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ABSTRACT The widespread use of mobile devices and social network services has made optimal location
queries an important research topic. Previous studies have focused on the problem of maximum influential
(Max-inf) location selection, that is, finding a location that can attract as many clients as possible. The
location information of each client should be collected to process such a query. However, client location is
considered sensitive information. Therefore, a privacy protection technique should be applied to Max-inf
problems. Motivated by this, we propose a Max-inf problem query-processing technique with differentially
private client location information. Furthermore, we present a Voronoi region-based technique to guarantee
query accuracy and a Voronoi envelope-based pruning heuristic to improve query performance.

INDEX TERMS Differential privacy, maximum influential location selection problem, optimal location
selection query.

I. INTRODUCTION
During the past decades, a vast amount of geo-spatial data
has been collected by various location-based services owing
to the widespread use of mobile devices. The increasing
amount of location data can provide exciting opportunities to
support market analysis, such as decision making problems
of competitive location selection and establishment of pub-
lic facilities. Especially, previous studies of geo-spatial data
have focused on the maximum influential (Max-inf) location
selection problem, that is, finding a location that can attract
as many clients as possible. These applications generally
assume that customers trust data analysts and agree to the col-
lection of their location information without any restrictions.
However, location data are typically collected by telecommu-
nication operators and social network service providers rather
than data analysts. In addition, places that people visit dis-
close extremely sensitive information, such as their behavior,
home and work locations, preferences, and habits. Therefore,
people dislike disclosing their exact location, and location
privacy has become an emerging issue in the spatial database
community. For this reason, location-based service providers
usually exploit privacy preserving data analyzing techniques
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FIGURE 1. Example of max-inf problem.

when offering customer location data to data analysts. Moti-
vated by this, we propose a novel privacy preserving query
processing technique that finds the best location to establish
a new facility while satisfying privacy requirements.

Optimal location selection [1]–[7] is a common problem
that finds the best location to add a new facility that opti-
mizes an objective function. Specifically, a Max-inf prob-
lem [1]–[3] is a traditional problem that identifies the most
influential object in a given database which consists of poten-
tial objects P, existing facilities F , and client locations C ,
as depicted in Fig. 1. A Max-inf problem finds a location
that maximizes influence on clients under the assumption that
each client utilizes the nearest facility. We occasionally use
the words ‘‘user,’’ ‘‘client,’’ and ‘‘customer’’ interchangeably.
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A Max-inf problem is extremely useful for market analysis
and beneficial in several real-life applications. For example,
Starbucks may want to open a new branch to compete with
other coffee shop franchises, or a telecommunication service
provider may want to add a new base station in a densely pop-
ulated area to improve their service quality. Fig. 1 shows two
existing facilities, {f1, f2}, and five clients, {c1, c2, c3, c4, c5}.
We want to determine the best location between three differ-
ent potential locations, {p1, p2, p3}, to establish a new facility.
We assume that f1 is the nearest facility of {c1, c2, c3}, and f2
is the nearest facility of {c4, c5}. If a new facility is established
at p1, then it becomes the nearest facility of {c2}. If we select
location p2, then we can attract clients {c3, c4}. However,
if we select location p3, then it becomes the nearest facility
for every clients, that is, {c3, c4, c5}. Therefore, p3 is the
most attractive location. A conventional approach to support
such decision making is to utilize computational geometry
techniques with the assumption that the exact locations of
customers are known. However, customers provide informa-
tion only to trusted service providers rather than data analysts.

To remedy this problem, we present novel Max-inf prob-
lem query-processing techniques while applying differential
privacy to client location data. Differential privacy [8] is a
de facto standard privacy protection technique that applies a
randomizedmechanism to add controlled noise into statistical
query results. A naïve approach to apply differential privacy
to a Max-inf problem is to add a Laplace noise to its objective
function, which is called a Laplace mechanism. We invoke
reverse nearest neighbor (RNN) queries for each potential
location pi ∈ P and identify clients whose nearest neighbor
is pi. Then, we add a Laplace noise to the number of clients
and select themost influential location. However, if the poten-
tial locations are close to each other, then client location
information is disclosed recursively. For instance, the RNN
clients of p2 and p3 are {c3, c4} and {c3, c4, c5}, respectively,
as shown in the previous example. The intersection of the
two RNN clients is {c3, c4}, which indicates that their loca-
tion is leaked twice by p2 and p3. This problem is called
sequential composition [8] in differential privacy and requires
dividing the privacy budget ε by the number of potential
locations. However, sequential composition degrades query
accuracy exponentially and suffers from the number of poten-
tial locations. Thus, we propose a Voronoi region-partitioning
method (VPM) that partitions the Voronoi region of a poten-
tial location to exploit the parallel composition [9]. Although
the VPM mitigates the degradation of performance accu-
racy, it suffers from expensive computational cost. To reduce
computational cost, we exploit 2 r-trees for potential loca-
tions and client locations with aggregate r-tree for existing
facilities, which is a variation of the r-tree [19]. We present
a pruning technique called the Voronoi envelope filtering
method (VEM), which precomputes the upper-bound of the
noisy count of influece regions to reduce search space.

In summary, our contribution is threefold. First, we present
a Max-inf problem with a differential private user location.
To the best of our knowledge, this study is the first attempt

to apply differential privacy directly to the query processing
of optimal location selection. Second, we present two algo-
rithms to improve query performance, namely, the VPM and
the VEM. Third, we study the properties of the proposed
methods empirically on an actual dataset. The remainder of
the paper is organized as follows. Section 2 reviews studies
relevant to the Max-inf problem and differential privacy, and
Section 3 formalizes problem definitions and presents sys-
tem models. Sections 4 and 5 propose two query processing
techniques, the VPM and the VEM. Section 6 provides the
experimental results from an actual dataset. Finally, Section 7
concludes the paper and recommends directions for future
work.

II. RELATED WORKS AND BACKGROUNDS
In this section, we review existing studies relevant to the
Max-inf problem and differential privacy. Location optimiza-
tion problems are characterized by optimization functions
and can be classified into three categories, namely, Max-inf,
Min-sum, andMin-dist problems. These problems are closely
related to RNN queries. Therefore, we first briefly review
RNN studies.

A. RNN QUERIES
The RNN has received significant attention in resea-
rch [10]–[13] since its introduction by Korn and Muthukrish-
nan [10]. These authors were the first to study RNN queries
and present a general approach to solve such queries. The
authors precalculated the nearest neighbor distance for each
data object and found its surrounding circle that its radius
is the nearest neighbor distance. Then, for any query q,
each point is the RNN for q that contains q in its circle.
Yiu et al. [11] first studied the problem of RNN queries on
road networks. They proposed the Eager algorithm, which is a
filter and refinement method based on the network expansion
approach. The Eager algorithm traverses the network around
the query point q with ascending order of the shortest dis-
tance from q to each node of the network. For each node n
retrieved, the Eager algorithm performs a range-NN query
in the range d(n, q). If the data object p is retrieved, then
all the nodes with the shortest path to q that pass through
n can be pruned. Vlachou et al. [12] extended the RNN to
the reverse top-k query (RkNN), which retrieves an object
in a weighted feature space. An RkNN query is used to
assess the impact of a potential product in the market. This
option is based on the number of clients that identify a top-k
product according to their preference. The authors introduced
a threshold algorithm-based method, that is, the RTA, to solve
the RkNN problem. Lu et al. [13] investigated the reverse
spatial and textual kNN (RSTkNN) search, which considers
textual similarities in RkNN retrieval. An RSTkNN query is
used to find objects that take a specified query object as one
of its k-most spatial–textual similar objects. The authors pro-
posed a hybrid index structure, namely, the intersection union
r-tree (IUR-tree) to answer the RSTkNN query. The IUR-tree
consists of an r-tree with inverted files for each node. The leaf
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nodes contain entries with location and keyword information,
whereas each intermediate node has union and intersection
vectors for the keywords of its child. The authors designed a
branch-and-bound algorithm on the basis of the IUR-tree to
solve the RSTkNN problem.

B. MAX-INF PROBLEMS
The Max-inf problem was first introduced by
Cabello et al. [1]. It maximizes the influence of a facility,
where influence indicates the number of clients who are
the RNNs of a facility. The authors found regions for a
new facility through the nearest location circle (NLC). The
NLC of a client c is a circle centered at c, and its radius is
the distance between c and the nearest facility of c. Only
a facility established within the NLC of c can be the new
nearest facility of c. Therefore, a solution can be obtained
by finding regions that are enclosed by the largest number
of NLCs. Wong et al. [2] also studied the Max-inf problem
using a first polynomial time complexity algorithm called
the MaxOverlap. The authors likewise exploited NLCs to
avoid evaluating intersection points that are guaranteed not
to be optimal. Yan et al. [3] presented an approximate
method for the Max-inf problem. The authors designed
an efficient influential location miner called FILM, which
returns a small grid cell where all locations have an influence
guarantee. Contrary to existing approaches that return a
precisely optimal location at the expense of long running
time, the authors’ approach returns near optimal locations in
considerably less time. Meanwhile, Zhang et al. proposed
the Min-dist location selection problem [4]. This method
finds points within Q given a client set C , an existing facility
set F , and a region Q. Thus, if a new facility is established
at any one of these points, then the average distance of the
clients to their respective nearest facilities is minimized.
To solve the problem, the authors proposed a method that
initially identifies a set L of candidate locations from Q and
then divides L progressively until an answer set is found.
Qi et al. [5] also resolved the Min-dist problem and proposed
the maximum NFC distance (MND) method. The MND is a
variation of the minimum bounding rectangle (MBR), which
is combined with the NLC. Moreover, Xiao et al. [6] and
Chen et al. [7] presented an optimal location selection query
in a road network environment.

C. DIFFERENTIAL PRIVACY
Differential privacy was first introduced by Dwork and
Roth [8]. The aim of differential privacy is to mask the dif-
ferences in queries among neighboring datasets. Its definition
and properties are as follows.
Definition 1: Differential privacy. Given two neighboring

databases D1,D2, such that ‖D1 − D2‖1 ≤ 1, a randomized
mechanism M is ε-differential private if the following condi-
tion holds for all S ⊆ Range(M ).

Pr[M (D1) ∈ S] ≤ exp(ε)Pr[M (D2) ∈ S] (1)

where ε is the privacy budget, and ‖ · ‖1 is a norm of a
vector. One method to achieve ε-differential privacy is to use
a Laplace mechanism, as explained in the previous section.
It simply adds noise sampled from a Laplace distribution
to the query results, where the noise is proportional to the
sensitivity of mechanismM .
Definition 2: Sensitivity. For two neighboring data

sets D1,D2, the sensitivity 1 of M captures the magnitude
by which a single individual’s data can change the output of
M in the worst case, as follows:

1M = maxD1,D2‖M (D1)−M (D2)‖ (2)

Differential privacy satisfies simple composition proper-
ties, which are called sequential composition and parallel
composition as follows.
Definition 3: Sequential Composition. Let M1 and M2 be

two differential private mechanisms and their privacy budgets
be ε1 and ε2, respectively. Then, their combination, M1,2,
is (ε1 + ε2)-differentially private. Therefore, the composition
of multiple differentially private mechanisms leads to a linear
increase in the privacy budget or an increase in noise to
maintain a fixed ε total privacy budget.
Definition 4: Parallel Composition. Let Mi provide

εi–differential privacy and Di be an arbitrary disjoint subset
of database D. Then, the sequence of Mi(X ∩ Di) provides
maxi(εi)-differential privacy.
Existing studies on differential privacy that is related

to our work have used private spatial decomposition tech-
niques. Location-based services involve several privacy con-
cerns. For example, a location-based server aims to hide
the number of people in a region, and this range query
can be solved by differential privacy. Cormode et al. [14]
applied spatial decomposition methods, which are a type
of dataset-partitioning mechanisms, to decrease noise. The
authors instantiated a hierarchical tree structure to decom-
pose a geometric space from large to small areas with data
points partitioned among the leaves. In addition, the authors
added noise to the count for each node. Qardaji et al. [15]
identified the selection of partition granularity to balance
errors from two sources as the key challenge in differentially
private synopsis methods. The authors proposed a method-
ology for selecting grid size for the uniform grid method
on the basis of the analysis of the dependence of errors
on grid size. Li et al. [16] proposed a matrix mechanism
that can answer sets of linear counting queries. The set
of queries, which is defined as a workload, is transformed
into matrix A, where each row contains the coefficients of
a linear query. The essential element of the matrix mecha-
nism is to select A to represent a set of queries. The matrix
mechanism can be extended to various approaches based on
the selection of A. For example, if A is an identity matrix,
then this mechanism can be a normal Laplace mechanism
for batch queries. Zhang et al. [17] created a quadtree for
spatial datasets. The authors defined a threshold to deter-
mine the minimum of a subdomain and another threshold to
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FIGURE 2. The limitation of spatial decomposition method.

limit the height of a quadtree. The amount of noise added
to the quadtree can be limited to a constant by using the
two thresholds. Several researchers have focused intensively
on the private spatial decomposition method in spatial dif-
ferential privacy. However, private spatial decomposition is
inadequate in optimal location queries owing to its dataset
skewness. When applying private spatial decomposition to
the Max-inf problem, accuracy would be poor if the users are
not evenly distributed. However, users are usually skewed in
real-world applications, and Max-inf problems are often out
of alignment with grid cells. Fig. 2 shows this alignment prob-
lem. The gray area shows the influence region of p1. Then,
c3 and c4 are outside the region, but their grid cells overlap
with the region. Since we don’t know the exact locations
for c3 and c4, it is difficult to decide whether the influence
region of p1 include them or not. Therefore, we utilize the
Voronoi region-based approach rather than the grid cell-based
approach to process the Max-inf problem.

III. PROBLEM DEFINITION
We formally define the problems. Table 1 summarizes the
notations frequently used in the study. All data objects are
represented by points in the Euclidean space. Let d(, ) denote
the Euclidean distance between two points. Then, theMax-inf
location selection problem is defined as follows.
Definition 5: Max-inf location selection query. The

Max-inf finds an optimal location that maximizes the influ-
ence on clients under the assumption that each client utilizes
the nearest facility given existing facilities F, potential loca-
tion P, and client location C.

MaxINF(P) = argmax
p∈P

∑
c∈IS(p)

w(c) (3)

IS(p) = {c ∈ C|∀f ∈ F, d(c, p) ≤ d(c, f )} (4)

In (3), every client c ∈ C is associated with a positive
weight w(c) that captures the importance of the client. Gen-
erally, every client has the same importance. Thus, we set
w(c) as 1 for all the clients in this study. As prescribed in
Section 1, a random noise drawn from a Laplace distribution
can be added to the objective function to find an optimal
location with a differentially private approach. The magni-
tude of the noise depends on sensitivity, and the sensitivity of

TABLE 1. Frequently used symbols.

the counting problem is 1. Thus, the Max-inf problem with a
differentially private user location is defined as follows.
Definition 6: Max-inf with a differentially private user

location. Given the same object datasets as the Max-inf prob-
lem, theDP-Max-inf finds a location that maximizes influence
with a differentially private client location.

DPMaxINF(P) = argmax
p∈P

∑
c∈IS(p)

w(c)+ Lap(1/ε′) (5)

The DP-Max-inf simply changes the objective function
from (3) to (5) by adding a Laplace noise. As described
in the previous sections, the influence regions of poten-
tial locations overlap each other. Therefore, the DP-Max-inf
divides ε by the number of potential locations to achieve
total ε-differential privacy. Hence, we set the privacy bud-
get as ε′ = ε/|P| in the naïve approach. However, if we
apply sequential composition to the DP-Max-inf problem
in the naïve approach, then it will suffer from highly poor
performance accuracy. Therefore, we present an enhanced
approach, SCenhanced . SCenhanced computes influence regions
for each potential location pi. The influence region is a sub-
space of the Euclidean space in which the customers are the
RNN of pi. Then, SCenhanced checks whether they overlap
and calculates how much noise should be added to satisfy
ε-differential privacy. Finally, SCenhanced improves accuracy
by providing tighter noise bounds than the naïve approach
because not all the influential regions of the potential location
overlap in general. The proposedmethods exploit the Voronoi
diagram [18] of existing facilities and the potential location.
The Voronoi diagram is defined as follows.
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FIGURE 3. Example of Max-inf problem.

Definition 7: Voronoi diagram. The Voronoi diagram of
existing facilities F = {f1, . . . , fm} partitions the Euclidean
space into m regions. Each region includes all points in the
Euclidean space with a common closest point in F according
to d(, ).
The proposed methods determine the influence regions

of each potential location after the Voronoi diagram is con-
structed. Then, the influence region is the Voronoi cell of
the corresponding potential location. The influence region is
defined as follows.
Definition 8: Influence region. For any object o in the

Euclidean space, the influence region of the potential location
p ∈ P on the set F ∪ {p} is a region V (p) that satisfies
that for any point p′ ∈ F ∪ {p}, p 6= p′ and for any point
o ∈ V (p), d(p, o) ≤ d(p′, o).

The influence region of p encloses all and only the clients
in IS(p).We use the influence region to quickly identify IS(p).
Thus, we redefine (3) as IS(p) = {c|c ∈ C ∧ c ∈ V (p)}. Next,
we determine the overlapped potential location set, in which
the influence regions overlap with the influence region of
each potential location.
Definition 9: Overlapped potential location set. For any

potential location p and its influence region V (p), an over-
lapped potential location set is a subset of potential locations
that hold the following condition.

OP(p) = {p′ ∈ P|p′ 6= p,V (p) ∩ V (p′) 6= ∅} (6)

Finally, we redefine the objective function of DP-Max-inf
with the overlapped potential location set as follows:

ncount(p) = |IS(p)| + Lap(|OP(p)|/ε) (7)

DPMaxINF(P) = argmax
p∈P

ncount(p) (8)

IV. VORONOI REGION PARTITIONING METHOD
Even if we use SCenhanced to solve the DP-Max-inf problem,
accuracy degrades exponentially with the maximum cardi-
nality of the overlapped potential location set. Therefore,
we propose the VPM to further improve accuracy.

A. BASELINE APPROACH OF VPM
The VPM changes a sequential composition to a parallel
composition; thus, it mitigates the degradation of accuracy.
The VPM constructs an influence region of each potential
location pi ∈ P with existing facilities F . Then, it finds the
overlapped potential location set OP(pi), and the VPM enu-
merates the combinations of overlapped regions. Thereafter,
the VPM counts the number of clients who are located in each
partitioned region and adds a Laplace noise. Finally, the VPM
sums up the noisy count of every partitioned region.
Definition 10: Partitioned influence region. The meet

operation is defined as Meet(S) = ∩u∈Su, which is extracted
from the basic theorem on Galois lattice [23]. We also define
Voronoi regions of potential locations inOP(pi) as VOP(pi) =
{V (pj)|pj ∈ OP(pi)}. Then, given potential location pi, influ-
ence region V (pi) and its overlapped potential location set,
OP(pi), the partitioned influence region, PV (pi), is a set of
regions that holds the following condition.

PV (pi) = {V (pi) ∩Meet(S) ∩Meet(S̄)|S ⊆ VOP(pi),

S̄ = VOP(pi) \ S, S 6= ∅, S̄ 6= ∅} (9)

For example, Fig. 3 shows the Voronoi regions of the
facilities and the partitioned influence regions of each
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potential location presented in Fig. 1. Fig. 3 (a) shows
the Voronoi regions, which are composed of {f1, f2, p1},
and Fig. 3 (b) and (c) are constructed by {f1, f2, p2} and
{f1, f2, p3}, respectively. Then, Fig. 3 (d) and (e) show the
partitioned influence regions of {V (p1),V (p2),V (p3)}. The
partitioned regions are constructed to compute the noisy
count of p1, as shown in Fig. 3 (d). The Voronoi region of p1
is composed of the following partitioned influence regions.

A = V (p1) \ (V (p2) ∪ V (p3))

B = (V (p1) ∩ V (p2)) \ V (p3)

C = V (p1) ∩ V (p2) ∩ V (p3)

As shown in Fig.3 (e), region A contains c2, whereas the other
regions of PV (p1) contain no clients. Let nX is the noise of
the partitioned region X . Then, the noisy count of V (p1) is
calculated as follows:

ncount(p1) = (1+ nA)+ (0+ nB)+ (0+ nC )

= 1+ nA + nB + nC

Similarly, the Voronoi region of p2 is partitioned with regions
{B,C,D,E}, and its noisy count is 2+ nB + nC + nD + nE .
The noisy counts of regions B and C are reused because
they have been computed during the process of V (p1). If we
compute the noisy count of potential location p, then the total
noise of ncount(p) is proportional to O(

√
|PV (p)|) owing to

parallel composition. Therefore, query accuracy is better than
SCenhanced if |PV (p)| is less than |OP(p)|2. However, the com-
putation cost of the VPM is extremely high, because the
time complexity of finding PV (p) is O(2|PV (p)|) in the worst
case. Thus, the baseline algorithm of the VPM is based on
the divide-and-conquer framework. We utilize the following
remark to compute the partitioned influence region.
Remark 1: Monotonicity of partitioned influence region.
Let a set of partitioned influence regions be as PV =
{PV1,PV2, . . . ,PVn}. Then, we define PV−i as a subset of
PV except for the ith region, PVi. Then, Meet(PV ) = ∅ if
any PV−i exists, such that ∩PV−i = ∅
The overall procedures are described inAlgorithms 1 and 2.

Algorithm 1 computes the partitioned influence region of
each potential location, whereas Algorithm 2 shows the over-
all query-processing steps of the VPM. The VPM constructs
Voronoi regions based on potential locations and partitions
them by overlapped regions. Then, the VPM adds a Laplace
noise once to each partitioned region, which is a parallel
composition. Therefore, the VPM is ε-differentially private
owing to parallel composition.

B. R-TREE-BASED APPROACH
Although the VPM is based on the divide-and-conquer
approach, it still suffers from high computational cost in
generating the influence region and finding the overlapped
potential location set. Therefore, the VPM exploits three
r-tree [19] indices, that is, Rf for Voronoi regions of existing
facilities, Rp for potential locations, and Rc for client loca-
tions. Then, we can use the intersection query to determine

Algorithm 1 Get Partitioned Influence Region (GetPV)
Input: pv - Partitioned influence region, j - index of over-

lapped potential location set, OP - overlapped potential
location set, V - Voronoi regions of potential locations

Output: PV (p) - A set of partitioned influence regions
1: L ← [ ]
2: if j is greater than OP.size then
3: insert pv into L
4: else
5: pj← OP[j]
6: vj← V [pj]
7: if pv intersects with vj then
8: pv1← pv.intersection(vj)
9: pv2← pv.difference(vj)
10: L1← GetPV (pv1, j+ 1,OP,V )
11: L2← GetPV (pv2, j+ 1,OP,V )
12: L ← L1+ L2
13: else
14: L ← GetPV (pv, j+ 1,OP,V )
15: Return L

Algorithm 2 Voronoi Partition Method (VPM)
Input: V - Voronoi regions of potential locations, P - poten-

tial locations, C - user locations, ε - privacy budget
Output: pr ∈ P - near-optimal location
1: PQ← priority queue sorted by user count in decreasing

order
2: for pi ∈ P do
3: OP← [ ]
4: vi← V [pi]
5: for vj ∈ V do
6: if vi interects with vj then
7: add vj to OP
8: L ← GetPV (vi, 0,OP,V )
9: cnti← 0
10: for pvj ∈ L do
11: cnt ← count the number of users that pvj contains
12: cnti← cnti + cnt + Laplace( 1ε )
13: PQ.enqueue(cnti, pi)
14: Return PQ.top

the overlapped potential location set. We can also use the
range query to compute the partitioned influence region of
the potential location and to count the number of users in
each partitioned influence region with Rc. In Rf , the leaf
node is composed of MBRs for each Voronoi cell of existing
facilities. As explained in the previous section, a Voronoi
diagram of F ∪ {pi} should be constructed to generate the
influence region of each potential location pi ∈ P. We pre-
compute the candidate Voronoi neighbors of each influence
region to reduce the computational cost of generating the
influence region. Voronoi neighbors are subsets of existing
facilities that are adjacent to a given Voronoi cell. We refer
to the edge of a Voronoi cell as a Voronoi edge and each end
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point as a Voronoi vertex. A Voronoi edge is a perpendicular
bisector of a line segment between two existing facilities.
For each Voronoi edge of the existing facility f , we refer
to the corresponding facility f ′ ∈ F as Voronoi neighbors
of f denoted VN (f ). In addition, VN (p) represents Voronoi
neighbors of the influence region of potential location p.
Since |VN (p)| � F , if we know VN (p) in advance, then it
is possible to reduce the construction time of the influence
region. However, it is impossible to pre-compute the Voronoi
neighbors; thus, we use candidate Voronoi neighbors instead.
Candidate Voronoi neighbors are a superset of Voronoi neigh-
bors.We need to compute the Delaunay triangulation of exist-
ing facilities to determine the candidate Voronoi neighbors
of the influence region. The Delaunay triangulation [20] of a
discrete point set O in the general position corresponds to the
dual graph of the Voronoi diagram for O. The circumcenters
of Delaunay triangles are the vertices of the Voronoi diagram.
In the Euclidean space, Voronoi vertices are connected via
edges. They can be derived from the adjacency relationships
of the Delaunay triangles. If two triangles share an edge in the
Delaunay triangulation, then their circumcenters relate to an
edge in the Voronoi cell. Thus, we can define the candidate
Voronoi neighbors as follows.
Definition 11: Candidate Voronoi neighbors. Assume that

location p is located inside the Voronoi cell V (f ). Let DT be
a set of Delaunay triangles that consists of existing facilities
F and Disk() be a circumcircle covering each delaunay tri-
angle. Then, candidate Voronoi neighbors, CVN (p), are the
subset of existing facilities and defined as follows:

CVN (p) = {f ′ ∈ t|t ∈ DT ∧ Disk(t) ∩ V (f ) 6= ∅} (10)

Lemma 12: VN (p) ⊆ CVN (p)
Proof: The proof can be found in the appendix.

We can construct the influence region of the potential
location with its candidate Voronoi neighbors but not all
existing facilities. In addition, we can compute the over-
lapped potential location set through the Voronoi neighbors
of the influence region. Let a potential location p is fixed,
and its influence region V (p) and Voronoi neighbors VN (p)
are given. Then, each Voronoi vertex corresponds to a pair
of Voronoi neighbors. Thus, let the corresponding Voronoi
neighbors of Voronoi vertex vi ∈ V (p).vertex be vni and vn′i.
In addition, the circle whose center is each Voronoi vertex vi
and the radius of d(vi, vni) = d(vi, vn′i) are denoted asVC(vi).
Then, we can easily find the overlapped potential location set
by following lemma.
Lemma 13: Potential location p′ is an overlapped poten-

tial location of p if and only if p′ is inside the union regions
of VC(vi), for all vi ∈ V (p).vertex.

Proof: The proof can be found in the appendix.
Therefore, we can easily compute the overlapped potential

location set through the range query of Rp based on the above
lemma. In conclusion, lines 5 to 7 in Algorithm 2 are changed
to invoke the range query of Rp with the influence region of
the given potential location. Although we utilize these prop-
erties, computational cost is still extremely high if potential

FIGURE 4. Voronoi envelope.

locations are skewed. In the next section, we propose the last
query-processing algorithm that reduces computational time
by slightly sacrificing accuracy to overcome this drawback.

V. VORONOI ENVELOPE FILTERING METHOD (VEM)
A. BASIC IDEA OF VEM
In this section, we propose a VEM. The VPM suffers from
worst case query-processing time. In the worst case, the over-
lapped potential location set constructs every combination of
intersection regions. Thus, the time complexity of the VPM
increases exponentially proportional to the cardinality of the
overlapped potential location set. Although it is extremely
time-consuming, computing the partitioned influence region
for query accuracy is inevitable. However, we observe that
customers and facilities are generally skewed in the Euclidean
space.Most potential locations are less influential among cus-
tomers than the optimal location. Therefore, we can reduce
query-processing time if we know the upper-bound noisy
count of the potential location. Motivated by this observation,
we filter unnecessary potential locations whose upper-bound
noisy count is less than the noisy count of the optimal loca-
tion. To compute the upper-bound noisy count, we initially
determine the candidate influence region of each potential
location, which is called the Voronoi envelope. The Voronoi
envelope of a potential location p, which is denoted by VE(p),
is the union of the Voronoi cells of CVN (p). Fig. 4 shows
an example of the Voronoi envelope. We have 15 existing
facilities and one potential location p. Fig. 4 (a) shows the
Voronoi diagram of existing facilities, and p is located inside
the Voronoi cell of f2, as depicted in Fig. 4 (b). Then,
the Voronoi envelope of f2 consists of its candidate Voronoi
neighbors {f1, f2, f3, f4, f5, f6, f14}, as shown in Fig. 4 (c).
Fig. 4 (d) describes the actual influence region of p. As shown
in this example, VE(p) is an upper-bound region of V (p).
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Algorithm 3 Voronoi Envelope Filtering method(VEM)
Input: Rf - R-tree of existing facilities, Rp - R-tree of poten-

tial locations, ε2 - privacy budget
Output: pr ∈ P - near-optimal location
1: pr ← ∅
2: CB← 0; R← ∅; PQ← priority queue
3: PQ.enqueue(Rp.root,Rf .root,UBncount(Rf .root))
4: while PQ is not empty and CB < PQ.top do
5: Ep,Ef ,UBncount ← PQ.pop()
6: if Both of Ep and Ef are R-tree node then
7: for Np ∈ Ep.children and Nf ∈ Ef .children do
8: if Np interects with Nf then
9: PQ.enqueue(Np,Nf ,UBncount(Nf ))
10: else if Ep is R-tree node and Ef is not then
11: for Np ∈ Ep.children do
12: if Np interects with Ef then
13: PQ.enqueue(Np,Ef ,UBncount(Ef ))
14: else if Ef is R-tree node and Ep is not then
15: for Nf ∈ Ef .children do
16: if Nf contains Ep then
17: PQ.enqueue(Ep,Nf ,UBncount(Nf ))
18: else if Both of Ep and Ef are not R-tree node then
19: Generate the Voronoi region of Ep with Ef
20: Find out the overlapped potential location set of Ep
21: Compute the Voronoi regions of each of OP
22: L ← GetPV (Ep, 0,OP,V )
23: cnti← 0
24: for pvj ∈ L do
25: cnt ← count the users that pvj contains
26: cnti← cnti + cnt + Laplace( 1

ε2
)

27: if Ep.noisy_count > CB then
28: CB← Ep.noisy_count
29: pr ← Ep
30: Return pr

Thus, we can compute the upper-bound noisy count of the
influence region. As shown in Fig. 4 (c) and (d), the Voronoi
envelope is the upper-bound region of any potential location
inside a corresponding Voronoi cell. Then, the noisy count of
the Voronoi envelope is the upper-bound noisy count of each
influence region. Thus, we divide ε into ε1 and ε2, where ε1
is used to compute the noisy count of each Voronoi cell of
existing facilities, and ε2 is used for the VPM. The noisy
count of each Voronoi cell and its upper-bound count are
computed as follows:

ncount(f ) = |IS(f )| + Lap(1/ε1) (11)∑
f ′∈CVN (f )

ncount(f ′) (12)

Equation (11) has the same form as (7), except the term
for the overlapped potential location set is removed. The
Voronoi diagram partitions the entire region, so it is possi-
ble to apply parallel composition. Therefore, the sensitivity
of (11) is also 1 as same as (7). As we will describe later,

FIGURE 5. Potential locations and r-tree of existing facilities.

TABLE 2. Upperbound noisy count of Voronoi regions.

the intermediate nodes of the r-tree only use the noisy count
of voronoi regions, so it does not need additional privacy
budget due to the post-processing property of differential
privacy [8]. The VEM can filter out potential locations whose
upper-bound noisy count is less than the current best location
during query processing. For this reason, we change Rf to
an aggregate R-tree (aR-tree) [24], which is a variation of
the R-tree and maintains aggregate information in the inter-
mediate nodes. The leaf nodes of Rf is composed of MBRs
for each Voronoi cell, which is the same as the VPM, and
their aggregate count is the upper-bound noisy count for
each Voronoi cell. In Rf , the intermediate node stores the
maximum upper-bound noisy count of its children nodes. Let
Nf be a node of Rf and Nf .children be its children nodes.
Then, the upper-bound of the noisy count of Nf is calculated
as follows:

(i) Nf is an intermediate node including the root

UBncount(Nf ) = max
f ∈Nf .children

ncount(f ) (13)

(ii) Otherwise

UBncount(Nf ) = max
N ′f ∈Nf .children

UBncount(f ) (14)
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TABLE 3. R-tree structure of existing facilities.

FIGURE 6. Query processing steps of VEM.

TABLE 4. Experimental settings.

If Nf is a leaf node of Rf , then the upper-bound noisy count is
the sum of the noisy count of its candidate Voronoi neighbors.
By contrast, the upper-bound noisy count of the intermediate
node is the sum of the upper-bound noisy count of its children
nodes. Then, the noisy count of the potential location is
less than UBncount(Nf ) if its nearest existing facility is a
descendent of Nf .

B. QUERY PROCESSING OF VEM
The VEM also exploits three r-trees, namely, Rp, Rf ,
and Rc, during query processing. It traverses Rp in the
best-first search approach [25] while finding the corre-
sponding nodes of Rf . The VEM algorithm searches the
Voronoi cell of the existing facility, which contains potential
locations concurrently and prunes out unnecessary poten-
tial locations during the traversing Rp. Let Np be a node
of Rp and Ep(Ef ) be an entry of Rp(Rf ). Algorithm 3
shows the query-processing steps of the VEM. The VEM
maintains the triplet (Np,Nf ,UBncnt(Nf )) in a maxheap
sorted by UBncnt(Nf ). Then, the VEM dequeues the triplet

(Ep,Ef ,UBcnt) of the maxheap at each step. Four cases exist,
depending on the types of Ep and Ef as follows:
(i) Ep and Ef are nodes of the R-tree.
(ii) Ep is a potential location point, and Ef is a node of Rf .
(iii) Ep is a node ofRp, andEf is a Voronoi cell of the existing

facility.
(iv) Ep is a potential location point, and Ef is a Voronoi cell

of the existing facility.
In Case (i), the VEM extracts the children of Np and Nf .

Next, it finds the pairs of the children (N c
p ,N

c
f ) whose

MBRs overlap. Then, the VEM computes the upper-bound
noisy count of each N c

f and enqueues the new triplet
(N c

p ,N
c
f ,UBncount(N

c
f )). In Case (ii), the VEM extracts

the children of Nf and finds each child node N c
f , which

contains Ep. Then, the VEM computes the upper-bound
noisy count of each N c

f and enqueues the new triplet
(Ep,N c

f ,UBncount(N
c
f )). In Case (iii), the VEM extracts the

children of Np and finds each child node, N c
p , which overlaps

with Ef . The last step is the same as that of the above cases.
In Case (iv), the VEM computes the influence region of
Ep with Ef and invokes the GetPV operation of the VPM
algorithm to calculate its noisy count. If its noisy count is
greater than the current best, then the VEM updates the cur-
rent best. The VEM repeats these steps until the current best
is greater than the top of the maxheap. The potential locations
in Fig. 5 (a) are consideredwith existing facilities in Fig. 4 (a).
Then, the Voronoi diagram and Rf are constructed, as shown
in Fig. 5 (b) and (c). Assume that the upper-bound noisy
counts of Voronoi regions are given as described in Table 2,
and nodes of rf are constructed as Table 3.
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FIGURE 7. The experimental results at varying potential locations.

In this example, p12 is in V (f14), and p13 is in V (f15).
Fig. 6 shows the steps to find corresponding existing facil-
ities of p12 and p13 with Rp and Rf . Initially, the VEM
enqueues the root nodes of Rp and Rf . Then, the VEM
finds that N 1

p intersects with N 1
f , N

2
f , and N 3

f at the next
iteration. The VEM composes the tiplet, (N 1

p ,N
1
f , 6) and

enqueues it into the priority queue. Further, (N 1
p ,N

2
f , 18)

and (N 1
p ,N

3
f , 13) are inserted into the maxheap. In addi-

tion, (N 2
p ,N

1
f , 6), (N 2

p ,N
2
f , 18) and (N 2

p ,N
3
f , 13) are also

inserted, because N 2
p also intersects with N 1

f , N
2
f , and N

3
f .

Assume that ties are broken, (N 1
p ,N

2
f , 18) is popped out

at next iteration. Then, the VEM computes the intersection
children pairs of N 1

p and N 2
f . N

4
p , the child node of N 1

p

intersects with N 7
f and N 8

f , as depicted in Fig. 6 (a) and (b),
respectively. Then, (N 4

p ,N
7
f , 14) and (N 4

p ,N
8
f , 16) are

inserted in the maxheap. Further, (N 5
p ,N

7
f , 14), (N

5
p ,N

8
f , 16),

(N 5
p ,N

9
f , 18) and (N 6

p ,N
7
f , 14) are inserted in the same man-

ner. Continuously, the VEM dequeues (N 5
p ,N

9
f , 18) and finds

out that p10 is in V (f17) and p11 is in V (f18). Then, the VEM
generates the influence region of p11 and finds out its over-
lapped potential location set. Finally, the VEM invokes the
VPM with p11 and computes its noisy count. If the noisy
count of p11 is greater than 18, the algorithm is terminated,
because (N 2

p ,N
2
f , 18) is the top of priority queue. Other-

wise, the algorithm repeats until it satisfies the terminating
condition. After several iterations later, (p12,V (f14), 14) and
(p13,V (f15), 15) are popped out, if the terminating condition
is not meet. Then, the influence regions of p12 and p13 are
constructed, and the VEM invokes the VPMwith p12 and p13.
The overall algorithm is described in the appendix due to the
lack of space.
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FIGURE 8. The experimental results at varying existing facilities.

VI. EXPERIMENTAL RESULTS
In this section, we report the experimental results of the
proposed method. Section 6.2 studies the behavior of the
methods with varying dataset sizes. Section 6.3 evalu-
ates the performance of the methods with varying parameters.

A. EXPERIMENTAL ENVIRONMENTS
We perform experiments to evaluate our proposed VPM and
VEM methods by using three datasets, namely, Yelp [21],
CAL [22] and Gowalla [27]. The Yelp dataset consists
of location and check-in data and is a location-based
social network service. The user datasets, which com-
prise a set of 1,326,097 users, are generated by check-in
data. A total of 174,566 points of interest (POIs) exists in

the business data. Therefore, we divide the POIs into two
datasets. One dataset is for potential locations, and the other
is for existing facilities. Then, we randomly select 100 to
900 points from potential locations. The CAL dataset is an
actual road network dataset from California that contains
21,048 vertices, 21,693 edges, and 85,070 POIs. In this
case, we divide the POIs into two sections to form potential
locations and existing facilities. Next, we randomly gener-
ate client locations based on Zipfian distribution varying
the skewness of the data. We randomly select the POIs in
CAL dataset and find the nearest neighbor facilities of each
POI. Then, we compute the nearest neighbor distance, and
we generate distance of each user from zipf distribution.
Finally, we randomly generate 2D positional values with
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FIGURE 9. The experimental results at varying number of users.

this distance. The Gowalla dataset has only check-in data of
users. There are 2,548,428 user histories, and the users visit
total 706,947 POIs. Thus, we select 50,000 potential locations
and existing facilities, respectively. Then, we make the other
606,947 POIs as client locations to match the ratio of POIs
to client location with the Yelp dataset. To measure accuracy
with generality, all data sets were divided into 10 subdata
sets, and the experiments are conducted 10 times with varying
parameter values with each subdata sets. Table 4 shows a
summary of the experimental setup in which the bold texts
are default settings. The experiments are conducted with an
Ubuntu 14.04 operation system with an Intel(R) Xeon(R)
CPU E5-2620 v2@2.10 GHz and 64 GB RAM. We compare
SC_naive (based on sequential composition), SC_enhanced
(the enhanced version of sequential composition), the PSD
(private spatial decomposition), the VPM, and the VEM.

The PSD is based on DAWA[16] which is one of the best
private spatial decompositionmethods in 2D data [26].We set
the system parameter of DAWA as same as [16]. To find
out optimal location with PSD index, we construct each
influence region of potential locations. Then, we compute
the overlapping areas of the regions and PSD index. Next,
we compute the noisy count of each potential location with
overlapping ratio. Finally, we find out the potential location
with the highest noisy count.Wemeasuremean absolute error
(MAE), query accuracy, and query processing time of optimal
location selection. Let po(i) be an actual optimal location and
pm(i) be the query output of eachmethod in ith iteration. Then,
the query error means the difference between the number of
clients attracted by po(i) and pm(i). Meanwhile, the query
accuracy is the number of times that pm(i) is same with po(i).
With the number of test case nt , the MAE and query accuracy
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FIGURE 10. The experimental results at varying privacy budget.

are calculated as follows:

MAE =
nt∑
i=1

|IS(po(i))| − |IS(pm(i))|
nt

(15)

accuracy =
nt∑
i=1

I (pm(i))
nt

(16)

I (x) =

{
0 x 6= po(i)
1 x = po(i)

(17)

B. SCALABILITY TEST
Fig. 7 shows the results of potential location scalability.
We evaluate accuracy, MAE, and query time by varying the
number of potential locations from 100 to 900. As depicted

in the figures, all schemes degrade performance in terms
of MAE and accuracy as the cardinality of the potential
location set increases. However, the VPM and the VEM
outperform the other methods in all the experiments. In the
Gowalla dataset, synthetic client data is highly skewed,
so the proposed techniques seem to be significantly bet-
ter than the other methods. As Fig. 7 (g), (h) and (i) show,
the VPM suffers from poor scalability of query-processing
time. Meanwhile, the VEM outperforms the other methods
in terms of query processing time, and its query accuracy
is similar to that of the VPM. The scalability of existing
facilities is depicted in Fig. 8. It shows that the accuracy of
all the methods increases as the number of existing facili-
ties increases except accuracy in the Yelp dataset. Fig. 8(d)
shows that all the methods slightly degrade in accuracy,
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FIGURE 11. The experimental results at varying ε ratio.

FIGURE 12. The experimental results at varying α.

but there are not significant change. Moreover, the VPM and
the VEM still outperforms the other methods. The areas
of the potential locations depend on the existing facilities.

As the number of existing facilities increases, the influence
region of each potential location would be smaller. There-
fore, the influence of each potential location decreases,
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FIGURE 13. Index build time.

as the cardinality of existing facility increases. As a result,
the overall query accuracy decreases because it is highly
affected by the inserted noise. The results of query time
are depicted in Fig. 8 (g), (h) and (i). The query processing
time increases in overall methods except the PSD and the
VEM, as the number of existing facilities increases. It is
because the computing time of overlapping area decreases
in the PSD and the probability of pruning increases in the
VEM due to the small size of influence region. In conclu-
sion, the VPM and the VEM outperform the other methods
in terms of accuracy and MAE, but the VPM still suffers
from query-processing time, as described in Fig. 8. The
results of user scalability are depicted in Fig. 9. It shows
that the accuracy of all the methods increases as the number
of users increases. By contrast, the MAE decreases as the
number of users increases. As the number of users increases,
the influence of individual potential locations increases. As a
result, the accuracy of the query is less affected by the
inserted noise. The query processing time increases in all
the methods, as the number of users increases. However,
the PSD and the VEM are less affected than the others. The
PSD just computes the overlapping areas of each influence
region and the DAWA index, so the query processing time
is independent of the number of users. The VEM prunes
out unnecessary potential locations, so the query processing
time slightly increases. In all datasets, the VPM and the
VEM outperform the other methods in terms of accuracy
and MAE, but the VPM still suffers from query-processing
time.

C. PARAMETER TEST AND INDEX BUILD TIME
The second set of experiments demonstrates performance
evaluation with varying parameter values. We evaluate the
effectiveness of the total privacy budget ε and ε ratio.
As explained in Section 5.1, we divide the total privacy ε into
ε1 and ε2. The ε ratio indicates the budget amount used to
construct the index. When the ε ratio is r , the total privacy
budget is computed as follows:

ε = ε1 + ε2 (18)

ε1 = ε × r (19)

ε2 = ε × (1− r) (20)

We evaluate accuracy and MAE by varying the total privacy
budget ε from 0.25 to 4. The experimental results are shown
in Fig. 10. As expected, the accuracy of the overall meth-
ods increases substantially with the increase in ε except the
SC_naive and PSD. In general, the VPM outperforms the
other methods, and the VEM performs second best. How-
ever, the VEM is the best in terms of query-processing time.
The query processing time is not affected by the privacy
budget. The results of the experiments that vary the ε ratio
are shown in Fig. 11. These figures demonstrate that the
VEM exhibits similar accuracy and MAE, but it has the
best when ε ratio is 0.1. Therefore, we select the default
value of ε ratio as 0.1. The ε ratio does not affect the query
processing time as same as the privacy budget. Fig. 12 shows
the results of experiments at varying clients distribution
skewness (α). As α grows, the clients get to be more skewed.
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The query accuracy of the PSD decreases in proportion to α as
depicted in Fig. 12 (a) and (b). The query processing time is
not affected by the client skewness, as shown in Fig. 12 (c).
Fig. 13 describes the results of the last experiments for the
index build time. We compare the index build time of the
VEM with the R-tree and the DAWA index structures. Since
the scalability of potential locations does not affect the build
time of the VEM, we conducts the experiments for the exist-
ing facilities and clients. The VEM has the poor performance
in all datasets. However, index build time is not on-demand
service time, but precomputation time.

VII. CONCLUSION AND FUTURE WORKS
We propose a differentially private method to protect user
locations in the query processing of Max-inf location selec-
tion. To the best of our knowledge, this study is the first
to point out the influence region overlapping problem when
applying differential privacy to Max-inf problems. It is pos-
sible to find an adequate location for various purposes, such
as analysis of trade areas and establishment of public facili-
ties, while preserving the individual location of users. Also,
we present query processing methods VPM and VEM to
improve query accuracy and to reduce query processing time.
In this work, the VEM is the best method in terms of accuracy
and query-processing time. In the future, we will perform
additional experiments to obtain other appropriate parameters
to improve performance on various datasets.

APPENDIX
Proof of Lemma 12: Suppose that VN (p) * CVN (p). Then,
∃f ∈ VN (p) such that f /∈ CVN (p) and ∃o ∈ V (f ), such that
d(o, f ) > d(o, p). Without loss of generality, assume that o
is inside 1fvivj, such that vi and vj are the adjacent Voronoi
vertices of f . Let the projection point of o onto vivj be as o′,
f onto vivj be as mf , and p onto vivj be as mp.Then, d(f , o) <
d(f , o′). There are 3 cases as follows:
(i) o′ is on vimf :

d(f , o′)2 = d(f ,mf )2 + d(o′,mf )2

= d(f ,mf )2 + (d(vj, o′)− d(vj,mf ))2

= d(vj, f )2 − 2d(vj,mf )d(vj, o′)+ d(vj, o′)2

< d(vj, p)2 − 2d(vj,mf )d(vj, o′)+ d(vj, o′)2

< d(vj, p)2 − 2d(vj,mp)d(vj, o′)+ d(vj, o′)2

= d(p,mp)2 + (d(vj, o′)− d(vj,mp))2

= d(p,mp)2 + d(o′,mp)2

= d(p, o′)2

First inequality is hold by assumption, d(vj, f ) <

d(vj, p) and second inequality follows from that
d(vj,mf ) > d(vj,mp).

(ii) o′ is on mfmp:

d(f , o′)2 = d(f ,mf )2 + d(o′,mf )2

= d(f ,mf )2 + (d(vj,mf )− d(vj, o′))2

= d(vj, f )2 − 2d(vj,mf )d(vj, o′)+ d(vj, o′)2

< d(vj, p)2 − 2d(vj,mp)d(vj, o′)+ d(vj, o′)2

= d(p,mp)2 + (d(vj, o′)− d(vj,mp))2

= d(p,mp)2 + d(o′,mp)2

= d(p, o′)2

The inequality follows that d(vi, f ) < d(vi, p) and
d(vi,mf ) > d(vi,mp).

(iii) o′ is on mpvj:

d(f , o′)2 = d(f ,mf )2 + d(o′,mf )2

= d(f ,mf )2 + (d(vj,mf )− d(vj, o′))2

= d(vj, f )2 − 2d(vj,mf )d(vj, o′)+ d(vj, o′)2

< d(vj, p)2 − 2d(vj,mp)d(vj, o′)+ d(vj, o′)2

= d(p,mp)2 + (d(vj,mp)− d(vj, o′))2

= d(p,mp)2 + d(o′,mp)2

= d(p, o′)2

The inequality follows that d(vi, f ) < d(vi, p) and
d(vi,mf ) > d(vi,mp).

Then, d(f , o) < d(f , o′) < d(p, o′) < d(p, o). It contradicts
to the assumption that d(f , o) > d(p, o). Therefore, VN (p) ⊆
CVN (p).

Proof of Lemma 13: Suppose that p′ ∈ OP(p) and p′ is
outside ∪vi∈V (p).vertexVC(vi). Then, ∃o ∈ V (p) such that ∀f ∈
F, d(o, f ) > d(o, p′). Without loss of generality, assume that
o is inside of 1pvivj, such that vi and vj are the adjacent
Voronoi vertices of p. Let denote their corresponding Voronoi
neighbor be as f ∗. Then, d(vi, f ∗) = d(vi, p) and d(vj, f ∗) =
d(vj, p). The followings are hold by the assumption.

d(f ∗, o) ≤ max(d(f ∗, vi), d(f ∗, vj))

≤ max(d(p, vi), d(p, vj))

< d(p′, o)

This contradicts to that ∀f ∈ F, d(o, f ) > d(o, p′). There-
fore, if p′ ∈ OP(p), then p′ is outside ∪vi∈V (p).vertexVC(vi).
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