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ABSTRACT The novelty of this work consists in the synthesis of a new structure of proportional-integral
observer (PIO) reformulated from the new linear ARX-Laguerre representation with filters on system input
and output. This is in order to estimate the unknown outputs presented as faults and to detect the time instant
corresponding to the system malfunction. The stability and the convergence properties of the proposed PIO
are ensured by using Linear Matrix Inequality. Furthermore an optimal identification of both Laguerre poles
is achieved by a genetic algorithm approach where a parametric significant reduction is ensured to guarantee
a reduced observer. The performances of the identification approach and the resulting PIO are tested on an
experimental 2nd order electrical system.

INDEX TERMS ARX-Laguerre model, genetic algorithm, proportional-integral observer.

I. INTRODUCTION
Observer-based fault diagnosis is still current key research
focus and shows great potentials in the area of model-based
fault diagnosis. One of the current research axes is the
design of observer associated to the process with unknown
inputs entitled Unknown Input Observer (UIO). In this case,
the sensors and actuator faults can be considered as unknown
inputs as well which are not available from measurements.
Therefore, the UIO received great attention in the recent
years by using geometric theory to decouple the effects from
the unknown inputs [5], [19] or by exploiting the sliding
mode approach for the unknown input observer [7], [9] in
order to the state estimation as well as the fault. In this
context, Proportional-Integral observer (PIO) is considered
as an UIO with a simple structure. This last is developed and
amply applied by many researchers in linear case by using a
high-gain observer associated to the both terms proportional
and integral applied to the output estimation error. In fact, the
PIO allows to have an unbiased estimate of the state as well
as the detection and estimation of unknown inputs despite the
presence of uncertainties or unknown inputs [6], [8], [20].
The PIO requires knowledge of the suitable model for rep-
resenting the dynamic behavior of the system. As long as
the model is characterized by a reduced parametric complex-
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ity we obtain a reduced observer with a simple structure.
This parametric reduction has practical and technical ben-
efits for the reduced-order observer design for large-scale
linear systems with high dimension and complexity. In the
practical case the systems are generally of a nonlinear and
complex type which are mainly represented by a complex
and nonlinear differential equations linearized under certain
linearization assumptions. The aim of this linearization is to
work in the vicinity of an operating point. However, these
hypotheses can degrade the performances of the obtained
complex linear model as well as that of the developed PI
observer for the fault diagnosis in the vicinity of the operating
point. Therefore, it is important to obtain a linear model
ensuring faithfully the representation of the system, even if
we work around an operating point, and also that it is char-
acterized by a significant reduction in parametric complexity.
This result also allows the design of observer-based reduced
order controllers. Consequently, in order to circumvent the
differential equations or the knowledge of the system’s state
space representation andmoreover in order to satisfy the com-
promise between parametric complexity reduction and the
representation of complex linear systems we propose in this
work to exploit the discrete new linear representation enti-
tled ARX-Laguerre model developed by expanding the SISO
ARX model on two Laguerre bases. We note that Laguerre
functions have been used by filtering the process input and
output. Based on the Laguerre functions properties [14], [17]
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the resulting ARX-Laguerremodel is not sensitive to the sam-
pling rate choice. Furthermore, for model development and
compared to the traditional ARX model, no explicit knowl-
edge is required for the system time constant and time delay.
Also, the ARX-Laguerre model allows an easy representation
and a good approximation of complex linear system. In fact,
the proof of the parametric reduction of ARX-Laguerre
model is presented in Bouzrara et al. [3], [4] where the
expansion parsimony is highly linked to the poles choice
defining both Laguerre bases. Thus we exploit the genetic
algorithm [10]–[12] in this paper to present a Laguerre pole
optimization algorithm is proposed. The optimum values are
determined automatically in the genetic evolutionary pro-
cess. Such a process is one of the stochastic optimization
algorithms by expressing the complex structure problems
with its hierarchy and can determine the feasible solving
space automatically without giving any superstructure. Fur-
thermore, the identification of the ARX-Laguerre model only
requires a set of input/ouput measurements while eliminating
a theoretical study of the system to reach the state space repre-
sentation. For consequence, those performances are powerful
tools for an attractive modeling framework to the fault diag-
nosis methods development which are utilized for fault detec-
tion/identification. The most important issue in model-based
fault detection and identification (FDI) concerns the accuracy
and the simplicity of the model describing the behavior of
the monitored system. In this case, a recent work is presented
in [16] allocated to the detection and identification of input
faults by developing a proportional-integral observer based
on ARX-Laguerre model. The major advantage lay on the
one hand in the synthesis of a reduced observer and on the
other hand in the effectiveness of the proposed PIO diagnosis
with respect to the unknown input as fault. However, like
to the input fault, in the practical case the output of the
system can also suffer from the presence of an unknown fault.
Consequently, we exploit the principle of filtering the output
residing in the ARX-Laguerre model in order to extend the
work of Najeh et al. [16]. Indeed, filtering of the output makes
it possible to develop an augmented system with output fault
based on the ARX-Laguerre model. Taking into account the
obtained configuration, we propose a PI observer for the
detection/ identification of faults at the output. Furthermore,
in a similar way to [16] we present the optimization of the
observer’s gains using linear matrix inequality. This latter
allows to ensure stability and convergence properties of the
proposed PIO. Therefore, this work focuses on the detection
and estimation of the sensor faults, modeled as unknown out-
puts of the system, by considering the design and the devel-
opment of model-based FDI scheme from the ARX-Laguerre
model. The key issue of the proposed diagnosis method is
to introduce a new structure design of a PIO by using the
recursive representation of the ARX-Laguerre model and the
augmented systemwith output fault. In this case, the proposed
ARX-Laguerre PI observation approach is exploited to mod-
ify the traditional PI observer by applying ARX-Laguerre
model. Then, the PIO exploits the input/output measurements

to reconstruct only the Laguerre filter outputs without esti-
mate the states of the system. The purpose of this note is
to extend the principle of the PIO used in the linear system
framework [1], [18] to the ARX-Laguerre model [2] not to the
knowledge of the state but only to set up a new FDI scheme.
This latter allows to generate fault indicators (residuals) to the
faults detection by specifying the time instant of appearance
in which the unknown outputs are estimated simultaneously.
In this case, sufficient conditions of the proposed PIO for
ensuring stability and the estimation error convergence are
given in LMI form. Besides we note that when the para-
metric dimension of ARX-Laguerre model is less than the
order of the system we get a reduced observer which may
have better properties than a full-order observer to develop
a control algorithm in an observer-based design [15], [18].
The main contributions of this paper are mainly fourfold.
1) We present a genetic algorithm as in [16] to optimize
Laguerre poles to ensure the parameter number reduction.
2) We develop a new structure design of a PIO based on the
new linear representation ARX-Laguerre model and if the
parametric reduction is less than the proposed observer is a
reduced observer. 3) We present a LMI formulation in order
to guarantee the stability and the estimation error convergence
of the proposed PIO as well as to compute the observer’s
gains. 4)We present a residual generation structure in order to
propose an algorithm detecting and estimating output faults
for the new FDI scheme.

The paper is organized as follows. The section 2, will be
dedicated to the ARX-Laguerre model presentation with its
simple and recursive representation. The section 3 will detail
the method for Laguerre pole optimization by exploiting
the genetic algorithm. Section 4 illustrates the designed of
PIO output fault diagnosis for output fault identification and
estimation characterizing the proposed FDI scheme. In this
case, the development of a PIO and a LMI formulation is
achieved in order to present the PIO output fault diagnosis
algorithm. Finally, section 5 evaluates from an experimental
application on a 2nd order electrical system, the performances
and the efficiency of the Laguerre pole optimization and the
proposed PIO diagnosis.

II. ARX-LAGUERRE MODEL
The new linear ARX-Laguerre model results from the
ARX model decomposition on orthonormal and independent
Laguerre bases defined as follows [4]:

y(k) =
Na−1∑
n=0

gn,axn,y(k)+
Nb−1∑
n=0

gn,bxn,u(k) (1)

characterized by the parameter number:

M = Na+ Nb (2)

where gn,a, gn,b are the Fourier coefficients with Na and
Nb the truncating orders and xn,y(k) and xn,u(k) are respec-
tively the filtered output and the filtered input by Laguerre
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functions:

xn,y(k) =
∞∑
j=1

`an(j, ξa)y(k − j) = `
a
n(k, ξa) ∗ y(k) (3)

xn,u(k) =
∞∑
j=1

`bn(j, ξb)u(k − j) = `
b
n(k, ξb) ∗ u(k) (4)

such as y(k) and u(k) are respectively the system’s input and
output and ∗ is the convolution product where `an(j, ξa) and
`bn(j, ξb) are the Laguerre orthonormal functions which are
given by their Z-transform:

L in(z)=

√
1− ξ2i
z− ξi

(
1− ξiz
z− ξi

)n
, i = a, b and n = 0, 1, 2, . . .

(5)

with Laguerre poles ξi(|ξi| < 1), i = a, b. Furthermore,
the ARX-Laguerremodel can be represented by the following
recursive representation:{

X (k) = A X (k − 1)+ by y(k − 1)+ bu u(k − 1)
y(k) = cT X (k)

(6)

where:
X X (k) is a vector with the filtered output/ input.

X (k) =
[
XTa (k),X

T
b (k)

]T
∈ <

M (7)

with:Xa(k) =
[
x0,y(k), . . . , xNa−1,y(k)

]T
∈ <

Na

Xb(k) =
[
x0,u(k), . . . , xNb−1,u(k)

]T
∈ <

Nb
(8)

X A is a square matrix:

A =
(

Ay 0Na,Nb
0Nb,Na Au

)
∈ <

M×M (9)

with 0i,j a null matrix of dimension (i × j) and Ay and Au are
two square matrices (10) and (11), as shown at the bottom of
the next page.
X by ∈ <M and bu ∈ <M are two column vectors:

by =
[

ba
0Nb,1

]
∈ <

M , bu =
[
0Na,1
bb

]
∈ <

M (12)

with ba and bb two column vectors with dimension Na and
Nb respectively:

bi =
√
1− ξ2i


1
−ξi

(−ξi)2
...

(−ξi)Ni−1

 , i = a, b (13)

X c is the Fourier coefficients parameters vector:

c =
[
cTa , c

T
b

]T
∈ <

M (14)

such as: {
ca =

[
g0,a, . . . , gNa−1,a

]T
∈ <

Na

cb =
[
g0,b, . . . , gNb−1,b

]T
∈ <

Nb
(15)

III. GENETIC ALGORITHM FOR LAGUERRE POLE
IDENTIFICATION
An optimal identification of Laguerre poles ξa and ξb guaran-
tees an important reduction of the parameter number M [4].
A nonlinear optimization problem could be applied to the
Laguerre poles identification such as the GA. This latter is an
evolutionary optimization method [10]–[12] which is applied
to a large class of optimization problems. Infact, initial popu-
lation ofNind individuals is created by involving probabilistic
steps. In order to converge to the optimal solution of the
optimization problem, this initial population is treated using
some genetic operations. Then, by minimizing an objective
function known as fitness, the Laguerre poles are identi-
fied. In our case we consider the Normalized Mean Square
Error (NMSE) computing the quadratic error between the
ARX–Laguerre model output y(k) and the measured output
ym(k) as follows:

NMSE(ξ ) =
H∑
k=1

[
ym(k)− cTX (k)

]2/ H∑
k=1

[ym(k)]2 (16)

where H is a measurement window and

ξ = [ξa, ξb] (17)

Therefore, we present as follows the GA for Laguerre poles
optimization:

ALGORITHM 1: LAGUERRE POLES OPTIMIZATION BY
GENETIC ALGORITHM

1. We consider H couples (u(k), ym(k)) of input/output.
2. We fix the truncating orders Na and Nb.
3. Specify a threshold ε as a prespecified stopping cri-

terion with the genetic parameters Pc and Pm as the
crossover rate and the mutation probability respec-
tively.

4. We generate randomly Nind initial values of Laguerre
poles ξ

i
=
[
ξ ia, ξ

i
b

]
, i = 1, . . . ,Nind .

5. Evaluation phase:
(a) For each ξ

i
=
[
ξ ia, ξ

i
b

]
, i = 1, . . . ,Nind : compute

the Fourier coefficients by RLS method and also
the fitness NMSE(ξ

i
).

(b) Obtain the minimal fitness

NMSEmin = min
i=1,...,Nind

(
NMSE(ξ

i
)
)

6. Selection phase: Select solutions after evaluation phase
according to the fitness.

7. Crossover and Mutation phase: Apply crossover and
mutation to the selected solutions.

8. Evaluation phase: Determine the fitness NMSE as in 5
according to the new generated solutions.

9. If NMSEmin ≤ ε, stop the algorithm. Else, return to
Step 6.
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IV. PIO OUTPUT FAULT DIAGNOSIS
A. THE PROPOSED PI OBSERVER
Taking into account (8) and (15), the recursive representa-
tion (6) can be written in this new decomposed vector repre-
sentation with respect to y(k) and u(k):

Xa(k) = Ay Xa(k − 1)+ ba y(k − 1)
Xb(k) = Au Xb(k − 1)+ bb u(k − 1)
ya(k) = cTa Xa(k)
yb(k) = cTb Xb(k)
y(k) = ya(k)+ yb(k)

(18)

Thus, the discrete-time ARX-Laguerre filter network can be
represented by Figure 1.

FIGURE 1. Decomposed discrete-time ARX-Laguerre filter network with
respect to y (k) and u(k).

In the following, we neglect the noise applied to the system
and the measured output system ym presents an additive fault
V (For example, a sensor fault) i.e. y+ V . This is illustrated
by this configuration:

Considering the ARX-Laguerre model (18) and the fault
V (k) the configuration of the Figure 1 is modified as follows:

According to the configurations of Figures 1 and 3 we see
the filtering of the input u(k) and the output y(k). So we
propose to extend this filtering principle to the output y(k)
with fault V (k) i.e. the filtering of ym(k) = y(k) + V (k)
instead of y(k). In this case, we propose an augmented system
with output fault based on the ARX-Laguerre model. Taking
into account the configuration of Figure 3, the proposed
augmented system can be illustrated by this configuration:

FIGURE 2. Representation with output fault.

FIGURE 3. Representation with fault with respect to the system output.

FIGURE 4. Proposed augmented system with output fault based on the
ARX-Laguerre model.

In this case, taking account of Figure 4 and the represen-
tation (18) of ARX-Laguerre model we deduce the following
augmented system with output fault V (k):

Xa,m(k) = Ay Xa,m(k − 1)+ ba ym(k − 1)
Xb(k) = Au Xb(k − 1)+ bb u(k − 1)
ya,m(k) = cTa Xa,m(k)
yb(k) = cTb Xb(k)
ym(k) = ya,m (k)+ yb(k)+ V (k)

(19)

Ay =


ξa 0 0 · · · 0

1− ξ2a ξa 0 · · · 0
−ξa(1− ξ2a ) 1− ξ2a ξa . . . 0

...
...

...
. . .

...

(−ξa)Na−2(1− ξ2a ) (−ξa)Na−3(1− ξ2a ) (−ξa)Na−4(1− ξ2a ) · · · ξa

 ∈ <Na×Na (10)

Au = =


ξb 0 0 · · · 0

1− ξ2b ξb 0 · · · 0
−ξb(1− ξ2b ) 1− ξ2b ξb . . . 0

...
...

...
. . .

...

(−ξb)Nb−2(1− ξ2b ) (−ξb)Nb−3(1− ξ2b ) (−ξb)Nb−4(1− ξ2b ) · · · ξb

 ∈ <Nb×Nb (11)
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or:

Xa,m(k) =
(
Ay + bacTa

)
Xa,m(k − 1)+ bacTb Xb(k − 1)

+ baV (k − 1)
Xb(k) = AuXb(k − 1)+ bbu(k − 1)
ya,m(k) = cTa Xa,m(k)
yb(k) = cTb Xb(k)
ym(k) = ya,m(k)+ yb(k)+ V (k)

(20)

such as:

Xa,m(k) =
[
x0,ym (k), . . . , xNa−1,ym (k)

]T
∈ <

Na (21)

To reconstitute or estimate the augmented representa-
tion (20) with output fault, we propose the development of
a proportional-integral observer based on the ARX-Laguerre
model defined by (18). In this case, the representation (18) is
written in this form:

where xn,ym (k) is defined in (3) by replacing only y(k) with
ym(k).

Xa(k) =
(
Ay + bacTa

)
Xa(k − 1)+ bacTb Xb(k − 1)

Xb(k) = Au Xb(k − 1)+ bbu(k − 1)
ya(k) = cTa Xa(k)
yb(k) = cTb Xb(k)
y(k) = ya(k)+ yb(k)

(22)

Therefore, the proposed PIO is developed based on the
vectors Xa(k) and Xb(k) of the relation (22) whose structure
is shown in Figure 5:

X̂a(k) =
(
Ay + bacTa

)
X̂a(k − 1)+ bacTb X̂b(k − 1)

+La
(
ym(k − 1)− ŷ(k − 1)

)
+ baV̂ (k − 1)

V̂ (k) = V̂ (k − 1)+ KV
(
ym(k − 1)− ŷ(k − 1)

)
X̂b(k) = AuX̂b(k − 1)+ bbu(k − 1)

+Lb
(
ym(k − 1)− ŷ(k − 1)

)
ŷb(k) = cTb X̂b(k)
ŷa(k) = cTa X̂a(k)
ŷ(k) = ŷa(k)+ ŷb(k)+ V̂ (k)

(23)

where:

X X̂a(k) and X̂b(k) are the estimates of the vectors Xa,m(k)
and Xb(k) such as:{

X̂a(k) =
[
x̂0,ŷ, . . . , x̂Na−1,ŷ

]T
∈ <

Na

X̂b(k) =
[
x̂0,u, . . . , x̂Nb−1,u

]T
∈ <

Nb
(24)

with x̂n,ŷ(k) and x̂n,u(k) the estimated filtered output and
output of xn,ym (k) and xn,u(k) respectively.

X V̂ (k) is the estimation of the unknown output fault V (k).
X ŷa(k) is the estimation of ya,m(k) by the PIO.
X ŷb(k) is the estimation of yb(k) by the PIO.
X La,Lb and KV are the PIO’s gains.

B. CALCULATION OF GAINS BY LMI OPTIMIZATION
From relation (20) we consider:
X Xm(k) a column vector:

Xm(k) =
[
XTa,m(k),X

T
b (k)

]T
∈ <

M (25)

X A
m
a square matrix:

A
m
=

(
Ay + bacTa bacTb
0Nb,Na Au

)
∈ <

M×M (26)

Moreover, by exploiting (12), (13) and (14) we propose to
write the measured output ym(k) from the augmented sys-
tem (19), under this compact form:{
Xm(k) = A

m
Xm(k − 1)+ buu(k − 1)+ byV (k − 1)

ym(k) = cTXm(k)+ V (k)
(27)

In this same way and from (23); the estimated output ŷ(k) of
ym(k) can be written:
X̂ (k) = A

m
X̂ (k − 1)+ buu(k − 1)

+F
(
ym(k − 1)− ŷ(k − 1)

)
+ byV̂ (k − 1)

V̂ (k) = V̂ (k − 1)+ KV
(
ym(k − 1)− ŷ(k − 1)

)
ŷ(k) = cT X̂ (k)+ V̂ (k)

(28)

where:
X X̂ (k) and F are two column vectors:

X̂ (k) =
[
X̂Ta (k), X̂

T
b (k)

]T
∈ <

M (29)

F =
(
La
Lb

)
∈ <

M (30)

We consider the state and output fault reconstruction errors
e(k) and ε(k) respectively:

e(k) = Xm(k)− X̂ (k) (31)

ε(k) = V (k)− V̂ (k) (32)

By exploiting (27) and (28), the expression of e(k) is deducted
as follows:

e(k) =
(
A
m
− FcT

)
e(k − 1)+

(
by − F

)
ε(k − 1) (33)

If we consider that the unknown inputV (k) is constant or very
slow dynamics over time i.e.:

V (k)− V (k − 1) = 0 (34)

We can deduce from the second equation of the sys-
tem (28)that,

ε(k) = (1− KV ) ε(k − 1)− KV cT e(k − 1) (35)

Using relations (33) and (35) we can obtain:(
e(k)
ε(k)

)
=

(
A
m
− FcT by − F
−KV cT 1− KV

)(
e(k − 1)
ε(k − 1)

)
(36)

According to (33) and (35), we propose to consider the global
reconstruction error eε(k):

eε(k) =
(
e(k)
ε(k)

)
(37)
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FIGURE 5. Structure of PIO based on the ARX-Laguerre model.

From (36) we deduce:

eε(k) = (Aε − Kεcε)eε(k − 1) (38)

with:
X Aε a square matrix:

Aε =
(
A
m

by
01,M 1

)
∈ <

(M+1)×(M+1) (39)

X Kε is a column vector:

Kε =
[
F
KV

]
∈ <

M+1 (40)

X cε is a line vector:

cε =
[
cT 1

]
∈ <

1×M (41)

So, a theorem characterizing sufficient conditions and ensur-
ing the exponential convergence of the global reconstruction
error eε(k) is proposed as in [16] by taking into account that
the unknown input V (k) is constant:
Theorem 1: If there exists a positive symmetric matrix

P, the global reconstruction error eε(k) characterizing the
proportional-integral observer converges to zero exponen-
tially and defines a matrix Gε satisfying the following LMIs:[

(1− 2α)P ATε P− c
T
ε G

T
ε

PAε − Gεcε P

]
> 0 with α ∈ ]0, 0.5[ (42)

such as:

Kε = P−1Gε (43)

Proof in appendix �

C. DETECTION AND OUTPUT FAULT ESTIMATION
In terms of performance for the fault detection at the output,
the following residues are calculated:
â the residue ey(k) as the error between the measured

output ym(k) and the estimated output ŷ(k):

ey(k) = ŷ(k)− ym(k) (44)

â the residue eay(k) as the error between ŷa(k) and ya,m(k):

eay(k) = ŷa(k)− ya,m(k) (45)

Therefore, the general residual structure is proposed
in Figure 6.

Considering the relations (20) and (23), we deduce that:
X for V̂ (k) 6= V (k):

ŷ(k) 6= ym(k)⇔ ey(k) 6= 0 (46)

X̂a(k)− Xa,m(k) = Ay
(
X̂a(k − 1)− Xa,m(k − 1)

)
+ (La + ba)

(
ym(k − 1)− ŷ(k − 1)

)
6= 0⇔ eay(k) 6= 0 (47)

VOLUME 8, 2020 83057



C. B. Njima, T. Garna: PIO Output Fault Diagnosis by ARX-Laguerre Model Applied To 2nd Order Electrical System

FIGURE 6. Residual generation structure.

X for or V̂ (k) ' 0 (without fault):

ŷ(k) ' ym(k)⇒ ey(k) ' 0 (48)

X̂a(k)− Xa,m(k) ' Ay
(
X̂a(k−1)− Xa,m(k−1)

)
' 0⇔ eay(k) ' 0 (49)

Therefore, we can get the following proposition:
Proposition 1: The output fault detection and estimation

conditions using PI observer, based on the ARX-Laguerre
model are given by:
X For V̂ (k) 6= V (k):

ŷ(k) 6= ym(k) and eay(k) 6= 0 (50)

X For V̂ (k) ' V (k) or V̂ (k) ' 0 (without fault):

ŷ(k) ' ym(k) and eay(k) ' 0 (51)

Therefore, by considering proposition 1 and the gains La,Lb
and KV calculated using the LMI formulations (42) and (43),
an algorithm for the PIO output fault diagnosis is proposed.

ALGORITHM 2: PIO OUTPUT FAULT DIAGNOSIS
ALGORITHM
A. Offline calculation phase:
(1) Fix the truncating orders (Na,Nb) and we assume that

the Laguerre poles (ξa, ξb), and the Fourier coefficients
c are identified.

(2) Calculate A, by and bu from (9) and (12).
(3) Fix α and calculate the gains La,Lb and KV by (42)

and (43).
B. Online calculation phase:
(4) For each increment of time instant k ≥ 1:

(a) Measure u(k) and ym(k).
(b) Calculate ŷ(k) and V̂ (k) from (23).
(c) If V̂ (k) ' 0 then k = k+ 1⇒ step 4.a.
Else if V̂ (k) 6= 0
(c.1) Fault detection.
(c.2) k = k+ 1⇒ step 4.a.

FIGURE 7. 2nd order electrical system.

FIGURE 8. Photograph of the experimental 2nd order electrical system.

V. EXPERIMENTAL APPLICATION ON A 2nd

ORDER ELECTRICAL SYSTEM
This section presents experimental results on the 2nd order
electrical system to illustrate the efficiency of the Laguerre
pole identification based on genetic algorithm and the per-
formance of the proposed PIO. We consider the following
electrical system with C1 = 10nF,C ′ = 25nF and R1 =
R = R2 = 68k�:

The experimental platform in Figure 8 is characterized by:
• The Arduino card for the acquisition of ym(t) and the
control signal u(t).

• The MATLAB/Simulink to transfer by USB experiment
the control signal u(t) to the system from DAC0800 as
a 8-bit digital to analog converter. Also Simulink allows
the acquisition of ym(t) from the ADC of Arduino card.

We note that the experimental system is defined by the
following continuous-time transfer function:

Gc(s) =
kw2

0

s2 + 2mw0s+ w2
0

(52)

such as w0 =

√
1

RR1C1C ′
= 930.08 rad/s is the natural

frequency, m = 1
2R2

√
RR1C1
C ′ = 0.3162 is the damping ratio

and k = 1 is the static gain.

A. ARX-LAGUERRE MODEL IDENTIFICATION
Using the process at a sampling time of 0.01s, 500 input/
output observations were collected. The voltage input u(k)
is in the range of 1V and 3.37 V which is a pseudo-random
sequence. The evolution of u(k) is presented in Figure 9.
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FIGURE 9. Input signal.

FIGURE 10. Evolution of the NMSE.

We adopt the model structure for which the truncating orders
are Na= Nb= 1 i.e.M = 2 which ensures a PRR (Parameter
Reduction Ratio) equal to (1− 2

/
4)× 100 = 50%. We note

that the 4 parameters characterize the discrete transfer func-
tion using Z-transform between output and input obtained by
taking into account the DAC0800 and the continuous-time
transfer function Gc(s). Indeed, by considering theoretically
that the DAC0800 can be handled as being a Zero Order Hold
(ZOH), we obtain the following discrete transfer function:

GD(z) = Z [HZOH(s).Gc(s)]

=
11.1110−4z + 6.05410−5

z2 + 87.1110−3z+ 2.7910−3
(53)

The genetic parameters are fixed as Nind = 150, ε = 10−3,
Pc = 0.85 and Pm = 0.08. By applying algorithm 1,
the evolution of the NMSE and the identification of the
Laguerre are presented in Figures 10 and 11 respectively
such as ξa = 0.631 and ξb = −0.348. The system and the
ARX-Laguerre outputs are represented in Figure 12 with a
NMSE = 2.3 10−3.

B. OUTPUT FAULT DETECTION AND ESTIMATION
For the generation of the output faults, we disconnect the
polarization of the two operational amplifiers corresponding
to±10V. Consequently, in certain time intervals a zero output
to the electrical system level is obtained. In this case, it notes
that y(k) + V (k) = 0V. Therefore, we obtain from the

FIGURE 11. Identification of Laguerre poles ξa and ξb for Na = 1 and
Nb = 1.

FIGURE 12. System and ARX-Laguerre model outputs for Na = 1 and
Nb = 1.

experimentmanipulation the following condition defining the
presence of faults at output:

y(k)+ V (k) = 0V for k ∈ [90, 400] or k ∈ [820, 1150]

(54)

We fix α = 0.18 for the output fault detection and estimation
by algorithm 2. Then the observer gains La,Lb and KV are
obtained by solving the LMI formulations (42) and (43):

La = 0.6269,Lb = 0.05959,KV = 0.38 (55)

The Figures 13 and 14 show the signal of the unknown output
V̂ (k) as a fault as well the system and the estimate system
outputs. Figure 15 presents the residual signals evaluation
ey(k) and eay(k). Then from Figure 13 the fault signal is
defined as follows:

V (k) =



−2.467V ifk ∈ [90, 232]
−1.69V if k ∈ [233, 400]

}
:1st fault

−1.69V if k ∈ [820, 921]
−2.815V if k ∈ [922, 1150]

}
: 2nd fault

0 else

(56)

From Figure 15 we have ey(k) 6= 0 and eay(k) 6= 0
for faults detection. At time instant 90, 233, 820 and 922,
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FIGURE 13. Signal V̂ (k) which estimates the output fault V (k).

FIGURE 14. System output ym(k) and the estimate system output ŷ (k) by
the PIO.

FIGURE 15. Residual signals ey (k) and ea
y (k).

we see overshoots which are the limiting instants for the
faults detection. The overshoots are results from the fact that
V (k + 1) 6= V (k). From the Figures 13 and 15, the faults
appearance is characterized by:

X a falling edge at time instant k = 90, 233, 820, 922.
X a rising edge at time instant k = 400, 1150.

In this case, it is not complied with the condition
V (k + 1) = V (k) for observer gains computation. For that
purpose, the algorithm 2 does not ensure the estimation of
faults for the corresponding times. Therefore, the appearance
of transitional regimes with overshoots in Figures 14 and
15 with ym(k) 6= ŷ(k). Furthermore, from Figure 15 we note
that we have ey(k) ' 0 and eay(k) ' 0 despite the presence
of faults. This is due to the fact that the proposed PIO offers
faults estimation at the output i.e. V̂ (k) ' V (k). This estimate
is illustrated in Figure 14 and which is guaranteed since
according to (56) we have V (k + 1) = V (k). Then, we get
y(k)+V (k) ' y(k)+V̂ (k) and it results ŷ(k) ' ym(k). For this
why we notice in Figure 15 the concordance between ym(k)
and ŷ(k). Considering Figures 13, 14 and 15, forV (k) 6= V̂ (k)
we can deduce that:

ŷ(k) 6= ym(k) and eay(k) 6= 0 (57)

This is consistent with the result of the relation (50). Fur-
thermore, comparing the order system equal to two with the
parameter number of the ARX-Laguerre (M = 2) we can say
that in this case the proposed PIO has the same order of the
system i.e. is not a reduced observer.

VI. CONCLUSION
In this article, we developed a PI observer based on the new
linear representation ARX-Laguerre. Therefore, a new FDI
schemewas proposed for the output faults detection and iden-
tification. We noted that if the ARX-Laguerre model parame-
ters number is lower than the system order so we can consider
that the resulting PIO is a reduced observer. Furthermore, for
pole optimization of ARX-Laguerre model we exploited the
genetic algorithm. The pole optimization procedure as well as
the resulting PIO were tested and validated on an experimen-
tal 2nd order electrical system. In fact, the performances of
the ARX-Laguerre model in terms of parameter complexity
reduction and quality approximation were appreciated. Also,
the results confirm the efficiency of the proposed PIO for the
output faults detection and identification. We will propose
later a possible extension of this work to an adaptive iden-
tification of the Laguerre poles and the Fourier coefficients
on a sliding window to improve the proposed PI observer
by automatically updating the gain values La,Lb and KV .
Another possible research direction would be the exploitation
of other types observer-based fault diagnosis to achieve a
comparative study like in [7].

APPENDIX
PIO’S GAINS BY LMI OPTIMIZATION
To ensure the exponential convergence of the global recon-
struction error eε(k) to zero, a quadratic Lyapunov function
Vε(k) is restrained [14]:

Vε(k) = eTε (k)Peε(k) (58)
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such asP is a Lyapunov positive define and symmetricmatrix.
We note that the following condition guarantees the exponen-
tial stability of Vε(k):

1Vε(k)+ 2αVε(k) < 0 (59)

where α is the decay rate and1Vε(k) = Vε(k)−Vε(k − 1) is
the increment of Vε(k). From (38) and (59) we obtain:

eTε (k − 1)
{
(1+ 2α)(Aε − Kεcε)TP(Aε − Kεcε)− P

}
eε(k − 1) < 0 (60)

According to Lyapunov theory we can write:

(1+ 2α)(Aε − Kεcε)TP(Aε − Kεcε)− P < 0 (61)

Knowing that (P−1)T = P−1 the inequality (61) is reformu-
lated as follows:

(1+ 2α)
{
ATε PAε − A

T
ε Gεcε − c

T
ε G

T
ε Aε + c

T
ε G

T
ε P
−1Gεcε

}
−P < 0 (62)

such as Gε = PKε. For α ∈ ]0, 0.5[ we can deduce that:{
1− 2α > 0
4α2 ≈ 0

(63)

and inequality (62) is simplified and rewritten as:

(1− 2α)P−
{
ATε PAε − A

T
ε Gεcε − c

T
ε G

T
ε Aε

+ cTε G
T
ε P
−1Gεcε

}
> 0 (64)

By taking into account that:

ATε PAε − A
T
ε Gεcε − c

T
ε G

T
ε Aε + c

T
ε G

T
ε P
−1Gεcε

= (ATε P− c
T
ε G

T
ε )P
−1(PAε − Gεcε) (65)

we conclude that:

(1− 2α)P− (ATε P− c
T
ε G

T
ε )P
−1(PAε − Gεcε) > 0

for α ∈ ]0, 0.5[ (66)

Finally, from (66) the exponential convergence conditions of
the global estimation error eε(k) can be obtained by exploiting
the Schur complement and classical methods for LMI resolu-
tion and which are summarized in Theorem 1.
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