, x1] , [x0, x1, x2] and [x0, x1, x2, x3] layers, respec-
tively. The feature layer [x0, x1, x2, x3, x4] continues to prop-
agate forward as the input of a transition layer. Finally, the
feature layers are spliced into feature maps with resolutions
of 52× 52× 256, 26× 26× 512, and 13× 13× 1024, and
these feature maps are propagated forward.

The specific structure and parameters of the proposed
human gesture detection network are shown in Figure 3.

A. HUMAN GESTURE DETECTION MODEL BASED ON THE
IMPROVED YOLO-V3 NETWORK
In contrast to the faster R-CNN, which is a state of the art
target detection and recognition network, the YOLO network
generates both the coordinates and recurrence of each cat-
egory directly through regression, which makes the YOLO
network considerably faster than the faster R-CNN network.
In the YOLO network series, the YOLO-V3 [26] network
exhibits the highest detection accuracy, compared with those
of the target detection network YOLO, YOLO-V2 [27] and
SSD [28] networks.

The YOLO network simply divides the input images into
an S × S grid. Each grid predicts the conditional probability
C and bounding box B, each of which corresponds to five
predicted values, including the center coordinates of bound-
ing box (x and y), size of the image (height and width) and
confidence score. The confidence can be obtained as

Conf = pr × IoU t
p., pr ∈ {0, 1}

where pr = 1 if the object is in the grid, and pr = 0 otherwise;
IoU t

p is used to denote the accuracy of the predicted bounding
box relative to the ground truth. If the same target is detected
by multiple bounding boxes, the bounding box with the high-
est score is selected by using nonmaximum suppression.
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FIGURE 2. Architecture of proposed neural network: DB - DenseNet Block; Convs - Convolutional layers; RN - Residual network.

Although the YOLO network has a significant advantage
in terms of the computational speed compared to the faster
R-CNN, the accuracy of predicting the bounding box and
classification is lower. To improve the object positioning
accuracy and recall rate, the YOLO-V2 network implements
an anchor box as in the faster R-CNN to improve the design
of the network structure. Compared with the YOLO-V2 net-
work, the most notable aspect regarding the YOLO-V3 is
that a multiscale prediction method is employed, which leads
to a qualitative improvement in the detection accuracy and
average detection time.

Compared with the target objects in visible light images,
the target objects in infrared images possess a considerably
smaller amount of feature information. In the process of
convolution and pooling of the YOLO-V3 network, a large
amount of feature information is lost, which is unfavorable
for the accurate localization and classification of targets.
To address this problem, DenseNet [29] blocks are added
before the residual components of Darknet-53, which is the
basic network for the YOLO-V3. The use of the DenseNet
improves the network performance in the context of feature
reuse, which makes the feature information of the targets in
infrared images more effective. The DenseNet blocks splice
all the convolutional modules, owing to which, the input to
each layer of the network includes the output of all the previ-

ous layers of the network. The use of such DenseNet blocks
improves the transmission efficiency of the information and
gradients in the network, as the gradient is obtained from the
loss function and input signal. This network structure also
enables the realization of regularization.

B. DETECTION OF SALIENCY MAP OF INFRARED IMAGES
Because infrared images lack information regarding the
colors, textures, sharp edges and boundaries of variable
human gestures, it is difficult to accurately distinguish the
human body and background considering only the features
of the brightness information in infrared images. In addition,
changes in the temperature considerably influence the imag-
ing results. To address this problem, the saliency maps of
infrared images are detected as an additional input channel
for the gesture detection network to improve the robustness of
the proposedmodel. In this work, we propose an algorithm for
the multiscale optimization of cellular automata to enable the
detection of the saliency maps in infrared images, as shown
in Figure 4.

First, the original infrared images are segmented into
superpixel maps with five different scales by using the super-
pixel segmentation algorithm named simple linear iterative
clustering (SLIC). Next, the numbers of superpixel blocks
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FIGURE 3. Network parameters of the improved YOLO-V3 network.

are reduced using the density based spatial clustering of
application with noise (DBSCAN) algorithm. The superpixel
maps of the saliency features are detected via the improved
cellular automaton. Finally, using the framework of the fusion
algorithm in Bayesian theory, the final saliency image is
obtained.

1) SUPERPIXEL SEGMENTATION
The SLIC algorithm, which is an image segmentation algo-
rithm, was proposed by Ren X. in 2003 [30]. This algorithm
uses the similarity of the features between the pixels to
group the pixels, and a small number of superpixels are used
to describe the characteristics of the images. Consequently,

the complexity and redundant information of images can be
considerably reduced, which helps improve the speed of the
subsequent image processing calculations and real time per-
formance of target detection. The SLIC algorithm used in this
paper is a simple linear iterative clustering algorithm, which
transforms the original infrared image into a 5 dimensional
feature vector.

The process employed by the SLIC superpixel segmen-
tation algorithm can be described as follows: initialize the
clustering center of the infrared images and set the number of
superpixels and step size; calculate the gradient value of all
the pixel points in the 3× 3 field around the clustering center
and reselect the clustering center according to the minimum
gradient value; label each pixel in the neighborhood around

VOLUME 8, 2020 88231



K. Geng, G. Yin: Using Deep Learning in Infrared Images to Enable Human Gesture Recognition for Autonomous Vehicles

FIGURE 4. Frame diagram of the proposed saliency detection algorithm in infrared images.

each clustering center; calculate the distance between the
pixel points in the surrounding neighborhood and its clus-
tering center. The distance between two pixel points in the
infrared image is obtained as

D′ =

√(
dc
Nc

)2

+

(
ds
Ns

)2

where Ns represents the maximum spatial distance within
the cluster; Nc represents the maximum color distance; dc
represents the color distance; ds and represents the spatial
distance.

The following scales were selected for the superpixel maps
in this work: 50, 100, 200, 500, and 1000, as shown in Fig-
ure 4. Replacing the pixel information with the information
of the superpixel blocks can effectively reduce the redundant
information of the infrared images and increase the speed of
the subsequent processing algorithms. Furthermore, by using
different scales, human targets with different spatial scales in
the infrared images can be segmented more effectively.

2) SUPERPIXEL CLUSTERING
DBSCAN, which is a clustering algorithm proposed by Ester
M. [31], has become one of the most widely used clustering
algorithms as it can discover arbitrarily shaped clusters and
eliminate noisy data. The DBSCAN technique is a spatial
data clustering method based on density, using which, a high
density region can be divided into a cluster, and arbitrary
shapes in the spatial dataset can be found. We present the
following definitions to elucidate upon the mechanism of the
algorithm:
• Eps neighborhood of point p : a circular area with the
center at p and radius of Eps; p belongs to dataset D.
The set of points included in the Eps neighborhood is
denoted as NEps (p) = {q ∈ D |dist (p, q) ≤ Eps };

• MinPts of point p :minimum number of points in an Eps
neighborhood of point p;

• Density of point p: number of points within the Eps
neighborhood of point p;

• Core point: the point that satisfies the condition∣∣NEps (p)∣∣ ≥ MinPts; here, MinPts is the minimum
number of points in the Eps neighborhood of point p;

• Border point: a point that is contained in the Eps neigh-
borhood of point p but is not the core point;

• Noise point: a point that is neither a core point nor a
border point;

• Directly density reachable: a point p is directly density
reachable from a point q with regard to Eps andMinPts,
if p ∈ NEps (q) and

∣∣NEps (q)∣∣ ≥ MinPts;
• Density reachable: a point p is density reachable from
a point q with regard to Eps and MinPts, if there exists
a chain of points p1, p2, · · · , pn, p1 = q, pn = p, such
that pi+1 is directly density reachable from pi;

• Density connected: a point p is density connected to a
point q with regard to Eps and MinPts, if there exists a
point w such that both p and q are density reachable from
w.

The key concept of this algorithm is to find all the core
points and form the clusters by clustering the core points with
all the points that are reachable from it. The specific algorithm
process can be described as follows: arbitrarily select a point
p from the database; retrieve all the points density reachable
from p with regard to Eps and MinPts; if p is a core point,
a cluster is formed; if p is a border point, no points are density
reachable from p, and DBSCAN visits the next point of the
database; the process is continued until all the points have
been processed.

3) SALIENCY DETECTION BASED ON CELLULAR AUTOMATA
In this paper, the cellular automaton is used to detect the
saliency features of the infrared images. The clustered super-
pixel maps are taken as the input, and the accuracy of the
saliency maps are improved by optimizing the update rules.
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• Impact Factor Matrix: It is intuitive to accept that neigh-
bors with more similar color features have a greater
influence on a cell’s next state. The similarity of any pair
of superpixels is measured using a defined distance in
the CIELAB color space. We construct the impact factor
matrix F =

[
fij
]
N×N by defining the impact factor fij of

superpixel i to j as

fij =

 exp

(
−
∥∥ci, cj∥∥
σ 2
3

)
, j ∈ NB (i)

0 , i = j or otherwise

where
∥∥ci, cj∥∥ denotes the Euclidean distance in the

CIELAB color space between the superpixel i and j; σ3 is
a parameter to control the degree of the similarity;NB (i)
is the set of neighbors of cell i. To normalize impact fac-
tor matrix, a degree matrix D = diag {d1, d2, · · · , dN }
is generated, where di =

∑
fij. Finally, a row normal-

ized impact factor matrix can be clearly determined as
follows

F∗ = D−1 · F

• Coherence Matrix:Because the subsequent state of each
cell is determined by its current state as well as the
state of its neighbors, the importance of the two decisive
factors must be balanced. In particular, if a superpixel
is considerably different from all the neighbors in the
color space, its next state will be primarily dependent
on the cell itself. However, if a cell is similar to the
neighbors, it is more likely to be assimilated by the
local environment. We build a coherence matrix C =
diag {c1, c2, · · · , cN } to better promote the evolution of
all the cells. The coherence of each cell toward its current
state can be calculated as

ci =
1

max
(
fij
)

To control ci ∈ [b, a+ b], we construct the coherence
matrix C∗ = diag

{
c∗1, c

∗

2, · · · , c
∗
N

}
using the following

formulation:

c∗i = a ·
ci −min

(
cj
)

max
(
cj
)
−min

(
cj
) + b

where j = 1, 2, · · · ,N . We set the constants a and b as
0.6 and 0.2, respectively. Using the coherencematrixC∗,
each cell can automatically evolve into a more accurate
and steady state. Furthermore, the salient object can be
more easily detected under the influence of the neigh-
bors.

• Synchronous Updating Rule: In single layer cellular
automata, all the cells update their states simultaneously
according to the update rule. Given an impact factor
matrix and coherence matrix, the synchronous updating
rule f : SNB→ S can be defined as follows:

S t+1 = C∗ · S t +
(
I − C∗

)
· F∗ · S t

where I is the identity matrix, and C∗ and F∗ denote the
coherence matrix and impact factor matrix, respectively. By
using this update machine to create the original saliency map
for each scale space, the respective optimized saliency maps
can be obtained.

4) BAYESIAN THEORY FUSION METHOD
Due to the different scales of superpixel segmentation,
the optimized saliency maps obtained in each scale space
have their own advantages and disadvantages. This paper
uses a fusion method based on the Bayesian theory, which
can be used to obtain the optimal significance by com-
bining the saliency values of each scale. In particular, the
saliency map of any scale Si (i = 1, 2, · · · , 5) is selected as
the Bayesian prior probability, and the other four saliency
maps Sj (j 6= i, j = 1, 2, · · · , 5) are defined as the likelihood
probability. Let the current Si merge with Sj separately. The
final four posterior probability maps are added, and the aver-
age is considered as the final saliency map. The detailed steps
can be described as follows:
• Use Fi and Bi to represent the foreground and back-
ground regions, respectively. NFi and NBi represent the
number of pixels in the foreground and background
regions, respectively.

• Calculate the distribution characteristics of Sj in the fore-
ground and background regions. In the normalized sta-
tistical distribution histogram for the significance value
Sj, the observation likelihood probability of pixel x can
be expressed considering the value of the corresponding
bit of Sj (x), as follows:

P
(
Sj (x)

∣∣Fi) = NbFi(Sj(x))
NFi

P
(
Sj (x)

∣∣Bi) = NbBi(Sj(x))
NBi

where NbFi(Sj(x)) and NbBi(Sj(x)) respectively represent
the number of pixels in the feature Sj (x) bits falling in
the foreground and background statistical histograms.

• If Si is the Bayesian prior probability, the posterior prob-
ability can be calculated as follows:

• Add the results of the four time two-two fusion and
average these values to obtain the final saliency map.

III. DATASET DESCRIPTION
A. IMAGE DATA ACQUISITION
The infrared images for training and testing the pro-
posed deep learning human gesture recognition model were
obtained using an infrared camera with a pixel resolution
of 640 × 480. The images were acquired at the Southeast
University Jiulong Lake Campus in Nanjing, Jiangsu, China.
Our data acquisition platform consisted of an infrared camera
and two RGB cameras, one of which had a polarizing filter,
as shown in Figure 5. To facilitate the data collection process,
the platform was fixed on top of an autonomous ground vehi-
cle. The image registration of multiple cameras was achieved
by using a calibration matrix.
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FIGURE 5. Image data acquisition platform.

The infrared images were captured under sunny, cloudy,
misty, and slightly rainy weather conditions (the light illumi-
nance ranged from less than 50 lux to more than 50,000 lux).
The acquisition period was relatively long and lasted from
June to October. The acquisition was initiated at 9 a.m.,
4 p.m., and 8 p.m. Furthermore, images were gathered in
foggy weather and night time conditions.

A total of 2492 infrared images were initially collected,
involving 4 main gesture classes, each of which con-
tained several approximated gestures in morphological terms,
including ‘‘squatting’’ (sitting, kneeling, squatting, etc.),
‘‘lying’’ (lying on the back, side, stomach, etc.), ‘‘standing’’
(facing the lens, with side to the lens, with back to the lens,
etc.), ‘‘walking’’ (running, brisk walking, slowwalking, etc.).
Among all these collected images, the proportion of images
with squatting, lying, standing, and walking gestures was
29%, 8%, 39%, and 24%, respectively. In this work, 2000 of
these images were randomly chosen to generate the training
dataset, which was used to train the human gesture detection
model. The remaining 492 images were used as testing data
to verify the performance of the proposed detection model.

B. IMAGE DATA ACQUISITION AUGMENTATION
Since different weather conditions, time of the day, seasons
and other factors considerably influence the illumination,
the generalization ability of the proposed human motion
detection model depends on the integrity of the training
dataset. To enhance the richness of the experimental dataset,
the collected images were preprocessed in terms of the bright-
ness, rotation, horizontal mirror, noise addition and blurring,
as shown in Figure 6. After data augmentation, the num-
bers of images in the training and testing dataset increased
to 16000 and 3936, respectively. The training and testing
datasets contained 33264 labeled human gestures, with the
numbers of ‘‘squatting’’, ‘‘lying’’, ‘‘standing’’ and ‘‘walk-
ing’’ being 7392, 8928, 9032 and 7912, respectively. The

FIGURE 6. Image augmentation methods: (a) original image;
(b–e) brightness transformation; (f) horizontal mirror; (g) salt and pepper
noise addition; (h) blur processing.

number of labeled ‘‘lying’’ and ‘‘standing’’ gestures were
larger than that for the ‘‘walking’’ gesture, and the number
of ‘‘squatting’’ gestures was the smallest. One image may
contain multiple different human gesture targets and the com-
pleted dataset is shown in Table 1.

IV. EXPERIMENT AND DISCUSSION
An image processing server with two NVIDIA 1080TI
graphic cards was used to train and test the proposed human
gesture detection model. The initialization parameters of the
proposed network are listed in Table 2.

Considering the memory limit of the server, the input
images were resized to a resolution of 416 × 416, and
the batch was set as 16. We used 50,400 training steps to
better analyze the training process. The initial learning rate
was 0.001, and it was reduced to 0.0001 and 0.00001 after
30,000 and 45,000, respectively. The momentum of the net-
work was 0.9, and the weight decay regularization was set as
0.0005. A series of testing experiments were conducted on

P
(
Fi
∣∣Sj (x)) = Si (x)P

(
Sj (x) |Fi

)
Si (x)P

(
Sj (x) |Fi

)
+ (1− Si (x))P

(
Sj (x) |Bi

)
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TABLE 1. The number of images generated by data augmentation
methods.

TABLE 2. Initialization parameters for the proposed network.

the trained human gesture detection model by using testing
images with a resolution of 640 × 480. The following indi-
cators were used to evaluate the effectiveness of the human
gesture detection model: precision and recall, F1 score, loss
function, IoU , detection time, average precision (AP) and
mean average precision (mAP), which have been widely used
in the existing literature. Herein, we introduce the definition
and function of these indicators.

The precision (P) and recall (R) can be defined as follows:

P = TP
/
(TP+ FP);R = TP

/
(TP+ FN )

where TP represents the true positive samples, FP denotes
the false positive samples, TN represents the true negative
samples, and FN denotes the false negative samples.

The AP represents the quality of the model in each cate-
gory, and it can be obtained as

AP =
∫ 1

0
P (R) dR

The mAP indicates the quality of the model in all the
categories, and it can be obtained as

AP =

(
C∑
i=1

APi

)/
C

where C is the number of categories.
The F1 score was used to evaluate the performance of the

model, and it was determined as

F1 = (2× P× R)
/
(P+ R)

In addition, the loss function was used to evaluate the
performance of the network model, and it was determined as
follows:

Loss = Errorcoord + Erroriou + Errorcls

The coordinate prediction error Errorcoord can be
expressed as

zErrorcoord = λcoord
s2∑
i=1

B∑
j=1

Lobjij

[(
xi − x̂i

)2
+
(
yi − ŷi

)2]

+λcoord

s2∑
i=1

B∑
j=1

Lobjij

[(
wi−ŵi

)2
+

(
hi−ĥi

)2]

where λcoord is the weight of the coordinate error; s2 is the
number of grids in the image; B is the number of bounding
boxes generated by each grid; Lobjij = 1, if the object falls

into the jth bounding box in grid i and Lobjij = 0 otherwise;[
x̂i, ŷi, ŵi, ĥi

]
and [xi, yi,wi, hi] denote the predicted and true

values of the center coordinates, height, and weight of the
predicted bounding box, respectively.

The error Erroriou can be defined as follows:

Erroriou =
s2∑
i=1

B∑
j=1

Lobjij

(
Ci − Ĉi

)2

+λnoobj

s2∑
i=1

B∑
j=1

Lobjij

(
Ci − Ĉi

)2
where λnoobj is the weight of the IoU error; Ĉi and Ci denote
the predicted confidence and true confidence, respectively.

The classification error Errorcls can be defined as follows:

Errorcls =
s2∑
i=1

B∑
j=1

Lobjij

∑
c∈classes

(
pi (c)− p̂i (c)

)2
where c is the class that the target belongs to. pi (c) and p̂i (c)
respectively refer to the true and predicted probability that the
object belonging to class c lies in grid i.

The IoU is another criterion used to evaluate the detection
accuracy, and it can be obtained by calculating the overlap
ratio between the predicted and true bounding boxes, as fol-
lows:

IoU = Soverlap
/
Sunion

where Soverlap is the intersection area of the predicted and
true bounding boxes, and Sunion denotes the union area of the
predicted and true bounding boxes.

The average detection times were also compared,
as reported in this paper.

A. EFFECT OF DATA CATEGORIES
To verify the effect of the different categories in the dataset
on the detection results, the infrared images with squatting,
lying, standing and walking human gestures, were used to
train and test the proposed human gesture detection neural
network. The P–R curves of different categories for the pro-
posed model were as shown in Figure 7.
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FIGURE 7. P-R curves of different categories for the proposed human
gesture detection model.

TABLE 3. AP values of different data categories.

TABLE 4. Classification prediction results (%).

Mathematically, the AP is defined as the area under the
P–R curve, reflecting the average performance of the algo-
rithm under different IoU thresholds, and it was set as 0.5 in
this work. The AP and F1 scores of different data categories
are presented in Table 3.

The mAP is the mean of the AP values in a subclass, and its
value was 76.93% for the proposed human gesture detection
model.

To observe the boundary boxes, the ‘‘squatting’’, ‘‘lying’’,
‘‘standing’’ and ‘‘walking’’ categories were used to label the
human gestures, as shown in Figure 8.

We considered the confusion matrix of the classification
prediction results to evaluate the performance of the proposed
method, as shown in Table 4. The values in the main diagonal
denote the percentages of the correctly classified categories,
and the remaining values correspond to the percentages of
the incorrectly classified categories. It was noted that the
main errors occurred when ‘‘squatting’’ was classified as
‘‘lying’’, ‘‘lying’’ was classified as ‘‘squatting’’, ‘‘standing’’
was classified as ‘‘walking’’, and ‘‘walking’’ was classified as
‘‘standing’’.We believe that ‘‘squatting’’ and ‘‘lying’’, as well
as ‘‘standing’’ and ‘‘walking’’, are considerably similar in
terms of the feature information. Furthermore, the sizes of the
datasets are relatively small, and the datasets are relatively
unbalanced. These aspects need to be further considered to
solve the problem of interest.

From the above training and testing results, it can be noted
that the categories of the targets affect the detection results of

FIGURE 8. Detected humans with different gestures in the infrared
images: (a) squatting; (b) lying; (c) standing; (d) walking; (e–i)
combination of several gestures.

TABLE 5. Comparison of F1, IoU, mAP and average detection time.

the proposed network. The number of humans with squatting
gestures is relatively small, and thus, the detection results of
human targets with squatting gestures are worse than those
for human targets with other gestures. The proposed model
obtained the best detection results for infrared images with
walking human gestures due to the more notable features in
the infrared images. This finding occurs because the body
temperature rises to different degrees after walking and run-
ning motions.

B. COMPARISON WITH DIFFERENT DETECTION MODELS
The detection performances of the proposed model was com-
pared with that of several other detection models, including
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TABLE 6. Classification results for the proposed network model when
using different types of images.

FIGURE 9. Loss curves of several models.

the single shot multibox detector (SSD), original YOLO-
V3 RetinaNet [32], YOLACT [33] and faster R-CNN, to ver-
ify the superiority of the proposed human gesture detection
model. The loss function curves of these detection models
during training are as shown in Figure 9. The training results
of different target detection models indicate that the average
loss continuously reduces with an increase in the number
of iterations, and the proposed detection model consistently
exhibits a faster convergence in the training process. The final
loss of the SSD, original YOLO-V3, RetinaNet, YOLACT,
faster R-CNNand proposed detectionmodel is approximately
1.21, 0.84, 0.72, 0.69, 0.62 and 0.51, respectively. In addition,
compared to other target detection models, the loss curve
of our proposed method exhibits a continuously decreasing
trend during the training process until after 45000 training
steps. These results demonstrates the better training perfor-
mance of the proposed human gesture detection model.

The P–R curves for the SSD, original YOLO-V3, Reti-
naNet, YOLACT, faster R-CNN and the proposed model are
as shown in Figure 10. The detection results pertaining to the
F1 scores, IoU function mAP and average detection time of
the target detection models are summarized in Table 5.

The F1 score and IoU value for the proposed network
are approximately 0.862 and 0.873, respectively, which are
higher than those for the SSD model, original YOLO-V3,
RetinaNet and YOLACT models. Although the F1 score and
IoU value of the faster R-CNNmodel are slightly higher than
those of the proposed model (by 0.013 and 0.023, respec-
tively), the average detection time is 0.968 s, which is approx-
imately 8 times larger than that for the proposed model. This

FIGURE 10. P–R curves of several models.

analysis indicates that the proposed model exhibits excellent
processing speed performance while ensuring a high detec-
tion accuracy.

C. COMPARISON OF CLASSIFICATION RESULTS
The time span of the data collection process is from 9 a.m.
to 8 p.m., and the light intensity varies considerably (from
less than 50 lux to more than 50,000 lux). It is difficult to
identify the gestures of the humans from the RGB images
under the conditions of weak light intensity, especially in
the evening and night time. To further verify the effective-
ness of the proposed method, we trained and tested the pro-
posed neural network model using pure RGB images, pure
infrared images, and saliency thermal image pairs. Several
RGB image samples with less observable human gestures
and the corresponding infrared images and saliency infrared
image pairs are shown in Figure 11.

As shown in Figure 11, the gestures of humans cannot be
easily recognized in many cases when using an RGB image,
such as in the presence of a street light under dusk conditions,
street light in the evening, absence of street light in the late
evening, occlusion and the human and background exhibit-
ing similar colors. However, in these cases, the contour and
brightness features of the humans are relatively more notable
in the infrared image and the corresponding saliency images.
The classification results for the proposed network model,
as obtained using different types of images were compared,
as presented in Table 6.

The classification results presented in Table 6 confirm that
by using the saliency infrared image pairs and data fusion
method, we can effectively improve the detection accuracy of
the proposed network while maintaining a reasonable detec-
tion time.

D. DETECTION RESULTS UNDER THE CONDITION OF
OCCLUSION AND OVERLAP
In outdoor scenes, the presence of occlusion due to trees,
buildings and other structures, and the overlap between
humans can affect the detection accuracy. The results of
the F1 scores, IoU and AP for the proposed human gesture
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FIGURE 11. Pure RGB, pure infrared, and saliency thermal image pair dataset: (a) street light in dusk conditions; (b) dim street light in the
evening; (c) condition without street light in the late evening; (d) occlusion; (e) human and background exhibit similar colors.

FIGURE 12. Missed and mistaken detection results of humans, owing to
occlusion and overlap: (a–c) missed; (d–f) mistaken.

detection model under the conditions of occlusion and over-
lap are shown in Fig. 12 and Table 7.

These detection results indicate that under occlusion and
overlap conditions, the accuracy of the human gesture

FIGURE 13. Incorrect recognition of humans with confidence values of
(a) 53%; (b) 64%; (c) 51%.

detectionmodels is reduced. However, in most cases of occlu-
sion and overlap, the proposed model still exhibits a satis-
factory performance for human gesture detection in infrared
images.

E. DETECTION RESULTS IN SCENES WITHOUT HUMANS
In an outdoor scene, it is possible for an infrared camera to
capture images that do not contain human targets. We used
50 infrared images that did not contain human targets to
verify the performance of the proposed detection model and
to test whether the model would identify some humanoid
targets as humans. Specifically, infrared images containing
backgrounds of the sky, grass and buildings were collected.
The detection results indicated that some humanoid branches
were recognized as humans, as shown in Figure 13.

These test results indicate that the proposed detection
model can detect most of the human targets in infrared
images, even under some severe occlusion and overlap
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TABLE 7. F1 scores, IoU and AP values under occlusion and overlap
conditions.

conditions. However, in some scenarios, humanoid targets
may still be identified as humans. This problem can likely
be solved by increasing the scale of the target dataset under a
larger number of scenarios and environmental conditions.

V. CONCLUSION
This work reports upon a deep learning approach for
human gesture detection in infrared images, based on the
improved YOLO-V3 network. The proposed model uses
three DenseNet blocks, added before the residual compo-
nents in the YOLO-V3 network, to enhance the convolu-
tional feature propagation and improve the human gesture
detection performance. The saliency maps of the infrared
images were detected as an additional input channel for
the network to improve the robustness and performance of
the proposed human gesture detection model. To verify the
detection performance of the proposed model, several exper-
iments were conducted, and the results indicated that the
proposed network has a better detection performance than
those of the original detection network YOLO-V3 and SSD.
The detection accuracy of the proposed method is compa-
rable to that of the faster R-CNN, which is a state of the
art network in terms of the accuracy. However, the pro-
posed network exhibits a notable advantage in terms of the
detection time performance. The proposed model is capa-
ble of human gesture detection under low visibility images,
such as in rainy and foggy weather, night time conditions,
and conditions in which the colors of the targets and the
background are similar. In addition, the proposed model
exhibits a high performance for human gesture detection
under conditions involving occlusion and overlap. In the
future, we aim to further optimize the human gesture dataset
of the infrared images and predict the dynamic behavior of
humans.
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