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ABSTRACT In clinical medicine, the contrast-enhanced ultrasound(CEUS) has been a commonly used
imaging modality for diagnosis of breast tumor. However, most researchers in computer vision field only
focus on B-mode ultrasound image which does not get good results. To improve the accuracy of classifica-
tion, first, we propose a novel method, i.e., a Temporal Sequence Dual-Branch Network(TSDBN) which, for
the first time, can use B-mode ultrasound data and CEUS data simultaneously. Second, we designed a new
Gram matrix to model the temporal sequence, and then proposed a Temporal Sequence Regression Mecha-
nism (TSRM), which is a novel method to extract the enhancement features from CEUS video based on the
matrix. For B-mode ultrasound branch, we use the traditional ResNeXt network for feature extraction. While
CEUS branch uses ResNeXt + R(2 + 1)D network as the backbone network. We propose a TSRM to learning
temporal sequence relationship among frames, and design a Shuffle Temporal Sequence Mechanism(STSM)
to shuffle temporal sequences, the purpose of which is to further enhance temporal information among
frames. Experimental results show that the proposed TSRM could use temporal information effectively
and the accuracy of TSDBN is higher than that of state-of-art approaches in breast cancer classification by
nearly 4%.

INDEX TERMS Breast cancer classification, temporal sequence, contrast-enhanced ultrasound (CEUS),

shuffle mechanism.

I. INTRODUCTION
Breast cancer is the most common cancer of women and
the second leading cause of cancer death [1]. Early detection
of breast cancer has been shown to significantly improve
survival rate of patients [2], [3]. Therefore, correct diagnosis
at early stage received widespread attention. Ultrasound has
been widely used in the detection of early breast cancer
because of its safety, low cost and high versatility [4]. How-
ever, its diagnostic accuracy depends on the special skills of
the ultrasonic physicians—it says that the diagnosis differ-
ence could be larger than 30% among physicians of different
levels [5].

In recent years, with the excellent performance of deep
learning in image recognition, it has been widely used in
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ultrasound image classification and has achieved many pro-
gresses [6]-[11]. However, most data used by researchers
is still B-mode ultrasound images. With the development
of medical imaging, contrast-enhanced ultrasound (CEUS)
videos can provide more precise pathological information by
observing the dynamic enhancement of the lesion area in
temporal sequences, and gradually becomes a more effective
clinical diagnosis technology than traditional B-mode ultra-
sound, MRI and CT [12], [13]. Compared with B-mode ultra-
sound, the related research [14]-[16] show that the CEUS
can visualize more sensitive imaging morphology and the
flow of microvessels [17], hence, improving the classification
accuracy between benign and malignant lesions. Obviously,
CEUS contains enhanced information related to lesion that is
helpful for breast cancer classification.

Fig. 1 is an example of our hybrid data, in (a) and (b), from
left to right, each image is a frame of B-mode ultrasound
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FIGURE 1. An example of the hybrid ultrasound data used in this work.
(a) Different frames of B-mode ultrasound video. (b) Different frames of
CEUS video. (c) A curve of brightness values of A, B, C, D in B-mode
ultrasound video. (d) A curve of brightness values of A, B, C, D in CEUS
video.
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video or CEUS video. To measure the discrepancy among
frames, according to the characteristics of ultrasound imag-
ing, we use brightness value to quantify different frames.
Two points(A, B) in the normal tissue and two points(C, D)
in the lesion tissue were selected as measurement points,
the results are shown in Fig. 1(c) and (d). It can be seen from
the figure that the brightness values of the two tissues only
fluctuate slightly in the time dimension of the B-mode ultra-
sound video. In CEUS video, the brightness value in normal
tissue are also only fluctuation punily, but there are largely
fluctuations in the lesion tissue. Hence, B-mode ultrasound
is a spatial feature which is stable between adjacent frames,
while CEUS is a temporal feature as the large variance along
timeline. B-mode and CEUS ultrasound represent different
perspectives of the lesion area, taking both data as input and
designing a unified mechanism to treat them simultaneously
will definitely improve the discriminative ability of a classi-
fication method for breast tumor.

To this end, we propose a novel method Temporal
Sequence Dual-Branch Network(TSDBN), a network for
breast cancer classification based on B-mode ultrasound
video and CEUS video, the architecture of which is shown
in Fig. 2. In the branch of B-mode ultrasound, we use
the ResNeXt-18 [18] network to extract the morphological
characteristics of breast lesions. In the branch of CEUS,
to enhance the temporal feature of CEUS video, we design
a Temporal Sequence Regression Mechanism(TSRM) and a
Shuffle Temporal Sequence Mechanism(STSM), which make
the network pay more attention to the discrepancy among
frames along the timeline. First, the TSRM is proposed as
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aregression mechanism on temporal sequences that indicates
the position of different frames in the video. The Gram matrix
[19], which is widely used in the field of video generation,
is used to express temporal sequences by calculating the
distance between different frames in our TSRM block. At the
same time, inspired by the method in the fine-grained image
classification area [20], in order to enhance the temporal
feature of the lesion area, a shuffle temporal sequence mecha-
nism is proposed to disturb adjacent frames. Through STSM,
the network will pay more attention to the critical information
of CEUS that determine the temporal sequence, which is
exactly the benefit that CEUS can provide.
The main contributions of this paper are as follows:

« To the best of our knowledge, for the first time, we pro-
posed a dual-branch framework that uses hybrid data,
i.e., B-mode ultrasound video and CEUS video, as input
for breast cancer classification. Compared with state-
of-art methods, our method has achieved the highest
performance.

« A novel temporal feature extraction method, TSRM,
of CEUS is proposed, which can extract the dynamic
enhanced feature of the lesion area, and uses the shuffle
temporal sequence to enhance the temporal feature of
video.

This paper is organized by 5 sections: related work is
analyzed in Section II. The proposed method is described
in Section III. Experiments are conducted and discussed in
Section I'V. At last, the paper is concluded in Section V.

Il. RELATED WORKS

A. BREAST CANCER CLASSIFICATION

Over recent decades, many researchers working on ultra-
sound have been trying to find a better solution to assist
breast tumor diagnosis. Abdel-Nasser et al. [21] proposed
the use of a super-resolution approach that exploit the com-
plementary information provided by multiple images of the
same target. The super-resolution-based approach improves
the performance of the evaluated texture methods and thus
outperforms the state of art in benign/malignant tumor classi-
fication. Alvarenga et al. [22] investigated seven morpholog-
ical parameters in distinguishing malignant and benign breast
tumors on ultrasound images and achieved a performance
slightly over 83% in distinguishing malignant and benign
breast tumors. Mohammed et al. [23] presented a fully com-
puterized system (ANN based) to identify and discriminate
the benign and malignant breast tumor cases by combining
the ultrasound images and the experimental domain informa-
tion of breast structure. Moreover, Gaussian process classifier
is a powerful method for the direct uncertainty quantification
of classification application. A breast cancer survivability
prediction model that a hybrid of Incremental Learning radial
basis function Neural Network, Gaussian Process classifier
and AdaBoost can achieve higher prediction accuracy than
conventional classifiers. Qi et al. [24] proposed a network to
diagnose breast ultrasound images using deep convolutional
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FIGURE 2. The framework of the proposed TSDBN method, including four parts: (1) A Shuffle Temporal Sequence Mechanism: a
module for shuffle the input of CEUS video; (2) A dual-branch Network: dual-branch networks extract B-mode ultrasound and CEUS
features respectively.; (3) A Classification Network by a fusion of B-mode ultrasound and CEUS features; (4) A Temporal Sequence
Regression Mechanism: a loss to make the network pay more attention to the temporal information.

neural networks with multi-scale kernels and skip connec-
tions for improve sensitivity and robustness of classifica-
tion. The network consists of two components to identify
malignant tumors and recognize solid nodules in a cascade
manner, which improve classification accuracy and sensitiv-
ity. Byra et al. [25] presented a matching layer for utilize
a pre-trained model on the dataset with 3-channel natural
images in grayscale ultrasound images. So, the aim of this
layer is to rescale pixel intensities of the grayscale ultrasound
images and convert those images to red, green, blue (RGB).
An experiment results show the usefulness of the approach.
The main shortage of all those methods is that they were
working on merely B-mode ultrasound images, lacking con-
text information. Contrast-enhanced ultrasound (CEUS) is
the application of ultrasound contrast medium to traditional
medical sonography. CEUS has been proved to be more
effective in early detection of tumor diagnosis in clinic
applications [26]. In the field of ultrasound image analysis,
the effectiveness of classification using CEUS data has been
studied and proven [27]. Guo et al. [28] chosen three typical
CEUS images from three phases of CEUS videos, which sim-
ulates the clinical diagnosis procedure of radiologists. Then,
these images were fed to a multiple kernel learning (MKL)
classifier. Pan et al. [29] directly used a 3D convolutional
neural network (3D-CNN) to extract spatial and temporal
features of CEUS. Meng et al. [30] presented a method
of used B-mode ultrasound and CEUS to classification of
liver tumor. Considering the specificity of the two data,
the features are extracted from the B-mode ultrasound and
CEUS separately, then the features is classified by a mul-
tiple empirical kernel learning machine(MEKLM) classifier,
which can utilize information of the hybrid data. Although the
method have made great achievements in aiding the diagnosis
of liver cancer, the drawbacks are obvious. One is that the
essential differences between CEUS and B-mode ultrasound
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have not been further studied. The second is that 3 images
only selected from CEUS are not enough to represent the
enhancement information of the lesion area. The third is that
traditional machine learning methods are used to analyze this
hybrid data. Based on this, we revisit many approaches to
solve these problems and make further research. To the best
of our knowledge, in the field of computer aided ultrasound
diagnosis, CEUS video has not been used for automatic breast
cancer classification. Therefore, for the first time, we use B-
mode ultrasound and CEUS video simultaneously for breast
cancer classification.

B. TWO-STREAM METHOD

In the task of video classification based on two kinds of
different data, the two-stream method is commonly used. For
the first time, Simonyan and Zisserman [31] proposed a two-
stream method which uses one stream to learn the spatial
context of a single video frame and use another stream to
model the motion characteristics from a stacked video optical
flow. Then the average fusion is calculated from the softmax
outputs of two branches. This method provides an instructive
direction to combine multimodal data for classification. Fur-
ther, Feichtenhofer et al. [32] analyzed the performance dif-
ference of the two-stream networks by using varying fusion
strategies, like different ways of integrating spatial features
and temporal features. Wang et al. [33] proposed a temporal
segment network(TSN), which divides a long video into n
segments, then put n segments into two streams respectively,
and finally integrates the feature of n segments for prediction.
This approach aimed to solve the problem that long video is
difficult to learn. Lan et al. [34] used the weights learned from
TSN to evaluate the classification probability of different
video segments. Zhou et al. [35] put forward a temporal
relational network(TRN), which can learn the correlation
of objects in the temporal domain between different frames
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through the network, so that the network is prone to recognize
the primary actions. To combine different data for classifica-
tion, the two-stream-based method can extract the feature of
different data independently and fuse them properly. Inspired
by the idea of two-stream method, we design a dual-branch
network for our hybrid ultrasound data.

C. VIDEO UNDERSTANDING

In the last few years there has been great progress in the field
of video understanding. For example, supervised learning
and powerful deep learning models can be used to classify a
number of possible actions in videos, summarizing the entire
clip with a label. Feature representation is the core technique
in video understanding. Besides the two-stream method, 3D
convolution is another mainstream type of method. Inspired
by the Inception-V1 [36], Carreira et al. [37] proposed 13D,
where 3D convolution kernels of different sizes are used in
each inception module and the 1 x 1 x 1 convolution kernels
were used for dimensionality reduction. Diba et al. [38] put
forward the temporal 3D CNN(T3D) to solve the problem
of insufficient information mining in the long time domain
of 3D convolution. In the network, the author designed
the Temporal Transition Layer(TTL) to replace the pooling
layer, which has different temporal convolution kernel depths
and can capture temporal feature-maps at different temporal
depth ranges. Qiu et al. [39] proposed a Pseudo-3D Residual
Net(P3D ResNet), which uses a 2D space convolution of size
1 x 3 x 3 and 1D time convolution of size 3 x 1 x 1 instead
of 3D convolution of size 3 x 3 x 3, which can reduce the
number of parameters and achieve better results. Based on the
fact that the 2D convolution network has achieved the same
accuracy as the 3D network in the field of motion recognition,
Tran et al. [40] revisited the role of temporal reasoning in
action recognition by means of 3D CNN, and proved that
factorizing the 3D convolutional filters into separate spa-
tial and temporal components yields significantly gains in
accuracy. Finally, a new spatio-temporal convolutional block,
R(2 + 1)D is designed, which produces CNN that achieve
results superior to the P3D.

Compared with the previous networks are designed from
the perspective of convolution along the timeline, some
other networks are designed from the perspective of the
particularity of video and have also achieved good results.
Girdhar et al. [41] proposed an Action-VLAD pooling to
replace the traditional average pooling and maximum pool-
ing, which can aggregate evidence over the entire video about
both the appearance of the scene and the motion of people
without requiring every frame to be uniquely assigned to a
single action. Considering that an action in most videos are
independent of the background, Singh et al. [42] proposed
a Multi-Stream Network(MSN), which uses a tracking algo-
rithm to extract main object from the background. Along with
the original image, the optical flow, the main object are input
into a network of four branches. And then the Bi-directional
LSTM network is used to extract the temporal feature of the
images. As the motion of an object can be regarded as the
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graph structure of the spatio-temporal domain [43], Wang and
Gupta [44] proposed the NGMN, which uses moving objects
extracted from video frames to build graph structure, and then
uses graph convolution to extract category information from
the graph.

D. TEMPORAL SEQUENCE

As for CEUS, the fundamental difference from US is the
temporal information provided. Video generation, which is
a reversed problem of video analysis, can give us some hints
to study temporal information. In order to generate coherent
videos, a lot of research has been done on the temporal
sequence. Hardy et al. [19] introduced the Gram matrix
to model the dynamic transformation between consecutive
frames, and used the Gram matrix as the motion feature
to help network learn the dynamic between video frames.
In order to adjust the relationship among frames in a time
dimension, a temporal sequence association loss is designed
[45], which is to ensure that there will not be too much
discrepancy among frames of the video. To guarantee video
coherence, the probabilities of start, middle and end points of
the video sequence is modeled at the same time, to generate
probabilities sequence of action start, action progress and
action end [46]. Inspired by video generation, we design
a CEUS branch in our network architecture, which uses
a regression learning to mining the temporal sequence of
CEUS.

ill. THE PROPOSED METHOD

Clinically, the combination of B-mode ultrasound and CEUS
has become a common technique for breast tumor diagnosis
[47]. However, studies on both B-mode image and CEUS
video are not well addressed in the field of computer aided
ultrasound analysis, as it is hard to find a way to extract
useful information from data of different modalities. This
paper, a novel method Temporal Sequence Dual-Branch Net-
work(TSDBN) is proposed to classify breast tumor by using
both B-mode ultrasound and CEUS video, the architecture
of which is shown in Fig. 2. The classical network ResNext-
18 is used to extract image feature from B-mode ultrasound
directly. For CEUS video, ResNext-18 + R(2 + 1)D [40] is
taken as the backbone network. A Temporary Sequence
Regression Mechanism(TSRM) and a Shuffle Temporal
Sequence Mechanism(STSM) is proposed to promote the
extraction capability from CEUS videos. Our network can
effectively identify the difference between the original and
the destructed CEUS videos, in this way, the temporal
enhancement information can be further learned.

A. B-MODE ULTRASOUND AND CEUS DATA

In this paper, inspired by the uses of ultrasound in diagnostics
[30], B-mode ultrasound and CEUS video are considered
simultaneously to classify breast tumor. They are different
expressions of the same lesion area and can help doctors get
a better diagnostic image from more perspectives. B-mode
ultrasound video riches in shape and texture, see Fig. 1(c),
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but the pattern and brightness among adjacent frames are
stable and rarely has variances. This characteristic of B-mode
ultrasound means that there is no additional information in
the time dimension. On the other hand, in the CEUS video,
Fig. 1(d) has illustrated a clear pattern variances of among
different frames in a short period, which means that the
pattern in the temporal dimension is evident to provide more
pathological information of the lesion area.

B-mode ultrasound image could provide the location, size,
shape, internal echo, calcification, and other characteristics
of the lesion area. CEUS video could provide dynamic status
of the lesion area, including enhancement phase, enhance-
ment intensity, enhancement sequence, enhancement lesion
morphology, and other characteristics. Therefore, the B-mode
ultrasound video only needs one frame to represent the whole
video information. We choose a single frame with the maxi-
mum brightness value, denote as S. For CEUS video, in order
to reduce the computational complexity and data redundancy,
we need to select an appropriate number of frames to rep-
resent all the information of the original video as much as
possible. Referring to the field of video understanding [35],
[38], we use 16 as the number of extracted frames. The
formula is as follows,

il Imax(feri) — min(fpri)]
Vori = {f] }fbri = 16

xifﬂd(b

where flf”- represents the brightness value of j-th frame,
we first calculated the maximum(max(fp;;)) and minimum
(min(fp,;)) value of brightness, then the corresponding frame
is selected to from the set of frames(V,,;) according to 16
equal division of brightness range. Finally, (V,,;, S) as an
input to our network. In addition, i € Nand 0 < i < 16.
Compared to natural image, lesion region has a rough
boundary in B-mode ultrasound image and the contrast is low,
which make it difficult to distinguish from the normal tissue.
CEUS video is also different from general natural video,
which does not contain any movements of an object, only
the gradually enhancement of brightness and contrast affected
by ultrasound contrast agents injected in the targeted tissues.
So, the key is how to extract spatial features from B-mode
ultrasound images and temporal features from CEUS video.

B. OVERVIEW OF DUAL-BRANCH NETWORK

As B-mode ultrasound and CEUS video are 2 different
modalities, we should design one specific network for each
type of data, and then combine them together as an end-to-end
hybrid dual-branch network, which is capable of extracting
the spatial and temporal features simultaneously.

In the branch of B-mode ultrasound, as shown in Fig.2.
ResNeXt-18 [18] is used as the texture and morphological
feature extraction. The reason we choose ResNeXt-18 is
that, at this stage, we only need to extract some basic and
fundamental features, as the basic low-level morphological
features are more useful in ultrasound classification. A very
deep network will lead to too high-level features, which
is not suitable for subsequent network to model temporal
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information. Moreover, ultrasound dataset is relatively small,
a deep network will cause serious overfitting problem. In
order to enhance the classification ability of the network,
we concatenate the low-level and high-level features into a
unified feature.

The shallow convolutional network can diminish the
adverse effect of the jitter of CEUS video acquisition and
the high noise characteristics of CEUS imaging by a shallow
down-sampling. Therefore, in the CEUS branch, we also
use ResNeXt-18 as the frame-level feature extractor for the
reason. After all feature of 16 frames are obtained, which
are then sent to the R(2 4+ 1)D [40] to extract the temporal
feature of this CEUS video. R(2 + 1)D is a common and
efficient method to extract temporal features. Compared with
the V,,,;, the frame feature obtained from ResNeXt-18 is more
semantic and independent, and is more robustness for further
exploiting temporal feature.

Then we concatenate the feature maps(f;,; and f. ) extracted
from S and V,,;. After a convolution and a pooling layer,
we got the probability vector of the corresponding category.
The classification network loss function is defined as follows:

Las=— Y 1-10g[C(Vori, S)] )
V,IeF

where F is the entire dataset, C(C(V,,;, S)) represents the
classified network output of V,,,; and S of the sample. [ = 0
or 1, denotes the category labels, i.e., benign or malignant.

C. TEMPORAL SEQUENCE REGRESSION MECHANISM
When practitioner uses CEUS video to diagnose breast tumor,
they mainly observe the enhancement process on images,
along the timeline, of the lesion area, such as enhancement
phase, enhancement intensity. The enhancement information
of lesion areas is contained in different frames, and the differ-
ent frames have sequence relationship in the time dimension.
The sequence relationship is defined as temporal sequence.
Therefore, the temporal sequence contains the enhancement
information of the lesion area, and the corresponding tem-
poral characteristics of the lesion area can be learned from
the temporal sequence. Based on this, the Temporal Sequence
Regression Mechanism(TSRM) proposed in CEUS branch to
model sequence relationship among frames.

The core problem is to find a tool to express temporal
sequences. In MD-GAN [19], Gram Matrix can be used to
denote the correlation of two objects. Inspired by this idea,
in this paper, the Gram Matrix is used to express the rela-
tionship of different frames. Another important key point is
how to calculate the temporal correlation among frames. The
temporal sequence correlation can be seen as the distance
among frames in the time dimension, or discrepancy among
frames. From this point of view, according to TGANs-C [45],
a temporal sequence label is designed, as shown in Fig. 2(a).
The distance between 2 frames is defined as follows:

D!, f/) = Norm (’

ﬁ—ﬂk» 0<i j<16 ()
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FIGURE 3. An example of Gram matrix label of V,,; and Ve, frame
sequence.
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where f! and f/ represent the i-th and j-th frames of a CEUS
video, and then the L2-norm is used to measure the temporal
sequence distance between 2 frames. The final label format
is as follows.

D¢ Y DI
D3 D f2)

D111
. D(flﬁ,fz)
M(Vori = . . )

D(fl,fl6) D(fz’flﬁ) . D(fl6,f16)
where f | —f 19 represent 16 frames of the video. It can be seen
that M (V,,;) consists of the distances of all pairs of frames,
which can effectively express the enhancement information
of the time dimension of video V,,;.

TSRM works on the f., extracted from the CEUS branch
to enhance the temporal sequence feature extraction ability.
In order to make the output matrix G(V,,;) of TSRM have
the same shape as M (V,,;), a convolution layer with size of
1 x 1 x 1 is used to reduce the dimensionality of the input
feature map, and then an adaptive average pooling layer is
used to get the G(V,,;) of size 16 x 16. And the TSRM loss
is defined as:

N N
Lrsrm = Z Z (GWVoridijy — M (Vori)(i,j))2 (5)
i=1 j=1
where 0 < i,j < 16. This loss calculates the differ-
ence between the predicted temporal sequence and the real
sequence label. Through solving this regression problem,
as we explained ahead, our CEUS branch will gain under-
standings of CEUS video, and pay more attention to the
enhancing procedure of the lesion area in the video.

D. SHUFFLE TEMPORAL SEQUENCE MECHANISM
Shuffle mechanism is used in the field of natural language
processing [48] and fine-grained image categorization [20],
which local details play a more important role than global
structures. The idea of shuffle mechanism could force the
network to identify and focus on the discriminative local
regions for recognition through destructing global structure
and keeping local details. Similarly, if temporal sequence in a
video are shuffled, discrepancy among frames that are critical
to classification will enhance, and the network will be forced
to classify video based on the discrepancy.

Therefore, the shuffle mechanism is used in our tempo-
ral sequence of V,,;. The principle of this mechanism is to
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deliberately reorder the 16 frames(f! — f!©) extracted from
Vori- However, destructing temporal sequence with STSM
does not always bring beneficial information, which can lead
the temporal sequence to be much confusion. With the use
of TSRM, CEUS branch uses the temporal sequence label of
Vaes for regression learning, hence, the network can under-
stand the V., and learn the temporal information. There
are two requirements for this mechanism. First, the temporal
sequence should not be insufficient destructed, otherwise the
Vies and the V,,; are uniform in temporal sequence infor-
mation, which will lead to insufficient temporal information
for network to learn. Second, the temporal sequence should
not be over destructed, otherwise the discrepancy between
temporal information of Vi, and the V,,; is too large, in that
case the network can not understand the temporal sequence
information. Therefore, STSM only shuffles in the neighbor-
hood of one frame, we have:

Vies = {f‘Shuﬁ‘le (frrmt e rmt]) e vm} ©)

where V,,; represents the set of 16 frames selected from the
CEUS video, Shuffle() is a shuffle function used to shuffle the
frames from i to i+k in V,,,;, and the set of frames after STSM
is Ves. Inaddition, 0 < i < 16—k — 1. By elaborately setting
the value of k, we make sure that the shuffle is working only
in the range of k neighbors of current frame. It can effectively
prevent over and insufficient destructed in V,,;. By shuffling
the V,,; properly, the network can not only focus on temporal
information of the lesion area, but also solve the problem of
data scarcity.

E. TOTAL LOSS

Our network has two outputs, one is classification probability,
the other is a temporal sequence relationship matrix. The total
loss is computed by:

Liotal = aLeis + (1 — o) Lrsry @)

where o is designed to adjust the learning tendency of our
network. By adjusting «, the weight of L.;; and L7sgyy in total
loss can be changed. Note that the TSRM and STSM block
does not need to run in the prediction phase, this can greatly
reduce the running time of the network when deploying a
model.

IV. EXPERIMENTS

A. DATASET DESCRIPTION

Our hybrid ultrasound dataset consists of 268 samples,
146 are malignant and 122 are benign, each sample con-
tains B-mode ultrasound video, CEUS video and pathological
results. All data is collected from the ultrasound depart-
ment of Sichuan province hospital in China. All samples are
reliable and their labels, i.e., benign and malignant, were
annotated by physicians. The paper divides the dataset into
10 subsets and uses 10-fold cross-validation to evaluate the
performance of the proposed method.
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B. IMPLEMENTATION DETAILS

During the training phase, we need to preprocess data to fit
the inputs of our network. In the section III we get the input
of the network (V,,;, S), and use the STSM mechanism to
get the Vg, according to (6). Because of the particularity of
the B-mode ultrasound image, conventional data augmenta-
tion strategies such as rotation, shift and color jittering are
not suitable for this dataset. Only horizontal flip and scale-
invariant scaling methods are used for data augmentation in
our experiments. For the video frames that do not meet the
input shape 256 x 256 of the network, paddling of 0 is applied.
The mini-batch stochastic gradient descent with momentum
is used during the optimization. At each iteration, a mini-
batch of 8 samples is constructed by sampling a training
dataset.

In addition, multiplicative and additive noises in ultrasound
images can affect classification results. Therefore, we tried
the method based on wavelet transform [51] and the Speckle
Reducing Bilateral Filter [52] in ours experiments. How-
ever, compared with the original data, we found that did not
improve the classification accuracy by using the denoised
data. After the analysis, the neural network already has a
strong fitting ability, and the 2D convolution has a denoising
ability to a certain extent. Therefore, We only use CLAHE
[53] to enhance the contrast of ultrasound data in ours exper-
iments.

The learning rate is initially set to 0.001 and then decreased
according to a discrete staircase. At the same time, « is a
parameter to be set in the network, which can adjust the
weight of spatial features and temporal features. The value
range is from O to 1. In our experiments, we set « to 0.7 to
prevent any bias towards the CEUS branch.

In the test phase, the data preprocessing approach is the
same as the training phase, but there is no need for STSM
analysis. At this stage TSRM need not be computed.

Overfitting is that the production of an analysis that corre-
sponds too closely to a particular set of data, and may there-
fore fail to fit additional data, which means our model doesn’t
generalize well from our training data to unseen data. In the
paper, we propose a Shuffle Temporal Sequence Mechanism
(STSM), which is also a means of data augmentation. The
destructed samples will be added to the dataset for training.
These methods can guarantee an enough amount of data.
At the same time, the R(2 4+ 1)D that extracts CEUS video
features can also avoid the problem of excessive parameter
amounts caused by 3D convolution. Overfitting can be pre-
vented by these two approaches.

In order to verify the performance of our proposed method,
we use four metrics that are often used in classification
tasks, namely accuracy rate(Acc), recall rate(Rec), precision
rate(Pre) and F lgcpce(F1). F1 is a more accurate metric to
measure the performance of a binary classifier, which could
be expressed as

Rec x Pre

F1=2x ——
Rec + Pre

®
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Due to the particularity in the field of medical classification,
the importance of each metric is not the same. e.g., Rec
weighs over others for tumor detection.

C. PERFORMANCE COMPARISON

To assess the effectiveness of the proposed method, we design
different comparison experiments. Since there is no literature
on the breast cancer classification with CEUS, we choose the
classical and the latest methods of video classification for
comparison. All methods are implemented with the author
publicly released open-source code, except TRN, LRCN, and
NGMN, which code are not released online, we re-implement
them in our experiments.

Results listed in Table. 1 has compared our methods with
some state-of-art methods. It can be found that 7ZSDBN_D has
achieved the highest score in classification accuracy, which
is 4% higher than other methods. At the same time, it has the
highest score in a Rec, which can more effectively prevent the
missed detection of breast tumor. And for F' 1, TSDBN_D also
achieves the highest result, compared with the highest 90.2%
of other methods, we increased by 3%.

In order to assess the role of CEUS video in differ-
ent methods, three experiments are carried out: the first
experiment only uses B-mode ultrasound image; the sec-
ond only uses CEUS video; the third uses both data to
classify breast tumor. From the results in Table. 1, from
the 1st and 2nd row, the best Acc is 82.6% using B-mode
ultrasound, from 3rd and 4th row, the best result is 83.2%
under CEUS video. Combining B-mode ultrasound image
and CEUS video, our method can reach to the best Acc
of 90.2%. This is proved that the temporal information
in CEUS video is helpful for breast cancer classification
tasks, and the network proposed in the paper can effec-
tively fuse the ultrasound image and CEUS video features
together.

In the results of ablated models in Table. 1, we can find
that the Acc of the model decreases when STSM is added
alone. It can be seen that the Vg, belongs to the wrong
sample in the dataset. So the network can not extract the
correct temporal information from the V4,5, which leads to the
decline of network accuracy. After adding TSRM, the Acc of
the model is improved by 2%, which shows that the temporal
information extraction ability of our CEUS network can be
effectively improved by the regression of learning temporal
sequence. When STSM and TSRM are used together, the Acc
of the network is improved by 4% compared with the original
model, and the final Acc is up t0 90.2%. Rec and Pre increased
by 7.5% and 3.6% respectively, and the F1 increased by
4.8%. It can be seen that TSRM can learn the original tempo-
ral information of video from the V4,; by STSM.

The superiority of our method is illustrated more clear
in Fig. 4, where (a) and (c) show ROC curves of our method
and others. It can be seen that our method has achieved
the highest results compared with others. Meanwhile, in the
radar charts of (b) and (d), our method outperforms other
methods in all four criterion. These results show that the
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TABLE 1. The performance comparison of eight methods on the hybrid (ultrasound and CEUS) dataset. The results of four ablated models (TSDBN_A,
TSDBN_B, TSDBN_C, TSDBN_D) are shown at the bottom of the table.

Model TSRM STSM Data Acc Rec Pre F1
ResNext-18 [18] B-mode ultrasound 81.7% 83.4% 79.4% 81.9%
Inception v3 [49] B-mode ultrasound 82.6% 84.2% 78.7% 82.2%

TRN [35] CEUS 82.3% 83.5% 81.9% 82.1%
R(2+1)D [40] CEUS 83.2% 86.4% 83.8% 84.2%
Two-Stream [31] B-mode ultrasound+CEUS 83.3% 87.4% 82.4% 84.7%
TRN [35] B-mode ultrasound+CEUS 84.3% 88.6% 86.5% 87.6%
P3D [39] B-mode ultrasound+CEUS 84.8% 88.9% 88.3% 88.2%
R(2+1)D [40] B-mode ultrasound+CEUS 86.0% 87.0% 94.4% 90.2%
LRCN [50] B-mode ultrasound+CEUS 85.7% 83.2% 90.5% 89.8%
MSN [42] B-mode ultrasound+CEUS 83.6% 81.2% 90.1% 88.5%
Action-VLAD [41] B-mode ultrasound+CEUS 84.4% 81.9% 92.8% 89.9%
NGMN [44] B-mode ultrasound+CEUS 81.6% 83.3% 82.8% 85.2%
TSDBN_A X X B-mode ultrasound+CEUS 86.1% 83.9% 91.6% 88.4%
TSDBN_B X v B-mode ultrasound+CEUS 85.7% 82.6% 90.5% 88.6%
TSDBN_C v X B-mode ultrasound+CEUS 88.4% 88.9% 94.8% 91.7%
TSDBN_D v v B-mode ultrasound+CEUS 90.2% 91.4% 95.2% 93.2%

TABLE 2. Comparison of TSDBN_D method and others in terms of

TABLE 3. Comparison of different temporal feature extraction networks.

parameters, model size, speed, accuracy. The speed is reported on one
Nvidia GTX 1080Ti.

Method Parameters ~ Model size Speed Ace
Two-Stream [31] 17.02M 446MB 9.3 clip/s 83.3%
P3D [39] 9.53M 261MB 11.8 clip/s  84.8%
LRCN [50] 8.63M 250MB 7.6 clip/s 85.7%
Action-VLAD [41] 15.02M 390MB 9.0 clip/s 84.4%
TSDBN_D 9.72M 273MB 11.2clip/s  90.2%

method proposed in the paper is effective, and our method
can learn useful temporal and spatial information from the
hybrid data.

To more comprehensively measure our network perfor-
mance, we compared TSDBN_D method and others in
terms of parameters, model size, speed(a video clip contains
selected 16 frames from a CEUS video), accuracy, as shown
in Table. 2. It can be seen from the table, Two-stream and
Action-VLAD have large number of parameters and models
size, and leading to a lower speed. The lower speed of Action-
VLAD is because VLAD operations requires a lot of calcu-
lations. P3D and LRCN have achieved a better quantitative
value in terms of parameters and model size and speed.
Note the speed of LRCN is the lowest due to the charac-
teristics of RNN. Compared with these methods, TSDBN_D
achieves the highest accuracy and good speed with a small
amount of parameters and model size. Our model has
greater advantages in speed and accuracy. Namely, it’s faster
and better.

D. MODEL ANALYSIS

The hyper parameters in the method have an impact on the
results. These parameters are tunable and can directly affect
how well a model can be trained. In this section, we will
analyze all hyper parameters adopted in our method one
by one.
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Network Acc Rec Pre F1
C3D [54] 83.2% 80.4% 80.1% 80.2%
i3D [37] 85.3% 81.2% 82.4% 82.5%
P3D [39] 88.3% 89.5% 89.3% 89.7%
R(2+1)D [40] 90.2% 91.4% 95.2% 93.2%
LSTM [55] 83.7% 81.3% 93.3% 84.4%
GRU [56] 84.5% 82.2% 84.3% 86.5%

1) TEMPORAL FEATURE EXTRACTION NETWORK

Temporal feature extraction network is an important part of
the CEUS branch. Different network have different feature
extraction capabilities. In this paper, several classic temporal
feature extraction networks are tested, and the results are
shown in Table. 3. In this experiment, we keep the previous
experimental settings unchanged, one difference is the tem-
poral backbone network of CEUS branch. It can be seen from
the table that R(2 + 1)D obtains the best result in our data.
In addition, the methods based on 3D convolution are better
than RNN can be found. After analysis, in video, to model
temporal information and motion patterns of an object, RNN
build temporal connections on the high-level features at the
top layer while leaving the correlations in the low-level forms,
e.g., edges at the bottom layers, not fully exploited. Compared
with RNN, 3D convolution can perform temporal and spatial
convolution directly on the frame to obtain more lower-level
visual features for model temporal information. Specially,
the CEUS video only contains the enhancement process
of the lesion area but without motion information, which
enhancement modeling is a low/mid-level operate that can
be implemented via 3D convolutions. Therefore, 3D-based
R(2 + 1)D is more suitable for CEUS video.

2) SHUFFLE GRANULARITY(K)
This is an important hyper parameter in our proposed method,
which shows the extent of how we shuffle the temporal
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FIGURE 4. Visualization of different methods from Table. 1 about ROC and four metrics. (a) and (c) are ROC curves of different methods.

(b) and (d) are radar charts with four different indexes.

TABLE 4. Performance of TSDBN with different K.

K Acc Rec Pre F1

1 83.3% 87.4% 82.4% 84.7%
2 86.0% 87.0% 94.3% 90.2%
3 90.2% 91.4% 95.2% 93.2%
4 87.7% 83.2% 92.4% 83.5%
5 84.2% 80.1% 91.2% 81.2%
7 82.3% 79.0% 89.3% 79.1%
8 79.0% 75.0% 85.0% 76.2%

TABLE 5. The classification accuracy of the TSDBN trained with different
proportion of V,; and Vg, in one batch.

Ration Acc Rec Pre F1
1:0 86.2% 83.7% 91.9% 88.4%
1:1 90.2% 91.4% 95.2% 93.2%
1:2 87.3% 87.6% 93.5% 88.2%
1:3 86.6% 85.2% 91.2% 87.6%
0:1 84.3% 84.4% 92.4% 84.7%

sequence. From Table. 4, we can find that K has a signifi-
cant impact on classification accuracy. First, When K value
increases, our classification accuracy also increases. Begin
from 1, K keeps increasing, the classification accuracy begins
to increase as well, and reaches the peak when K = 3. Gen-
erally speaking, if K is too small, the discrepancies between
the disturbed temporal sequence and the original temporal
sequence are too small due to the similarity among frames.
In that case, the network can not effectively learn the temporal
information among different frames. On the contrary, if the K
is too large, the discrepancies between the disturbed temporal
sequences will be too large, it is hard for the network to
converge.
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3) RATIO OF THE Vs IN A MINI-BATCH

Vaes 1s also a kind of unconventional data augmentation
method, and its proportion in a min-batch also affects training
results. The paper tests the classification accuracy under dif-
ferent proportions on CEUS videos. The results are shown
in Table. 5. When ratio of V,,; and V. is set to 1:1 in
a batch, the best results are obtained. Too much Vg will
reduce accuracy, which indicates that too high proportion of
Vies lead to too much chaos of temporal information. A ratio
of 1:0 means STSM is not applied.

4) IMAGE FEATURE EXTRACTION NETWORK
In our method, image feature extraction network is an impor-
tant part, which directly impacts the performance of the
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TABLE 6. Comparisons of different backbone 2D feature extraction
network of frame image.

Network Acc Rec Pre F1
VGG-16 85.7% 86.1% 85.8% 86.0%
VGG-19 83.8% 84.2% 84.0% 83.9%
ResNet-18 89.3% 89.4% 93.5% 91.7%
ResNet-50 87.7% 88.0% 91.2% 90.0%
ResNet-101 85.0% 85.5% 87.8% 88.7%
ResNeXt-18(32x4d) 90.2% 91.4% 95.2% 93.2%
ResNeXt-50(32 x 4d) 88.3% 88.9% 91.9% 90.4%
ResNeXt-101(32x4d) 85.7% 85.9% 88.1% 89.2%

following temporal feature extraction. The classic VGG,
ResNet and ResNeXt are chosen for comparison in this
section, and the results are shown in Table. 6. We find that,
interestingly, higher performance can not be obtained by a
deeper network, but a shallow network performs even better.
Because only build temporal connections on the high-level
features at the top layer while leaving the correlations in the
low-level forms, e.g., edges at the bottom layers, not fully
exploited. Therefore, the low-level features of the frame-level
are more useful than high-level features in modeling CEUS
videos. Namely, shallow network is more instrumental for our
task. in our task. In addition, the low-level features of bottom
layers can be transferred to the feature maps of top layers by
the residual structure.

V. CONCLUSION

Medical ultrasound analysis has always been a challeng-
ing topic in computer vision and pattern recognition. The
research in this field has been slow, due to the complexity
of the ultrasound images and the lack of large ultrasound
data. In this paper, To improve the accuracy of breast cancer
classification by ultrasound, for the first time, we combine
B-mode ultrasound and CEUS video together, which contain
comprehensive and useful pathological information of the
lesion area. For this hybrid data, a dual-branch network is
proposed to extract spatial features from B-mode ultrasound
video and temporal features from CEUS video. In the CEUS
branch, we proposed TSRM based on temporal sequence in
order to extract the pathological information of CEUS video
more efficiently, which helps the network to concentrate on
enhancement of the region of lesion in the time dimension.
Besides, inspired by the shuffle mechanism, the STSM is
designed to enhance temporal information and data augmen-
tation. Finally, the approach suggested in the paper produces
the best results in our dataset.

Ultrasound images, like natural images, have uncertain-
ties, which means that the same category may have different
appearances, and the same appearance may be different cate-
gories. Therefore, to improve the classification ability, one is
to improve the amount of train data, the other is to improve the
learning ability of the network, including the identification
of features and the robustness of the algorithm. In this paper,
we mainly explore these two aspects, one is to increase the
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amount and types of data, the other is to design a network
with powerful feature extraction ability.

Data is essential to train a good model for machine learning
algorithms or neural networks. To make a better use of data,
especially for medical images, it is necessary to design a
method from the perspective of physicians. In medicine, it is
found that the importance of CEUS video in physicians’
pathological judgment is increasing. Therefore, in this work,
we use CEUS to assist ultrasound in breast cancer classifi-
cation, the results are especially promising. Our next work,
hence, will still focus on exploiting useful information of
CEUS via developing computer vision algorithms.

ACKNOWLEDGMENT

The authors would like to express their gratitude to all
those who helped them during the writing of this article.
They would like to thank Ms. Zhao and Mr. Irfan for their
kind encouragement and useful instructions all through their
writing.

REFERENCES

[1] R. L. Siegel, K. D. Miller, and A. Jemal, “Cancer statistics, 2016,” CA,
A Cancer, J. Clinicians, vol. 66, no. 1, pp. 7-30, 2016.

[2] J.Zhang, A. Saha, Z. Zhu, and M. A. Mazurowski, ‘“Breast tumor segmen-
tation in dee-mri using fully convolutional networks with an application in
radiogenomics,” Proc. SPIE, vol. 10575, Feb. 2018, Art. no. 105750U.

[3] M. Yousefi, A. Krzyzak, and C. Y. Suen, “Mass detection in digi-
tal breast tomosynthesis data using convolutional neural networks and
multiple instance learning,” Comput. Biol. Med., vol. 96, pp. 283-293,
May 2018.

[4] M. Byra, T. Sznajder, D. Korzinek, H. Piotrzkowska-Wroblewska,
K. Dobruch-Sobczak, A. Nowicki, and K. Marasek, “Impact of ultra-
sound image reconstruction method on breast lesion classification with
neural transfer learning,” 2018, arXiv:1804.02119. [Online]. Available:
http://arxiv.org/abs/1804.02119

[5] R.J. Hooley, L. M. Scoutt, and L. E. Philpotts, “Breast ultrasonography:

State of the art,” Radiology, vol. 268, no. 3, pp. 642-659, Sep. 2013.

S. Bhusri, S. Jain, and J. Virmani, ““‘Classification of breast lesions based

on laws’ feature extraction techniques,” in Proc. 3rd Int. Conf. Comput.

Sustain. Global Develop. (INDIACom), Mar. 2016, pp. 1700-1704.

S. Han, H.-K. Kang, J.-Y. Jeong, M.-H. Park, W. Kim, W.-C. Bang, and

Y.-K. Seong, ““A deep learning framework for supporting the classification

of breast lesions in ultrasound images,” Phys. Med. Biol., vol. 62, no. 19,

pp. 7714-7728, 2017.

[8] S.Y. Shin, S. Lee, I. D. Yun, S. M. Kim, and K. M. Lee, “Joint weakly
and semi-supervised deep learning for localization and classification of
masses in breast ultrasound images,” IEEE Trans. Med. Imag., vol. 38,
no. 3, pp. 762-774, Mar. 2019.

[9] A.S.Becker, M. Mueller, E. Stoffel, M. Marcon, S. Ghafoor, and A. Boss,
“Classification of breast cancer from ultrasound imaging using a generic
deep learning analysis software: A pilot study,” Brit. J. Radiol., vol. 31,
Dec. 2018, Art. no. 20170576.

[10] M. Byra, M. Galperin, H. Ojeda-Fournier, L. Olson, M. O’Boyle,
C. Comstock, and M. P. Andre, “Comparison of deep learning and classical
breast mass classification methods in ultrasound,” J. Acoust. Soc. Amer.,
vol. 146, no. 4, p. 2864, Oct. 2019.

[11] V. K. Singh, H. A. Rashwan, M. Abdel-Nasser, M. M. K. Sarker,
F. Akram, N. Pandey, S. Romani, and D. Puig, “An efficient solution for
breast tumor segmentation and classification in ultrasound images using
deep adversarial learning,” 2019, arXiv:1907.00887. [Online]. Available:
http://arxiv.org/abs/1907.00887

[12] V. Cantisani, H. Grazhdani, C. Fioravanti, M. Rosignuolo, F. Calliada,
D. Messineo, M. G. Bernieri, A. Redler, C. Catalano, and F. D’ Ambrosio,
“Liver metastases: Contrast-enhanced ultrasound compared with com-
puted tomography and magnetic resonance,” World J. Gastroenterol.,
vol. 20, no. 29, p. 998, 2014.

[6

—

[7

—

82697



IEEE Access

Z.Yang et al.: TSDBN for Classifying Hybrid Ultrasound Data of Breast Cancer

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

X. Wei, Y. Li, S. Zhang, and G. Ming, “Evaluation of thyroid cancer in
chinese females with breast cancer by vascular endothelial growth factor
(VEGF), microvessel density, and contrast-enhanced ultrasound (CEUS),”
Tumor Biol., vol. 35, no. 7, pp. 6521-6529, Jul. 2014.

A. Saracco, B. K. Szabd, P. Aspelin, K. Leifland, E. Tanczos, B. Wilczek,
and R. Axelsson, “Contrast-enhanced ultrasound using real-time contrast
harmonic imaging in invasive breast cancer: Comparison of enhancement
dynamics with three different doses of contrast agent,” Acta Radiologica,
vol. 56, no. 1, pp. 34—41, Jan. 2015.

H.-S. Xia, X. Wang, H. Ding, J.-X. Wen, P.-L. Fan, and W.-P. Wang,
“Papillary breast lesions on contrast-enhanced ultrasound: Morphologi-
cal enhancement patterns and diagnostic strategy,” Eur. Radiol., vol. 24,
no. 12, pp. 3178-3190, Dec. 2014.

Y. Miyamoto, T. Ito, E. Takada, K. Omoto, T. Hirai, and F. Moriyasu,
“Efficacy of sonazoid (perflubutane) for contrast-enhanced ultrasound in
the differentiation of focal breast lesions: Phase 3 multicenter clinical
trial,” Amer. J. Roentgenol., vol. 202, no. 4, pp. W400-W407, 2014.

M. Wubulihasimu, M. Maimaitusun, X.-L. Xu, X.-D. Liu, and
B.-M. Luo, “The added value of contrast-enhanced ultrasound to
conventional ultrasound in differentiating benign and malignant solid
breast lesions: A systematic review and meta-analysis,” Clin. Radiol.,
vol. 73, no. 11, pp. 936-943, Nov. 2018.

S. Xie, R. Girshick, P. Dollar, Z. Tu, and K. He, ““Aggregated residual trans-
formations for deep neural networks,” 2016, arXiv:1611.05431. [Online].
Available: http://arxiv.org/abs/1611.05431

C. Hardy, E. le Merrer, and B. Sericola, “MD-GAN: Multi-discriminator
generative adversarial networks for distributed datasets,” in Proc. IEEE
Int. Parallel Distrib. Process. Symp. (IPDPS), May 2019, pp. 866-877.
Y. Chen, Y. Bai, W. Zhang, and T. Mei, “Destruction and construction
learning for fine-grained image recognition,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 5157-5166.

M. Abdel-Nasser, J. Melendez, A. Moreno, O. A. Omer, and D. Puig,
“Breast tumor classification in ultrasound images using texture anal-
ysis and super-resolution methods,” Eng. Appl. Artif. Intell., vol. 59,
pp. 84-92, Mar. 2017.

A. V. Alvarenga, A. F. C. Infantosi, W. C. A. Pereira, and C. M. Azevedo,
“Assessing the performance of morphological parameters in distinguishing
breast tumors on ultrasound images,” Med. Eng. Phys., vol. 32, no. 1,
pp- 49-56, Jan. 2010.

M. A. Mohammed, B. Al-Khateeb, A. N. Rashid, D. A. Ibrahim,
M. K. A. Ghani, and S. A. Mostafa, “Neural network and multi-
fractal dimension features for breast cancer classification from ultrasound
images,” Comput. Electr. Eng., vol. 70, pp. 871-882, Aug. 2018.

X. Qi, L. Zhang, Y. Chen, Y. Pi, Y. Chen, Q. Lv, and Z. Yi, “Automated
diagnosis of breast ultrasonography images using deep neural networks,”
Med. Image Anal., vol. 52, pp. 185-198, Feb. 2019.

M. Byra, M. Galperin, H. Ojeda-Fournier, L. Olson, M. O’Boyle,
C. Comstock, and M. Andre, “Breast mass classification in sonography
with transfer learning using a deep convolutional neural network and color
conversion,” Med. Phys., vol. 46, no. 2, pp. 746-755, Feb. 2019.

Q. Xiachuan, Z. Xiang, L. Xuebing, and L. Yan, “Predictive value of
contrast-enhanced ultrasound for early recurrence of single lesion hepato-
cellular carcinoma after curative resection,” Ultrason. Imag., vol. 41, no. 1,
pp. 49-58, Jan. 2019.

L. Qin, H. Yin, H. Zhuang, Y. Luo, P. Liu, and D. C. Liu, “Classification
for rectal CEUS images based on combining features by transfer learning,”
in Proc. 3rd Int. Symp. Image Comput. Digit. Med. (ISICDM), 2019,
pp. 187-191.

L. Guo, D. Wang, H. Xu, Y. Qian, C. Wang, X. Zheng, Q. Zhang, and
J. Shi, “CEUS-based classification of liver tumors with deep canonical
correlation analysis and multi-kernel learning,” in Proc. 39th Annu. Int.
Conf. IEEE Eng. Med. Biol. Soc. (EMBC), Jul. 2017, pp. 1748-1751.

F. Pan, Q. Huang, and X. Li, “Classification of liver tumors with CEUS
based on 3D-CNN,” in Proc. IEEE 4th Int. Conf. Adv. Robot. Mechatronics
(ICARM), Jul. 2019, pp. 845-849.

F. Meng, J. Shi, B. Gong, Q. Zhang, L. Guo, D. Wang, and H. Xu, “B-mode
ultrasound based diagnosis of liver cancer with CEUS images as privileged
information,” in Proc. 40th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.
(EMBC), Jul. 2018, pp. 3124-3127.

K. Simonyan and A. Zisserman, ‘“Two-stream convolutional networks for
action recognition in videos,” in Proc. Adv. Neural Inf. Process. Syst.,
2014, pp. 568-576.

82698

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

(42]

(43]

(44]

[45]

(46]

[47]

(48]

[49]

[50]

[51]

(52]

(53]

C. Feichtenhofer, A. Pinz, and A. Zisserman, ‘“Convolutional two-stream
network fusion for video action recognition,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 1933-1941.

L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. van Gool,
“Temporal segment networks: Towards good practices for deep action
recognition,” in Proc. Eur. Conf. Comput. Vis. Springer, 2016, pp. 20-36.
Z. Lan, Y. Zhu, A. G. Hauptmann, and S. Newsam, “Deep local video
feature for action recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. Workshops (CVPRW), Jul. 2017, pp. 1-7.

B. Zhou, A. Andonian, A. Oliva, and A. Torralba, “Temporal relational
reasoning in videos,” in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018,
pp. 803-818.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,
pp. 1-9.

J. Carreira and A. Zisserman, “Quo vadis, action recognition? A new
model and the kinetics dataset,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jul. 2017, pp. 6299-6308.

A. Diba, M. Fayyaz, V. Sharma, A. H. Karami, M. M. Arzani,
R. Yousefzadeh, and L. van Gool, “Temporal 3D ConvNets: New
architecture and transfer learning for video classification,” 2017,
arXiv:1711.08200. [Online]. Available: http://arxiv.org/abs/1711.08200
Z.Qiu, T. Yao, and T. Mei, “Learning spatio-temporal representation with
pseudo-3D residual networks,” in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Oct. 2017, pp. 5533-5541.

D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, and M. Paluri,
“A closer look at spatiotemporal convolutions for action recognition,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 6450-6459.

R. Girdhar, D. Ramanan, A. Gupta, J. Sivic, and B. Russell, “Action-
VLAD: Learning spatio-temporal aggregation for action classification,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp- 971-980.

B. Singh, T. K. Marks, M. Jones, O. Tuzel, and M. Shao, “A multi-stream
bi-directional recurrent neural network for fine-grained action detection,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016,
pp. 1961-1970.

M. Guo, E. Chou, D.-A. Huang, S. Song, S. Yeung, and L. Fei-Fei, ‘“Neural
graph matching networks for fewshot 3D action recognition,” in Proc. Eur.
Conf. Comput. Vis. (ECCV), 2018, pp. 653-669.

X. Wang and A. Gupta, “Videos as space-time region graphs,” in Proc.
Eur. Conf. Comput. Vis. (ECCV), 2018, pp. 399-417.

Y. Pan, Z. Qiu, T. Yao, H. Li, and T. Mei, “To create what you tell: Gen-
erating videos from captions,” in Proc. 25th ACM Int. Conf. Multimedia,
2017, pp. 1789-1798.

T. Lin, X. Zhao, H. Su, C. Wang, and M. Yang, “BSN: Bound-
ary sensitive network for temporal action proposal generation,” 2018,
arXiv:1806.02964. [Online]. Available: http://arxiv.org/abs/1806.02964
A. Rezo, J. Dahlstrom, B. Shadbolt, K. Rodins, Y. Zhang, and A. J. Davis,
“Tumor size and survival in multicentric and multifocal breast cancer,”
Breast, vol. 20, no. 3, pp. 259-263, Jun. 2011.

G. Lample, A. Conneau, L. Denoyer, and M. Ranzato, “Unsuper-
vised machine translation using monolingual corpora only,” 2017,
arXiv:1711.00043. [Online]. Available: http://arxiv.org/abs/1711.00043
C. Szegedy, V. Vanhoucke, S. loffe, J. Shlens, and Z. Wojna, “‘Rethinking
the inception architecture for computer vision,” 2015, arXiv:1512.00567.
[Online]. Available: http://arxiv.org/abs/1512.00567

J. Yue-Hei Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals,
R. Monga, and G. Toderici, ‘“Beyond short snippets: Deep networks for
video classification,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2015, pp. 4694-4702.

Y. Yue, M. M. Croitoru, A. Bidani, J. B. Zwischenberger, and J. W. Clark,
“Nonlinear multiscale wavelet diffusion for speckle suppression and edge
enhancement in ultrasound images,” IEEE Trans. Med. Imag., vol. 25,
no. 3, pp. 297-311, Mar. 2006.

S. Balocco, C. Gatta, O. Pujol, J. Mauri, and P. Radeva, “SRBF: Speckle
reducing bilateral filtering,” Ultrasound Med. Biol., vol. 36, no. 8,
pp. 1353-1363, Aug. 2010.

S. M. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz,
T. Greer, B. ter Haar Romeny, J. B. Zimmerman, K. Zuiderveld, “Adaptive
histogram equalization and its variations,” Comput. Vis., Graph., Image
Process., vol. 39, no. 3, pp. 355-368, 1987.

VOLUME 8, 2020



Z. Yang et al.: TSDBN for Classifying Hybrid Ultrasound Data of Breast Cancer

IEEE Access

[54] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, ‘“Learning
spatiotemporal features with 3D convolutional networks,” in Proc. IEEE
Int. Conf. Comput. Vis. (ICCV), Dec. 2015, pp. 4489-4497.

[55] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735-1780, 1997.

[56] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evalua-
tion of gated recurrent neural networks on sequence modeling,” 2014,
arXiv:1412.3555. [Online]. Available: http://arxiv.org/abs/1412.3555

Z1QI YANG received the B.S. degree in computer
science from the Weifang University of Science
and Technology. He is currently pursuing the M.S.
degree with the Department of Computer Science,
Southwest Jiaotong University. His research inter-
ests include pattern recognition, computer vision,
and medical image processing.

XUN GONG received the B.S. degree in computer
science and technology from Beijing Technology
and Business University, in 2003, and the Ph.D.
degree in computer science and technology from
Southwest Jiaotong University (SWJTU), China,
in 2008. He was a Visiting Scholar with Alberta
University, Canada, in 2015, Louisiana State Uni-
versity, USA, from July 2018 to February 2019.
He is currently an Associate Professor with the
School of Information Science and Technology,

Southwest Jiaotong University. His research interests include pattern recog-
nition, computer vision, medical image processing, and deep learning.

VOLUME 8, 2020

YING GUO received the master’s degree from
Jinzhou Medical University. She is currently an
Ultrasound Doctor with the North China Univer-
sity of Science and Technology Affiliated Hospi-
tal. Her research interests include image diagnosis
and research of heart disease, thyroid disease, and
breast disease.

WENBIN LIU received the B.S. degree in com-
munication engineering from Southwest Jiaotong
University, in 2005, and the master’s degree in
communication and information system from the
Beijing University of Posts and Telecommunica-
tions, in 2008. He is currently pursuing the Ph.D.
degree with the School of Information Science and
Technology, Southwest Jiaotong University. He is
currently working as a Senior Engineer with China
Electronics Technology Cyber Security Company

Ltd. His research interests include information security, signal processing,
and deep learning.

82699



	INTRODUCTION
	RELATED WORKS
	BREAST CANCER CLASSIFICATION
	TWO-STREAM METHOD
	VIDEO UNDERSTANDING
	TEMPORAL SEQUENCE

	THE PROPOSED METHOD
	B-MODE ULTRASOUND AND CEUS DATA
	OVERVIEW OF DUAL-BRANCH NETWORK
	TEMPORAL SEQUENCE REGRESSION MECHANISM
	SHUFFLE TEMPORAL SEQUENCE MECHANISM
	TOTAL LOSS

	EXPERIMENTS
	DATASET DESCRIPTION
	IMPLEMENTATION DETAILS
	PERFORMANCE COMPARISON
	MODEL ANALYSIS
	TEMPORAL FEATURE EXTRACTION NETWORK
	SHUFFLE GRANULARITY(K)
	RATIO OF THE Vdes IN A MINI-BATCH
	IMAGE FEATURE EXTRACTION NETWORK


	CONCLUSION
	REFERENCES
	Biographies
	ZIQI YANG
	XUN GONG
	YING GUO
	WENBIN LIU


