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ABSTRACT Base on the outer space search and the branch-and-bound framework, this paper presents
an efficient outer space branch-and-bound algorithm for globally solving generalized linear multiplicative
programming problem. First of all, we convert the problem into an equivalent problem. Then, by utilizing a
direct relaxation method, we establish the linear relaxed problem to compute the lower bound of the global
optimal value of the equivalent problem. By subsequently subdividing the initial outer space rectangle and
solving a series of linear relaxed problems, the proposed algorithm is convergent to the global optimal
solution of the primal problem. Finally, compared with some known algorithms, numerical experiments
are given to demonstrate the feasibility and effectiveness of the proposed algorithm.

INDEX TERMS Generalized linearmultiplicative programming problem, global optimization, linear relaxed
problem, branch-and-bound algorithm.

I. INTRODUCTION
We investigate the following generalized linear multiplicative
programming problem:

(MP) :


min f (x) =

p∑
i=1

(
n∑
j=1

cijxj + ei)(
n∑
j=1

dijxj + gi)

s.t. x ∈ X = {x | Ax ≤ b, x ≥ 0},

where p ≥ 2,
n∑
j=1

cijxj+ei and
n∑
j=1

dijxj+gi, i = 1, . . . , p, are

all bounded linear (affine) functions defined on X , A ∈ Rm×n,
b ∈ Rm, X is a bounded polyhedron set. Because the prob-
lem (MP) have a wide of applications in microeconomics [1],
data mining/pattern recognition [2], plant layout design [3],
system reliability analysis and optimization [4]–[10], optimal
resource allocation for Power-Efficient MC-NOMA [11] and

The associate editor coordinating the review of this manuscript and
approving it for publication was Khalid Aamir.

other fields [12]–[14], and it has potential theoretical and
computational difficulty. So that, it has attracted the attentions
of many researchers and practitioners.

In the past few decades, a large number of algorithms
have been proposed for the problem (MP) and its special
form. Most of these algorithms are based on the branch and
bound framework, for examples, by utilizing convex envelope
and concave envelope of logarithmic function to construct
linear relaxation, Shen and Jiao [15] proposed a branch-
and-bound algorithm for linear multiplicative programming
problem with exponents; by utilizing two-level linear relax-
ation to construct linear relaxed problem, Jiao [16] pro-
posed a branch-and-bound algorithm for generalized linear
multiplicative programming problem of generalized poly-
nomial forms; based on partitioning and searching out-
come space region, Gao et al. [17] presented an outcome
space branch-and-bound algorithm for the special form of
the problem (MP); based on utilizing the convex envelope
of bilinear function, and by successively subdividing and
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searching the outcome space rectangle of the affine functions
n∑
j=1

dijxj + gi, i = 1, . . . , p, Yin et al. [18] proposed a new

outcome space branch-and-bound algorithm for solving the
general form of problem (MP); by using new linearizing
technique, Wang et al. [19] presented a novel algorithm for
the problem (MP); based on simplex partition and search,
wang et al. [20] proposed a simplex branch-and-bound algo-
rithm for the problem (MP). In addition to the branch and
bound algorithm mentioned above, some other types of algo-
rithms are also proposed to solve the problem (MP), such
as, Phuong and Tuy [21] and Chen and Jiao [22] proposed
two monotonic optimization methods for generalized linear
fractional programming problem and generalized linear mul-
tiplicative programming problems; by utilizing the concept
of level set, Liu and Zhao [10] gave a level set method
for solving the linear multiplicative programming problem
with exponents. Recently, Shen et al. [23]–[25] proposed
three polynomial time approximation algorithms for gener-
alized linear fractional multiplicative programming problem;
Zhao and Zhao [12] presented a convex relaxation method
for generalized linear multiplicative programming problem
with generalized linear multiplicative constraints; based on
geometric programming solver, Zhao and Yang [13] also
proposed an inner approximation algorithm for generalized
linear multiplicative programming problem with generalized
linear multiplicative constraints; Jiao et al. [5] formulated an
outcome space method for generalized linear multiplicative
programming problem with linear constraints; these methods
can be also used to solve the problem (MP) considered in this
paper.

But as far as we know, apart from [18], most of the

algorithms mentioned above require that
n∑
j=1

cijxj + ei ≥ 0

and
n∑
j=1

dijxj + gi ≥ 0, it is to say, the algorithm for the

problem (MP) with that
n∑
j=1

cijxj + ei and
n∑
j=1

dijxj + gi can

acquire arbitrary values has been still little studied in the
literatures. Thus, it is still very necessary to propose a new
practical algorithm for the general form of the problem (MP).

This paper will present a new outer space branch-
and-bound algorithm for globally solving generalized lin-
ear multiplicative programming problem (MP). First of all,
we convert the problem (MP) into an equivalent nonconvex
programming problem (EQ). Next, by utilizing the direct
linear relaxed technique, we establish the linear relaxed
problem of the equivalent problem (EQ). By subsequently
partitioning the outer space rectangle of the images of
n∑
j=1

dijxj + gi, i = 1, . . . , p, and solving a series of linear

relaxed problems, the proposed algorithm is convergent to
the global minimum of the primal problem (MP). Compared
with the existent algorithms, the proposed algorithm have
the following some potential practical and computational
advantages:

(i) The mathematical modelling of the considered problem
has a more general form, which does not impose any special

signal restrictions on each linear function
n∑
j=1

cijxj + ei and
n∑
j=1

dijxj + gi, i = 1, . . . , p, in the objective function of the

problem (MP).
(ii) The branching search take place in the outer space rect-

angle of the images of
n∑
j=1

dijxj + gi, i = 1, . . . , p, rather than

the rectangle of variable region, which will greatly reduce the
dimension of the searched space and decrease the required
computational efforts since n usually far exceeds p in many
practical problems.

(iii) During the process of the branch-and-bound search, all
subproblems that need to be solved in each iteration are all
linear programming problems, and the scale of these linear
programming problems which can be solved by the known
LP solver remains unchanged.

(iv) Numerical experiments show that the proposed algo-
rithm has the stronger robustness, and which can be used to
solve all test problems to get their global optimal solutions
and global optimal values with the higher computational
efficiency.

The remaining section of the paper is organized as follows.
Firstly, we convert the problem (MP) into an equivalent prob-
lem (EQ) in Section 2, and by utilizing the direct relaxation
technique, we establish its linear relaxed problem. Secondly,
we propose a new outer space branch-and-bound algorithm
for the problem (EQ) in Section 3, and derive its global con-
vergence. Thirdly, some numerical experiments are reported
in Section 4, and numerical results demonstrate the stronger
robustness and the higher efficiency of the algorithm. Finally,
we present some concluding remarks in Section 5 and give
some future works.

II. EQUIVALENT PROBLEM AND ITS LINEAR
RELAXED PROGRAMMING PROBLEM
In this section, we firstly will convert the problem (MP) into
an equivalent problem. Next, we will drive the linear relaxed
problem of the equivalent problem.

Without losing generality, for each j = 1, . . . , n, we
assume that l0j = minx∈X xj and u0j = maxx∈X xj. And for

each i = 1, . . . , p, we let L0i = minx∈X
n∑
j=1

dijxj + gi and

U0
i = maxx∈X

n∑
j=1

dijxj + gi, which are easily computed by

solving 2p linear programming problems. Let F0
= {α ∈

Rp | L0i ≤ αi ≤ U
0
i , i = 1, . . . , p}, we consider the following

problem:

(EQ) :



min G(x, α) =
p∑
i=1

αi(
n∑
j=1

cijxj + ei)

s.t.
n∑
j=1

dijxj + gi − αi = 0, i = 1, . . . , p,

x ∈ X , α ∈ F0.
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Obviously, the problems (MP) and (EQ) have the same
global optimal solutions and global optimal values. In the fol-
lowing, we will present a direct linear relaxation method for
constructing the linear relaxed problem of the problem (EQ),
which is given by the following Theorem 1.
Theorem 1: Let F = {α ∈ Rp | Li ≤ αi ≤ Ui, i =

1, . . . , p} ⊆ F0, for any x ∈ X and α ∈ F , define the
functions G(x, α), GRC (x, α) and GRC (x, α) as follows:

G(x, α) =
p∑
i=1

αi(
n∑
j=1

cijxj + ei),

GRC (x, α) =
p∑
i=1

(
n∑

j=1,cij>0

cijLixj +
n∑

j=1,cij<0

cijUixj

+ eiαi),

GRC (x, α) =
p∑
i=1

(
n∑

j=1,cij>0

cijUixj +
n∑

j=1,cij<0

cijLixj

+ eiαi).

Then, we have the following conclusions:
(i) For any x ∈ X and α ∈ F , we have

GRC (x, α) ≤ G(x, α) ≤ GRC (x, α);

(ii)

lim
‖U−L‖→0

GRC (x, α) = lim
‖U−L‖→0

G(x, α)

= lim
‖U−L‖→0

GRC (x, α).

Proof: (i) Since

G(x, α)− GRC (x, α)

=

p∑
i=1

αi(
n∑
j=1

cijxj + ei)

−

p∑
i=1

(
n∑

j=1,cij>0

cijLixj +
n∑

j=1,cij<0

cijUixj + eiαi)

=

p∑
i=1

(
n∑
j=1

cijαixj −
n∑

j=1,cij>0

cijLixj −
n∑

j=1,cij<0

cijUixj)

=

p∑
i=1

[
n∑

j=1,cij>0

cij(αi − Li)xj +
n∑

j=1,cij<0

cij(αi − Ui)xj]

≥ 0

and

GRC (x, α)− G(x, α)

=

p∑
i=1

(
n∑

j=1,cij>0

cijUixj +
n∑

j=1,cij<0

cijLixj + eiαi)

−

p∑
i=1

αi(
n∑
j=1

cijxj + ei)

=

p∑
i=1

(
n∑

j=1,cij>0

cijUixj +
n∑

j=1,cij<0

cijLixj −
n∑
j=1

cijαixj)

=

p∑
i=1

[
n∑

j=1,cij>0

cij(Ui − αi)xj +
n∑

j=1,cij<0

cij(Li − αi)xj]

≥ 0,

from the above inequalities, we can get that, for any x ∈ X
and α ∈ F ,

GRC (x, α) ≤ G(x, α) ≤ GRC (x, α).

(ii) since

G(x, α)− GRC (x, α)

=

p∑
i=1

[
n∑

j=1,cij>0

cij(αi − Li)xj +
n∑

j=1,cij<0

cij(αi − Ui)xj]

≤

p∑
i=1

[
n∑

j=1,cij>0

cij(Ui − Li)xj −
n∑

j=1,cij<0

cij(Ui − Li)xj]

=

p∑
i=1

(Ui − Li)(
n∑

j=1,cij>0

cijxj −
n∑

j=1,cij<0

cijxj)

≤

p∑
i=1

(Ui − Li)(
n∑

j=1,cij>0

cijuj −
n∑

j=1,cij<0

cijlj)

and

GRC (x, α)− G(x, α)

=

p∑
i=1

[
n∑

j=1,cij>0

cij(Ui − αi)xj +
n∑

j=1,cij<0

cij(Li − αi)xj]

≤

p∑
i=1

[
n∑

j=1,cij>0

cij(Ui − Li)xj −
n∑

j=1,cij<0

cij(Ui − Li)xj]

=

p∑
i=1

(Ui − Li)(
n∑

j=1,cij>0

cijxj −
n∑

j=1,cij<0

cijxj)

≤

p∑
i=1

(Ui − Li)(
n∑

j=1,cij>0

cijuj −
n∑

j=1,cij<0

cijlj),

this implies that

lim
‖U−L‖→0

GRC (x, α) = lim
‖U−L‖→0

G(x, α)

= lim
‖U−L‖→0

GRC (x, α).

and the proof is completed. �
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Let F = {α ∈ Rp | Li ≤ αi ≤ Ui, i = 1, . . . , p} be
F0 or its a sub-rectangle, by Theorem 1, we can establish the
linear relaxed problem (LPF ) of the problem (EQ) over F as
follows:

(LPF ) :



min GRC (x, α) =
p∑
i=1

(
n∑

j=1,cij>0

cijLixj

+

n∑
j=1,cij<0

cijUixj + eiαi)

s.t.
n∑
j=1

dijxj + gi − αi = 0, i = 1, . . . , p,

x ∈ X , α ∈ F .

By the constructing method for the linear relaxed problem,
over the same rectangle F , it is obvious that the feasible
region of the problem (LPF ) contain the feasible region of the
problem (EQ), and the optimal value of the problem (LPF ) is
less than or equal to that of the problem (EQ). That is to say,
the problem (LPF ) can provide a valid lower bound for the
problem (EQ) over the same rectangle F .

III. OUTER SPACE ALGORITHM AND ITS CONVERGENCE
In this section, we firstly introduce a rectangular bisection
method, then based on the branch-and-bound framework,
combine the rectangular bisection method and the former
linear relaxed problem together, a new outer space branch-
and-bound algorithm is proposed for globally solving the
problem (MP).

A. RECTANGULAR BISECTION METHOD
In the algorithm, the branching process take place in the outer

space rectangle of the affine functions
n∑
j=1

dijxj + gi, i =

1, . . . , p. Without loss of generality, let

Fk−1 = {α ∈ Rp|Li ≤ αi ≤ Ui, i = 1, . . . , p}

be F0 or a sub-rectangle of F0, which is selected for the next
segmentation, the proposed rectangular bisection method is
described as follows. Let

q = argmax{Ui − Li|i = 1, 2, . . . , p}

be subscript of maximum edge of rectangle Fk−1, partition
Fk−1 into two new sub-rectangles

Fk,1 = {α ∈ Rp|Li ≤ αi ≤
Li + Ui

2
, i = q;

Li ≤ αi ≤ Ui, i = 1, 2, . . . , p, i 6= q}

and

Fk,2 = {α ∈ Rp|
Li + Ui

2
≤ αi ≤ Ui, i = q;

Li ≤ αi ≤ Ui, i = 1, 2, . . . , p, i 6= q}.

Without loss of generality, assume {Fk} be a nested rect-
angular subsequence which be formed by the rectangular
partitioning process. Obviously, by the exhaustiveness of the
rectangular bisection method, we can get that lim

k→∞
Fk = α∗.

B. OUTER SPACE BRANCH-AND-BOUND ALGORITHM
Combine the above rectangular bisection method and the
former linear relaxed problem together, a new outer space
branch-and-bound algorithm is proposed for solving the
problem (MP) as follows.

Algorithm Steps
Step 1. Let the initial iteration number k = 0 and the
termination error condition ε ≥ 0, by solving linear pro-
gramming problems, for each i = 1, 2, . . . , p, compute

L0i = min
x∈X

n∑
j=1

dijxj + gi

and

U0
i = max

x∈X

n∑
j=1

dijxj + gi,

let the initial rectangle

F0
= {α ∈ Rp | L0i ≤ αi ≤ U

0
i , i = 1, . . . , p},

and let the initial active node set ϒ0 = {F0
}.

Solve the problem (LPF0 ) to obtain its optimal solution
(x0, α0) and optimal value LB(F0), respectively. Let the
lower bound LB0 = LB(F0) and the upper bound UB0 =
G(x0, α0).
If UB0 − LB0 ≤ ε, then the algorithm terminates, and
obtain the optimal solution (x0, α0) of the (EQ) and the
optimal solution x0 of the (MP) over F0, respectively.
Otherwise, let the deleted rectangle set � = ∅, k = 1, and
go on Step 2.
Step 2. Let UBk = UBk−1, partition Fk−1 into two new
sub-rectangles Fk,1 and Fk,2, let F̄k be the new set of the
partitioned sub-rectangles, and let � = �∪ {Fk−1} be the
set of the deleted rectangle.
For each rectangle Fk,t ∈ F̄k , solve the problem (LPFk,t )
to obtain its optimal solution (xk,t , αk,t ) and optimal value
LB(Fk,t ). If LB(Fk,t ) > UBk , then let F̄k := F̄k \
Fk,t and � = � ∪ {Fk,t }. Otherwise, let UBk =
min{UBk ,G(xk,t , αk,t )} be the new upper bound.
Step 3. Let ϒk = (ϒk−1 \ Fk−1) ∪ {F̄k} be the remaining
partitioned rectangle set, and let LBk = maxF∈ϒk LB(F)
be the new lower bound.
Step 4. If UBk − LBk ≤ ε, then the algorithm stops, and
we get the optimal solution (xk , αk ) of the (EQ) and the
optimal solution xk of the (MP), respectively. Otherwise,
let k = k + 1 and return to Step 2.

C. CONVERGENCE OF OUTER SPACE ALGORITHM
In the subsection, the global convergence of the outer space
branch-and-bound algorithm is given as follows.

If the algorithm terminates going through k iterations, then,
at the kth iteration, we can get the feasible solution xk of
the problem (MP) and the feasible solution (xk , αk ) of the
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problem (EQ) by solving the (LPFk ), where

αki =

n∑
j=1

dijxkj + gi, i = 1, 2, . . . , p.

Let v be the global optimal value of the primal problem (MP).
From the convergent terminating condition, the updating
upper bound methods, the updating lower bound methods,
the equivalence of the problem (MP) and (EQ) and Theo-
rem 1, we can obtain that

G(xk , αk ) ≤ LBk + ε, LBk ≤ v, v ≤ G(xk , αk )

and

f (xk ) = G(xk , αk ).

Combining the several inequalities together, we can follow
that

v ≤ f (xk ) ≤ v+ ε.

Therefore, if the proposed algorithm terminates after going
through k iterations, then xk is an ε−global optimal solution
of the problem (MP).
Theorem 2: If the proposed algorithm generates an infinite

sequence {xk} of solution, then the limitation x∗ of {xk} will
be a global optimal solution of the problem (MP).

Proof: If the proposed algorithm generates an infinite
sequence of solution, then, by solving the linear relaxed
programming problem (LPFk ), we can get a feasible solution
sequence {xk} of the problem (MP) and a feasible solution
sequence {(xk , αk )} of the problem (EQ), where

αki =

n∑
j=1

dijxkj + gi, i = 1, 2, . . . , p.

From the continuity of the linear function αi =
n∑
j=1

dijxj + gi,

αki = (
n∑
j=1

dijxkj + gi) ∈ [Lki ,U
k
i ] and the exhaustiveness of

the rectangular bisection method, for any i ∈ {1, 2, . . . , p},
we have that

n∑
j=1

dijx∗j + gi = lim
k→∞

n∑
j=1

dijxkj + gi

= lim
k→∞

⋂
k

[Lki ,U
k
i ] = α

∗
i .

So that, (x∗, α∗) is a feasible solution of the problem (EQ),
by the Theorem 1, and also since {LBk} is an increasing lower
bound sequence with that LBk ≤ v, we can get that

G(x∗, α∗)≥v ≥ lim
k→∞

LBk= lim
k→∞

GRC (xk , αk )=G(x∗, α∗).

So, by the continuity of the function f (x) and the above
inequalities, we can get that

lim
k→∞

LBk = v = G(x∗, α∗) = f (x∗) = lim
k→∞

f (xk ).

Therefore, the limitation x∗ of {xk} is a global optimal solu-
tion for the problem (MP), the proof is completed. �

D. THE COMPLEXITY OF THE PROPOSED ALGORITHM
Definition 1: A nonempty compact hyper-rectangle with

sides parallel to the axes is denoted by

F = [L1,U1]× . . .× [Lp,Up] ⊂ Rp.

The diameter of a hyper-rectangle F ⊂ Rp is

δ(F) = max{‖α − α′‖2 : α, α′ ∈ F}

=

√
(U1 − L1)2 + . . .+ (Up − Lp)2.

Theorem 3: For the proposed branch-and-bound algo-
rithm, assumed that, for a given feasible hyper-rectangle F0,
there exists a fixed positive number C and an accuracy ε.
In addition, we also assume that the branching process will
eventually subdivide the hyper-rectangle into s = 2p smaller
sub-hyper-rectangles. Then, in the worst case, the num-
ber of iterations of the proposed algorithm by dividing
the hyper-rectangle F0 can be given by the following
expression:

z∑
υ=0

2p.v,

where

z = dlog2
C .δ(F)
ε
e, δ(F) = max{δ(F l) : l ∈ {1, 2, . . . , s}}.

Proof: The proof method is similar to the proof
Theorem 5 in [14].

It can be seen that the number of iterations of the pro-
posed algorithm is exponential growth, but when the size
of p satisfies p � n, our algorithm has an advantage in
solving large-scale problem (MP), and the reader can refer
to [14].

IV. NUMERICAL EXPERIMENT
To test and verify the computational performance and robust-
ness of the algorithm, with the given convergent error
ε = 1.0e− 6, some numerical problems are coded by Mat-
lab 2014a in a microcomputer with Win10 system, Intel(R)
Xeon(R) CPU E5-2620 v4@2.10GHz processor and 16.0GB
RAMmemory, these test problems and their numerical results
are listed as follows.
Problem 1 (Yin et al. [18]; Wang et al. [20]); Shen and

Huang [25]):

min 3x1 − 4x2 + (x1 + 2x2 − 1.5)(2x1 − x2 + 4)
+(x1 − 2x2 + 8.5)(2x1 + x2 − 1)

s.t. 5x1 − 8x2 ≥ −24,
5x1 + 8x2 ≤ 44,
6x1 − 3x2 ≤ 15,
4x1 + 5x2 ≥ 10,
x1 ≥ 0.
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Problem 2 (Yin et al. [18]; Wang et al. [19]);
Wang et al. [20]; Shen and Huang [25]):

min (0.813396x1 + 0.6744x2 + 0.305038x3
+0.129742x4 + 0.217796)
×(0.224508x1 + 0.063458x2 + 0.93223x3
+0.528736x4 + 0.091947)

s.t. 0.488509x1 + 0.063458x2 + 0.945686x3
+0.210704x4 ≤ 3.562809,
−0.324014x1 − 0.501754x2 − 0.719204x3
+0.099562x4 ≤ −0.052215,
0.445225x1 − 0.346896x2 + 0.637939x3
−0.257623x4 ≤ 0.42792,
−0.202821x1 + 0.647361x2 + 0.920135x3
−0.983091x4 ≤ 0.84095,
−0.886420x1 − 0.802444x2 − 0.305441x3
−0.180123x4 ≤ −1.353686,
−0.515399x1 − 0.424820x2 + 0.897498x3
+0.187268x4 ≤ 2.137251,
−0.591515x1 + 0.060581x2 − 0.427365x3
+0.579388x4 ≤ −0.290987,
0.423524x1 + 0.940496x2 − 0.437944x3
−0.742941x4 ≤ 0.37362,
x1, x2, x3, x4 ≥ 0.

Problem 3 (Gao et al. [17]; Yin et al. [18];Wang et al. [19];
Wang et al. [20]; Shen and Huang [25]):

min (x1 + x2)(x1 − x2 + 7)
s.t. 2x1 + x2 ≤ 14,

x1 + x2 ≤ 10,
−4x1 + x2 ≤ 0,
2x1 + x2 ≥ 6,
x1 + 2x2 ≥ 6,
x1 − x2 ≤ 3,
x1 + x2 ≥ 0,
x1 − x2 + 7 ≥ 0,
x1, x2 ≥ 0.

Problem 4 (Yin et al. [18]; Wang et al. [19];
Wang et al. [20]; Shen and Huang [25]):

min x1 + (2x1 − 3x2 + 13)(x1 + x2 − 1)
s.t. − x1 + 2x2 ≤ 8,
−x2 ≤ −3,
x1 + 2x2 ≤ 12,
x1 − 2x2 ≤ −5, x1, x2 ≥ 0.

Problem 5 (Yin et al. [18]; Wang et al. [20]; Shen and
Huang [25]):{

min −x21 − x
2
2 + (−x1 − 3x2 + 2)(4x1 + 3x2 + 1)

s.t. x1 + x2 ≤ 5, −x1 + x2 ≤ 6, x1, x2 ≥ 0.

Problem 6 (Yin et al. [18]; Wang et al. [20]); Shen and
Huang [25]):

min −2x21 − x
2
2 − 2

+(−2x1 − 3x2 + 2)(4x1 + 6x2 + 2)
+(3x1 + 5x2 + 2)(6x1 + 8x2 + 1)

s.t. 2x1 + x2 ≤ 10, −x1 + 2x2 ≤ 10, x1, x2 ≥ 0.

Problem 7 (Yin et al. [18]; Wang et al. [19]; Shen and
Huang [25]):

min x1 + (x1 − x2 + 5)(x1 + x2 − 1)
s.t. − 2x1 − 3x2 ≤ −9, 3x1 − x2 ≤ 8,
−x1 + 2x2 ≤ 8, x1 + 2x2 ≤ 12, x1 ≥ 0.

Problem 8 (Yin et al. [18]; Wang et al. [19]; Shen and
Huang [25]):

min (x1 + x2)(x1 − x2)
+(x1 + x2 + 1)(x1 − x2 + 1)

s.t. x1 + 2x2 ≤ 20, x1 − 3x2 ≤ 20,
1 ≤ x1, x2 ≤ 3.

Problem 9 (Yin et al. [18]; Wang et al. [19]; Shen and
Huang [25]):

min (x1 + x2)(x1 − x2)

+(x1 + x2 + 2)(x1 − x2 + 2)

s.t. x1 + 2x2 ≤ 20,

x1 − 3x2 ≤ 20,

1 ≤ x1 ≤ 4,

1 ≤ x2 ≤ 4.

Problem 10 (Yin et al. [18]; Wang et al. [19]; Shen and
Huang [25]):

min (2x1 − 2x2 + x3 + 2)(−2x1 + 3x2 + x3 − 4)
+(−2x1 + x2 + x3 + 2)(x1 + x2 − 3x3 + 5)
+(−2x1 − x2 + 2x3 + 7)(4x1 − x2 − 2x3 − 5)

s.t. x1 + x2 + x3 ≤ 10,
x1 − 2x2 + x3 ≤ 10,
−2x1 + 2x2 + 3x3 ≤ 10,
−x1 + x2 + 3x3 ≥ 6,
x1 ≥ 1, x2 ≥ 1, x3 ≥ 1.

Problem 11 (Yin et al. [18]):
min

p∑
i=1

(
n∑
j=1

cijxj + ei)(
n∑
j=1

dijxj + gi)

s.t. Ax ≤ b, x ≥ 0.

where, for each i = 1, . . . , p, j = 1, . . . , n, cij and dij are ran-
domly generated in the interval [0, 1]; for each i = 1, . . . , p,
ei and gi are randomly generated in the interval [0, 100]; each
element of A is randomly generated in the interval [0, 1]; each
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TABLE 1. Comparison of numerical results for Problems 1-10.

element of b is randomly generated in the interval [0, n]. Use
the proposed algorithm in this paper to solve this problem,
numerical results are given in Table 2.

In Table 2, some notations have been used in column
headers as follows:

n: Number of variables;
p: Number of sums;
m: Rows of matrix A;
Avg.NT: Average iteration numbers;
Std.NT: Standard deviation of iteration numbers;
Avg.Time: Average CPU time in seconds;

Std.Time: Standard deviation of CPU time.
From numerical results of Table 1, for Problems 1-10, com-

pared with the known algorithms in the literature, the algo-
rithm proposed in this paper can not only obtain the same
optimal solution and optimal value, but also they have almost
the same higher computational efficiency.

From numerical results of Problem 11 in Table 2, by solv-
ing randomly generated large-scale generalized linear mul-
tiplicative programming problem, and with the increase of
the scale of the Problem 11, our algorithm has the higher
computational efficiency than that of Ref. [18].
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TABLE 2. Comparison of numerical results for Problem 11.

On the whole, numerical results of Tables 1 and 2 show that
the algorithm can globally solve all test problems 1-11 with
the robustness and effectiveness.

Explanatory remarks: In Table 2, Avg (Std).NT in the
proposed algorithm is 0, this is because, under the same ran-
dom parameter condition, when using the method proposed
in this paper to solve Problem 11, the algorithm meets the
termination condition in Step 1, that is to say, when the
algorithm solves the relaxation problem in Step 1, we get an
approximate global optimal solution of the original problem
(MP), and the algorithm is terminated. Since we set the initial
iteration number k = 0 in Step 1, so that the output iteration
number is 0. Obviously, compared with the numerical results
of Problem 11 in [18], this shows that the proposed algorithm
in this paper has higher computational efficiency than that
of [18].

V. CONCLUSION
In this article, based on the branch-and-bound framework,
we propose a novel outer space algorithm for globally solving
generalized linear multiplicative programming problem (MP)

with only assumption that each affine function
n∑
j=1

cijxj + ei

and
n∑
j=1

dijxj + gi can acquire arbitrary value. By utilizing

the equivalent transformation and the direct linear relaxation
method, the initial generalized linear multiplicative program-
ming problem (MP) can be converted into a sequence of linear
relaxed problems. By subsequently subdividing the initial
outer space rectangle of Rp, and by subsequently solving a
sequence of linear relaxed problems, the proposed algorithm

is convergent to the global optimal solution of the initial
problem (MP). During the branch-and-bound searching pro-
cess, all subproblems that require to be solved in each itera-
tion of the algorithm are all linear programming problems,
and the scale of these linear programming problems still
remains be unchanged. Finally, comparingwith some existent
algorithms, numerical results demonstrate that the proposed
algorithm has the higher computational efficiency.

In the future, based on the convex relaxation bounding
technique and the branch-and-bound framework, the pro-
posed outer space branch-and-bound method can be extended
to solve globally minimizing generalized concave multiplica-
tive programming problem.
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