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ABSTRACT Recently, automatic hand gesture recognition has gained increasing importance for two
principal reasons: the growth of the deaf and hearing-impaired population, and the development of vision-
based applications and touchless control on ubiquitous devices. As hand gesture recognition is at the core of
sign language analysis a robust hand gesture recognition system should consider both spatial and temporal
features. Unfortunately, finding discriminative spatiotemporal descriptors for a hand gesture sequence is not
a trivial task. In this study, we proposed an efficient deep convolutional neural networks approach for hand
gesture recognition. The proposed approach employed transfer learning to beat the scarcity of a large labeled
hand gesture dataset. We evaluated it using three gesture datasets from color videos: 40, 23, and 10 classes
were used from these datasets. The approach obtained recognition rates of 98.12%, 100%, and 76.67% on
the three datasets, respectively for the signer-dependent mode. For the signer-independent mode, it obtained
recognition rates of 84.38%, 34.9%, and 70% on the three datasets, respectively.

INDEX TERMS 3DCNN, computer vision, deep learning, hand gesture recognition, sign language recog-
nition, transfer learning.

I. INTRODUCTION
The hand gesture is a nonverbal form of communica-
tion. It consists of linguistic content that carries a large
amount of information in sign language. It also plays a
pivotal role in human-computer interaction (HCI) systems.
Therefore, automatic hand gesture recognition is in high
demand. Since the end of the last century, this field has
attracted the attention of many researchers. The importance
of automatic hand gesture recognition has increased for
the following reasons [1]: (1) the growth of the deaf and
hard-of-hearing populations, and (2) the extended use of
vision-based and touchless applications and devices such
as video games, smart TV control, and virtual reality
applications.

Robust hand gesture recognition is required as a part of
sign language interpretation to help hearing-impaired people.
There is a significant communication gap between people
who can hear and hearing-impaired people. A translation
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system between gestural language and verbal language will
bridge this communication gap. This translation system will
facilitate the lives of hearing-impaired people and help them
to integrate with society. Unlike sign language translation,
hand gesture recognition techniques involve HCI to a great
degree. Today, HCI has a wide range of applications from
video games to telesurgery. As with all time-varying signals,
hand gestures cannot be directly compared in Euclidean space
because of their temporal dependency. This dependency indi-
cates important discriminative features. Temporal misalign-
ment, in addition to massive irrelevant regions in every frame,
makes it very hard to extract representative hand-engineered
features for hand gestures. For conventional classifiers to per-
form well, the extracted features should implicate vigorous
descriptors. These descriptors code enough information for
the inter-frames temporal dependency, as well as the hand
position, shape and orientation in each frame. The computed
features should be able to minimize the effect of differ-
ent circumstances like background clutter and occlusions.
Therefore, we employed deep learning in this paper as a
promising solution.
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In recent years, many researchers have efficiently exploited
convolutional neural networks (CNNs) deep architectures
for feature engineering. CNNs have shown excellent perfor-
mance in fields such as object and speech recognition, image
classification, and edge distribution [2]–[4], and human
activity recognition [5]–[7]. The existence of large datasets
that comprise millions of annotated samples is the main
reason behind such excellent performance. Unfortunately,
the requirement for a large labeled dataset is not met in
the case of hand gestures. To beat the scarcity of labeled
dataset for fitting deep architectures, the transfer learning is
investigated in this study. We propose a well-adapted deep
architecture for automatic hand gesture recognition. Themain
contributions of this study are as follows:

(1) A method to normalize the spatial dimensions of ges-
ture videos based on the facial position, facial length,
and human body part ratios. The signer does not need
to be in the center of the frame or be a fixed distance
from the camera.

(2) A 3DCNN model to learn region-based spatiotemporal
features for hand gestures. The input of this model is
a sequence of RGB frames captured by a basic cam-
era. It does not require other input channels, colored
gloves, or a complex setup.

(3) Developing different fusion techniques to globalize the
local features learned by the 3DCNN model and com-
paring their performance.

The rest of this paper is organized as follows. Section II
reviews related work in the literature. Section III provides
the description of the dataset. The proposed approach is
presented in Section IV. The experimental results and discus-
sions are presented in Section V. The research conclusions are
presented Section VI.

II. RELATED WORK
As a form of the human-computer interaction, hand gesture
recognition has attracted the attention of many researchers
since the end of the last century. Based on the acquisition
technique of the input data, the research efforts can be cate-
gorized into two approaches, the contact-based approach and
the vision-based approach. In the contact-based approach,
the signer should be familiar with interfacing devices like
motion sensors, data gloves, position trackers, and accelerom-
eters, to collect hand gesture data [8]–[12]. This approach
disadvantages are the high cost and discomfort to the signer.
The studies in the vision-based approach revoked these draw-
backs. various imaging devices such as cameras are used
for hand gesture recording (without contacting the signer
body or restricting his movement).

In one of the oldest papers published in sign language
recognition, the authors proposed artificial neural networks
to recognize 42 finger alphabets (static gestures) [13]. Time-
delay neural networks were proposed for hand gesture recog-
nition by Yang et al. [14]. They utilized skin color and motion
for hand segmentation and tracking. The reported accuracy

for 40 gestures was 93.42%. The method presented in [15]
utilized a block-based histogram representation of the optical
flow (BHOF) for gesture recognition. It was evaluated using
three different datasets. The reported accuracies were 93.33%
on the RWTH-BOSTON-50 dataset [16], 60.0% on theAmer-
ican sign language dataset (Purdue RVL-SLLL) [17], and
85.9% on the American sign language lexicon [18]. The
presented method in [19] compressed the motion information
in a video segment into a single image via temporal prediction
and accumulated differences. The K nearest neighbors (K-
NNs) and Bayesian classifiers were then used to evaluate the
frequency transformation of this representative image. The
reported recognition rate on a database of 23 isolated Arabic
gestures was 100%.

The approach proposed in [20] used hidden Markov mod-
els (HMMs) on the discrete cosine transform (DCT) coeffi-
cients of consecutive frames. This was evaluated on the same
dataset of 23 isolated gestures used in [19] and a recognition
accuracy of 94% was obtained. The local binary pattern in
the spatiotemporal representation of three orthogonal planes
(LBP-TOP) was investigated with a support vector machine
(SVM) in [21]. For the same 23-gesture dataset in [19],
a recognition rate of 99.5% was reported. Abid et al. pre-
sented a dynamic sign language recognition system using a
bag of features and a local part model approach [22]. The
experimental results yielded a 97% recognition rate for six
dynamic gestures. The approach presented in [23] involves
the motion data in the optical flow in addition to the RGB
frames. This information fusion is performed at the data
level. The fused information is then used to adapt the pre-
trained inception architecture. The reported accuracy for this
approach was 96.28% on the Jester dataset, 56.7% on the
ChaLearn dataset, and 84.7% on the nvGesture dataset.

A two-streams 3DCNN architecture was proposed by
Molchanov et al. The interleaved volumes of precomputed
Sobel gradient and depth maps were taken with two different
resolutions as the input for the two streams [24]. The out-
put of each stream represented the class membership prob-
ability values. Both streams were fused by performing an
element-wise multiplication. An accuracy of 77.5% on the
VIVA dataset was reported. Poon et al. proposed a bimanual
hand gesture recognition technique [25]. They fit independent
SVM classifiers on the shape and color-encoded features of
three different views. These views were the front, right, and
left. The drawback of the proposed approach is that the input
is static images of the small region of the hands; this is not
applicable for real dynamic hand gesture recognition.

The proposed approach in [26] used the ResNet architec-
ture to fetch features from each frame and encode the entire
video in a single matrix. A CNN was followed to extract the
spatiotemporal features’ evolution. A recognition accuracy
of 95.31% using the Jester dataset was reported.

Even though there is intensive research conducted on ges-
ture recognition, the presented solutions are limited. They
have shortcomings or only operate under constraints. The
methods reviewed here require colored gloves, complex
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FIGURE 1. Sample frames from hand gesture datasets.

hardware, or specific dressing such as in [25], [27], [28].
Others tested only simple static gestures [13], [28], a few
number of gestures [22], or tested only in signer-dependent
mode [20], [19]. They may also require inputs from multi-
ple channels with heavy preprocessing steps [23], [24]. The
vision-based approach presented in this paper is designed to
overcome such barriers and bridge this gap. It does not require
complex hardware colored gloves or special clothing and was
tested on datasets of various sizes in signer-dependent and
signer-independent modes. In the signer-dependent mode,
the dataset is split for training and testing randomly, while in
the signer-independentmode, the signers in the testing dataset
should not be included in the training dataset (more details in
sec V).

III. DATASETS
The presented approach in this paper was evaluated by using
three different hand gesture databases:

A. KING SAUD UNIVERSITY SAUDI SIGN LANGUAGE
(KSU-SSL) DATASET
This dataset was created by the Center of Smart Robotics
Research and Higher Education Program for the Deaf and
Hard of Hearing at King Saud University. The dataset com-
prises selected gestures from the common Saudi sign lan-
guage words and expressions. These expressions contain
single-handed actions as well as two-handed actions. 40 sub-
jects were involved in recording this dataset. Some of the
subjects were deaf people. The nondeaf subjects were guided
by sign language experts. Each subject was asked to perform
the gestures five times during five different sessions. Differ-
ent devices such as RGB cameras and Microsoft Kinect were
used for recording this dataset. The dataset recording sessions
were performed without restrictions in an uncontrolled envi-
ronment. There were no constraints on the clothing of the
participants, lighting conditions, or background color. There

TABLE 1. Selected gestures from KSU-SSL dataset.

was also a high degree of variation in the distances between
the camcorder device and the signers.

Because of this restriction-free recording, KSU-SSL is
a challenging dataset. In most cases, the signer’s hands
are blurred and difficult to detect and track. The first row
in Fig. 1 shows sample frames from this dataset and its uncon-
trolled recording environment. To evaluate our approach on
the KSU-SSL dataset, we selected forty gesture classes.
Table 1 listed the selected classes.

B. ARABIC SIGN LANGUAGE (ArSL) DATASET
This dataset was created by the College of Engineering at the
American University of Sharjah [19]. It contains 23 gestures
performed by three participants. Each subject was asked to
repeat the gestures 50 times. Therefore, there are 150 samples
in the dataset for each gesture. An analog camcorder was
used to record this dataset. Table 2 lists all the gestures in
this dataset. The second row in Fig. 1 displays sample frames
from this dataset.

C. PURDUE RVL-SLLL AMERICAN SIGN LANGUAGE
DATASET
This dataset consists of 43 classes of isolated hand gestures
[17]. Fourteen fluent deaf were involved in recording this
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FIGURE 2. Single 3DCNN-based structure.

TABLE 2. ARSL dataset gestures.

dataset. The recording sessions took place in a professional
recording studio under perfect lighting conditions. We found
only one method evaluated on ten gestures from this dataset.
To evaluate the proposed approach, we selected the same
gestures to make a fair comparison with that method. The
selected gestures were ‘‘Away,’’ ‘‘Up,’’ ‘‘Down,’’ ‘‘Left,’’
‘‘Right,’’ ‘‘Inform,’’ ‘‘Happen,’’ ‘‘Skilled,’’ ‘‘Illegal,’’ and
‘‘Influence.’’ The third row in Fig. 1 shows sample frames
from this dataset.

IV. PROPOSED SYSTEM
In this study, we utilized a 3DCNNarchitecture for spatiotem-
poral feature learning using two approaches.

In the first approach, 3DCNN was used to extract the
features from the entire video sample, while a SoftMax layer
was used for classification. In the second approach, we aimed
to enhance the temporal dependency of the video frames.
To achieve this, the same 3DCNN architecture was trained to
extract the features from different regions in the video sample.
We then investigated different techniques for feature fusion.

A. SINGLE 3DCNN STRUCTURE
The system proposed in the first approach is illustrated in Fig.
2. It consists of three main phases: video preprocessing,
feature learning, and classification.

1) VIDEO PREPROCESSING
The first step in the preprocessing phase was converting
the input video into RGB frames sequence. Because the
video sequences had different durations, linear sampling was
applied to normalize all the sequences to a fixed length
of 16 frames, as the original model was fit on video sequences
of 16 frames each. The corresponding indices of 16 frames are
calculated as in (1).

indexi = round
(
len(input)

16
× i
)
, i ∈ {1, 16} (1)

where, len(input) is the length of the input sequence.
Other techniques such as the Bag of Visual Words have

been used in the literature to normalize the temporal dimen-
sion of the input videos. Linear sampling was preferred in
this work to preserve the order of the selected frames. The
order of the selected frames indicates essential discriminative
features in gesture recognition. However, spatial dimension
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FIGURE 3. Cropping the signing space.

normalization was also required to overcome variations in
the heights and distances of the signers from the camera.
We achieved this normalization in two steps:

- First, we employed the face detection algorithm pro-
posed by Viola and Jones [29] to detect the face of the
signer in the first frame of the sequence.

- Then, based on the position and height of the detected
face, we used the human body part ratios [30] to esti-
mate the height and width of the gesture space to be
cropped in all frames, as illustrated in Fig. 3.

The final step in the preprocessing phase was to resize the
cropped square frames in all input videos to a fixed size of 112
× 112 pixels while maintaining the same aspect ratio.
The RGB channels of each gesture sample were also nor-

malized separately such that each channel had a zero mean
and unit variance.

This resizing and normalization reduced the computation
cost and training convergence of the model in the next phase.
The final inputs to the feature learning phase were 112× 112
× 16 × 3 volumes.

2) FEATURE LEARNING
Adeep 3DCNN is proposed for feature learning, to extract the
local spatiotemporal features of gesture sequences. Transfer
learning was employed here to beat the scarcity of a large
labeled dataset of gestures. We started with a pre-trained
version of the 3DCNN structure as in [31]. This had already
been trained using millions of samples of human action
recognition [6].

After excluding the output layer, the structure consisted
of six consecutive blocks. The first two blocks have a single
3DCNN layer each. The first layer comprises 64 kernels and
the second comprises 128 kernels. The third block contains
two 3DCNN layers, each of 256 kernels. The fourth block
contains two 3DCNN layers, each of 512 kernels. The fifth
block contains two 3DCNN layers, each of 512 kernels and

a zero-padding layer. The sixth block consists of two dense
layers with 4096 neurons each. These two layers globalize the
feature modeling. The output of each of the first four blocks
transits to the successive block through a max-pooling layer.

All 3DCNN kernels are (3 × 3 × 3) in size with a stride
of (1 × 1 × 1). All max-pooling kernels are of size (2 × 2 ×
2) with stride (2× 2× 2), except for the max-pooling kernel
that follows the first block, which is of size (1 × 2 × 2) with
stride (1 × 2 × 2) to preserve the temporal information in
the early stage. A simple nonlinear function rectified linear
unit (ReLU) was used for activation, as shown in (2). This
function was preferred as it has a simple derivative to speed
up large-network training [32].

ReLU (x) =

{
x, x ≥ 0

0, x < 0
(2)

Each 3D kernel in the first layer is convolved to a volume
of the 16 input stacking frames to produce a spatiotemporal
feature map. The 3D kernels in the successive layers are
similarly convolved to a volume of stacking feature maps
produced by the predecessor layers.

In general, the value at any position (x, y, z) on the K th
feature map in the Lth layer is calculated as

V xyz
LK

= ReLU (bLK

+

∑
m

∑PL−1

p=0

∑QL−1

q=0

∑RL−1

r=0
Wpqr

LKmV
(x+p)(y+q)(z+r)
(L−1)m

)
(3)

where PL , QL , and RL are the dimensions of the 3D kernel
and Wpqr

LKm is the (p, q, r) th value of the kernel connected
to the mth feature map in the preceding layer. The two fully
connected layers globalize the feature modeling where the
last layer outputs a feature vector length of 4096 to represent
each sample.

3) CLASSIFICATION
The features extracted in the previous phase are fed into a
SoftMax layer for classification, as illustrated in Fig. 2. The
SoftMax activation function as defined in (4) outputs the
probability of each class. The predicted output is the class
with the maximum probability.

SoftMax (xi) =
exi∑k
j=1 e

xj
(4)

where xi is the corresponding class, and k is the number of
classes.

The proposedmodel is fine-tuned by backpropagation with
negative log likelihood to recognize the hand gestures. Only
the fully connected and convolutional layers in the last two
blocks were optimized on the datasets of gestures, while the
other layers of the architecture were frozen. To optimize the
model parameters, we utilized stochastic gradient descent
(SGD) with an adaptive learning rate. We used values of 10−4
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FIGURE 4. Fusion of parallel 3DCNN structure.

for initial learning rate, 10−6 for decay, and 0.9 for momen-
tum.

To avoid overfitting and enhance the model generalization
on test data, we applied 50% dropout after each fully con-
nected layer [33].

B. FUSION OF PARALLEL 3DCNN STRUCTURE
In the second approach, the proposed system enhanced the
temporal contribution of the extracted features. To achieve
this, in the preprocessing phase, linear sampling is applied
to select 32 frames instead of 16 frames. Thereafter, three
instances of the deep 3DCNN structure described in the previ-
ous approach are utilized to learn the spatiotemporal features
in the beginning, middle, and end of the video sequence. The
selected frames are divided into three short clips of 16 frames
each with a 50% overlap. Each deep 3DCNN instance is
trained to extract the features from one of the three clips. Var-
ious techniques are then utilized to fuse the features extracted
from different parts of the video.

Finally, the fused features are forwarded to the SoftMax
layer for classification. Fig. 4 illustrates a general diagram of
the second approach.
Feature Fusion:
Three techniques for feature fusion, multilayer perceptron

(MLP) neural network, long short-term memory (LSTM)
network, and stacked autoencoder were investigated.

1) MLP FUSION
MLP processes the input features through a series of compu-
tational nodes called neurons.

These neurons are grouped into consecutive layers and
interconnected with one another via weighted connec-
tions.These neurons transform the features by performing
nonlinear operations. The features are then projected into a
space where the input becomes linearly separable[34]. MLP
architectures with different numbers of layers were investi-
gated in this research.

2) LSTM FUSION
An LSTM is a recurrent neural network (RNN) adopted to
learn long-term contextual dependencies from learned local
feature sequences [4].

Fig. 5 illustrates the basic building block of LSTM net-
works. The behavior of this LSTM unit is controlled by three
gates: the input gate, the forget gate, and the output gate. The
input is fed into these gates to control which operations are
to be performed by the unit. The memory state and output of
an LSTM unit are updated at each time step [34]. The LSTM
transition equations at time step t can be formulated as

it = σ (W i. [ct−1,ht−1, xt ]+ bi) (5)

f t = σ
(
W f . [ct−1,ht−1, xt ]+ bf

)
(6)

ct = f t .ct−1 + it .c̃t (7)

ot = σ (Wo. [ct ,ht−1, xt ]+ bo) (8)

ht = ot .tanh (ct) (9)

where xt, ht, and ct are the input vector, output vector, and
memory state, respectively, at time t . Terms i, f, o, and c̃
represent the input gate, forget gate, output gate, and cell
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FIGURE 5. LSTM building block.

FIGURE 6. Single-hidden-layer autoencoder.

activation, respectively, all of which are the same size as the
input vector. Term σ represents nonlinear sigmoid functions.
We utilized recurrent LSTM architectures of different

numbers of layers to enhance the automatic feature represen-
tation and model the temporal dependencies.

3) AUTOENCODER FUSION
The simplest form of an autoencoder is a single hidden
fully connected layer with input and output layers, as shown
in Fig. 6. The number of nodes in the output layer must be
the same as in the input layer. The autoencoder creates a
new representation for the input data through a pair of maps

y
f
−→ z

g
−→ y′.The first one is the encoder map z = f (y),and

the second one is the decoder map y′ = g(z).The input data
dimension is reduced by the encoder. The encoder transforms
the input data of dimension d to a smaller dimension m [35].
The decoder reconstructs the input data from the reduced

dimension m back to the original dimension d . During train-
ing, the autoencoder is usually forced to prioritize which
aspects of the input should be kept [36]. The autoencoder
maps an input point y to a code z via a sigmoid activation

function as

z = f (y) = σ (WyT + b) (10)

where W is a weight matrix, and b is a bias vector. The z
code is also termed the latent representation of point y. The
sigmoid function transforms the input values to the activation
values, which are mostly either close to zero or 1.

The decoder then maps this activation to the reconstructed
y′ to the same dimensional space of y such that

y
′
= g (z) = σ(W

′
z+ b̄)

T
(11)

where the weight matrix of the decoder is often the transpose
of the weight matrix of the encoder, W

′
=WT . Training the

autoencoder means finding the optimal values for W,b, and
b̄ that minimize the cost function [35]. A deeper stacked
autoencoder, as used in our experiments, can be built by
adding more paired layers to the encoder and decoder sides.

V. EXPERIMENTAL RESULTS AND DISCUSSION
The two proposed approaches were implemented in Python.
Our experiments were conducted on a machine with a Nvidia
GTX 980 ti GPU.
In this section, we study the two proposed approaches

performance on the three hand gesture datasets detailed in
section III.

A. SINGLE 3DCNN STRUCTURE
Intensive experiments were conducted to evaluate the per-
formance of the single 3DCNN-based structure in different
modes. A fixed batch size of 16 samples was used in each
experiment in this section.

1) EXPERIMENTS ON KSU-SSL DATASET
a: SIGNER-DEPENDENT MODE
The KSU-SSL dataset consists of 40 classes and each class
has 200 gesture samples. Therefore, the total number of
samples is 8000. These 8000 samples were shuffled and 80%
of them were randomly picked for training and the rest 20%
were used for testing. The samples performed by a specific
signer were thereby, divided into training and testing samples
with random ratios.
The training datasets of 6400 samples were used to tune the

model over 100 iterations. We randomly picked five percent
of the training samples for validation after each iteration.
Then, we used the testing dataset of 1600 samples to evaluate
the trained model. A recognition rate of 96.69%was achieved
by the model. Fig. 7 illustrates the training vs. validation loss
achieved by the model during the model tuning iterations.
We notice that the training and validation loss curves are
close to each other during the training iterations, which is an
indicator of good training behavior without overfitting.

b: SIGNER-INDEPENDENT MODE
For this scenario, the model was trained on 6400 video
samples and evaluated on 1600 video samples. The training
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FIGURE 7. Single 3DCNN-based structure training loss on KSU-SSL in
signer dependent mode.

FIGURE 8. Single 3DCNN-based structure training loss on KSU-SSL in
signer independent mode.

samples were performed by 32 signers and the evaluation
samples by the other eight signers. Except for this data sepa-
ration, we repeated the configuration of the signer-dependent
experiment. The behavior of the model loss is illustrated in
Fig. 8. The model achieved a recognition rate of 72.32%.

2) EXPERIMENTS ON ArSL DATASET
There are 3444 valid samples in the ArSL dataset, which were
used in our experiments.

a: SIGNER-DEPENDENT MODE
In this experiment, we randomly picked two-third of the sam-
ples in the dataset for tuning the system, and the remaining
one third of the dataset samples for evaluation. Fig. 9 illus-
trates the system loss behavior on training and validation
samples over 100 iterations. Five percent of the training
2298 samples were picked randomly for validation at each

FIGURE 9. Single 3DCNN-based structure training loss on Ar-SL in signer
dependent mode.

FIGURE 10. Single 3DCNN-based structure training loss on Ar-SL in signer
independent mode.

iteration. A recognition rate of 100% was achieved by the
system.

b: SIGNER-INDEPENDENT MODE
In this case, the training samples were performed by two
signers and the testing samples were performed by the third
signer. The system loss behavior during training is illustrated
in Fig. 10.

The system obtained a recognition rate of only 34.9%
on the testing dataset which was expected in the signer-
independent mode. Even though the system performance on
the validation dataset as shown in Fig. 10 was excellent, it is
clear that the system was overfitted on the training dataset.
The samples were not diverse enough for system training.
This is why it did not generalize well. Only the samples of two
signers were used for tuning the system, while the samples of
the third one were used for evaluation.
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Conversely, on the KSU-SSL database better accuracy
was achieved by the system for signer-independent scenario.
In the KSU-SSL dataset, the training samples were performed
by 32 signers and the testing samples were performed by eight
signers.

This leads to better generalization. The effects of the
dataset size in terms of the number of subjects, number of
gestures, and number of repetitions appear in Figs. 7-10.

The training and validation loss reached the minimum
value within the first ten epochs in the case of the ArSL
dataset and the first 40 epochs in the case of the KSU-SSL
dataset. The curves become stationary on that value in the
case of the ArSL dataset, which indicates that the training
and validation samples are highly overlapped.

Even though the validation samples are selected randomly,
the possibility of overlapping between the training and val-
idation samples is still high because the number of dataset
samples is limited. For this reason, the training and validation
loss curves are nearly coincident. The situation is completely
different in the case of the KSU-SSL dataset. The random
selection of validation samples leads to low overlapping
between the training and validation samples. The loss curves,
in this case, are not coincident, and their transition to the
minimum value is smoother than that of the ArSL dataset.

3) EXPERIMENTS ON PURDUE RVL-SLLL ASL DATASET
A portion of only ten gestures from this dataset was involved
in these experiments. These gestures were collected by
14 subjects. By testing the proposed approach on these ges-
tures, we aimed to compare our approach with advanced
methods evaluated on this dataset. As the method that we
compared with used these ten gestures, we had to use the
same gestures to make a fair comparison. As there are only
280 gesture samples, which are involved in this experiment.
it is hard to generalize the trained model on such a small data.
Therefore, we investigated the effect of data augmentation on
the efficiency of our approach.

a: SIGNER-DEPENDENT MODE
Before data augmentation, the model was trained on 80% of
the samples and tested on the remaining 20%. The model
achieved a recognition rate of 62.5%. The experiment was
repeated after applying data augmentation to the 220 training
samples. To achieve this, we performed the following two
operations on the training dataset: (1) a rotation with four
small angles (3◦,6◦,9◦, and 12◦), which produced four extra
samples from every training sample. (2) Gaussian blurring
with three different kernel sizes (3,5, and 7), which pro-
duced three additional samples from every training sample.
As a result of this augmentation operations, we got a total
of 1670 training samples.

The remaining 60 samples from the original dataset were
used to test the trained system. The recognition accuracy
increased from 62.5% to 76.67% by data augmentation. This
improvement can be noticed in the system loss behavior
shown in Fig. 11.

FIGURE 11. Single 3DCNN-based structure training loss on RVL-SLLL- ASL
dataset in signer-dependent mode.

FIGURE 12. Single 3DCNN-based structure training loss on RVL-SLLL- ASL
dataset in signer-dependent mode.

b: SIGNER-INDEPENDENT MODE
Before data augmentation, we used 220 samples performed
by 11 subjects for training the system. The remaining samples
in the dataset, which were performed by the other three
subjects, were used to evaluate the trained system. A recog-
nition rate of 58.33% was achieved by the system. Then,
on the training samples, we repeated the same data augmen-
tation process described in the previous experiment and the
recognition accuracy increased from 58.33% to 70%. This
enhancement is illustrated in Fig. 12.

Fig. 13 summarizes the single 3DCNN structure perfor-
mance on the three datasets in different modes. The per-
formance in the signer-dependent mode is excellent on the
KSU-SSL and ArSL datasets but still needs enhancement
on RVL-SLLL-ASL and in the signer-independent mode.
A preliminary results was also discussed in [37].

B. FUSION OF PARALLEL 3DCNN STRUCTURE
We realized that the ArSL and Purdue RVL-SLLL ASL
datasets are not comprehensive in terms of the number of

VOLUME 8, 2020 79499



M. Al-Hammadi et al.: Hand Gesture Recognition for Sign Language Using 3DCNN

FIGURE 13. Single 3DCNN-based structure performance on three
datasets.

samples, subjects, and video lengths. For instance, we can-
not investigate the fusion of parallel 3DCNN structure on
short video samples. This is why we chose only the KSU-
SSL dataset for further experiments related to the fusion of
parallel 3DCNNs. In the preprocessing phase, 32 frames were
linearly sampled from each video instance. The signing space
was then cropped as detailed in the first approach given in
section A.

1) FEATURE LEARNING
a: SIGNER-DEPENDENT MODE
After the preprocessing step, each gesture sample had a
fixed size of 112 × 112 × 32 × 3. These numbers
determine the height and width of the frames, the num-
ber of frames per video, and the number of channels per
frame. The dataset samples were shuffled before randomly
splitting them into training and testing samples of 80%
and 20%, respectively. A sliding window of 16 frames
in width was then used to divide each video sample into
three clips each 16 frames in length with eight frames
overlapping.

Each of the three clips in the training samples was used to
refine one of the 3DCNN instances.

The setup used for the single 3DCNN structure was also
applied for training each 3DCNN instance. The trained
3DCNN instances were then used to extract the features
from the corresponding clips in the training dataset. This
feature learning step represents each sample in the training
dataset by three feature vectors of 4096 dimensions each.
The same feature representation was performed on the testing
dataset.

b: SIGNER-INDEPENDENT MODE
As detailed for the single 3DCNN approach given in
section A, the training and testing samples use sepa-
rate groups of signers. Except for this data separation
step, we repeated the procedure as in the signer-dependent
mode.

2) FEATURE FUSION
Before being used by the classifier the three feature vectors
of each sample were fused using three different techniques.
We performed end-to-end training for the fusion networkwith
the classification layer. The SGD optimizer with an adaptive
learning rate (initial learning rate = 10−4, decay = 10−6,
and momentum = 0.9) was used to optimize the negative
log-likelihood cost over 100 iterations. This a small value of
momentum will avoid falling in the local minima of the cost.

3) MLP FUSION
In this section, we utilized MLP networks for feature fusion.
We also studied the effect of the MLP depth (number of
layers), number of neurons in each layer, and training batch
size on the system’s performance. We conducted the first
experiments on a single layer of 8192 neurons to select the
initial learning rate from common values in the literature.
The results in Table 3 show that 10−4 achieved the best
performance. This value was then fixed in the rest of the
experiments. Intensive experiments were then conductedwith
batch sizes of 16, 32, and 64 samples and three different
MLP architectures. The first architecture consisted of a single
layer of 8192 neurons. We added another layer of 4096 neu-
rons to the second architecture. The third architecture also
had another layer of 4096 neurons added. The best recog-
nition accuracies of 98.12% and 84.38%, respectively, were
achieved in the signer-dependent and signer-independent
modes. The best accuracy in both cases was achieved by the
third architecture with a batch size of 16 samples. Figs. 14 and
15 illustrate the confusion matrices for the best architectures.

4) LSTM FUSION
In this section, we used different LSTM architectures for
feature fusion. We also studied the effects of batch size on the
system performance. Intensive experiments were conducted
with batch sizes of 16, 32, and 64 samples. Three different
LSTM architectures were investigated.

The first architecture consisted of a single layer
of 4096 memory cells (units). The second architecture con-
sisted of two stacked layers with 4096 and 1024 memory
cells, respectively. The third architecture consisted of three
stacked layers of 4096, 1024, and 1024 memory cells, respec-
tively. Backpropagation through time was used for end-to-
end training of the LSTM layers with the classification layer.
The best recognition accuracies of 97.94% and 82.19% were
achieved in the signer-dependent and signer-independent
modes, respectively. This best accuracy was achieved by
the second architecture with a batch size of 16 samples.
Fig. 16 and Fig. 17 illustrate the confusion matrices for the
best architectures.

5) AUTOENCODER FUSION
In this section, we used a stacked autoencoder architecture
for feature fusion. The autoencoder consisted of an extra pair
of hidden layers in addition to the latent, input, and output
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FIGURE 14. Confusion matrix of MLP fusion for parallel structure in signer-dependent mode on KSU-SSL dataset.

FIGURE 15. Confusion matrix of MLP fusion for parallel structure in signer-independent mode on KSU-SSL dataset.
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FIGURE 16. Confusion matrix of LSTM fusion for parallel structure in signer-dependent mode on KSU-SSL dataset.

FIGURE 17. Confusion matrix of LSTM fusion for parallel structure in signer-independent mode on KSU-SSL dataset.
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FIGURE 18. Stacked autoencoder of five layers.

TABLE 3. Accuracy (%) achieved by a single layer with different initial
learning rate.

TABLE 4. Accuracy (%) achieved by the best configuration with different
initial learning rate.

layers, as illustrated in Fig. 18. The size of the input/output
layer was 12288. The sizes of the hidden and the latent layers
were 4096 and 2048, respectively. We noted that the best
accuracy was achieved with the smallest batch size in the
previous two fusion architectures. We, therefore, fitted the
autoencoder architecture with a batch size of 16 samples.

The final features were extracted from the latent layer of
the trained autoencoder. We achieved an accuracy of 90.88%
in signer-dependent mode and 62.44% in signer-independent
mode. Fig. 19 and Fig. 20 illustrate the confusion matrices for
the autoencoder architecture evaluation.

C. RESULTS DISCUSSION AND COMPARISON
Table 5 summarizes the accuracy achieved by the MLP and
LSTM architectures. We note that the MLP architecture
achieved better recognition accuracy in all scenarios. Even
though there is no clear trend change in accuracy despite
the number of layers, the smallest batch size still achieves
the best accuracy. This might be attributed to the fact that
a smaller batch size means that the model parameters were
updated more frequently. However, this kind of update based
on a small number of noisy samples adds a regularizing effect
and results in a lower generalization error.

In general, the parallel 3DCNN-based architecture features
are superior to those of the single 3DCNN-based architecture.
This superiority can be noticed in the accuracy achieved in the
signer-independent mode. The single 3DCNN architecture

TABLE 5. Accuracy achieved by MLP and LSTM feature fusion in different
scenarios.

achieved an accuracy of 72.32%. The accuracy increased to
82.19% when using the parallel 3DCNN with the LSTM
architecture and 84.38% with the MLP architecture.

This enhancement in recognition accuracy is objective
proof of the superiority mentioned above.

Furthermore, we utilized the principal component analysis
(PCA) and t-distributed stochastic neighbor embedding (t-
SNE) techniques to reduce and visualize the learned features
of the two approaches.

PCA and t-SNE are two popular techniques for data reduc-
tion. PCA uses the correlation between some dimensions and
provides minimum number of variables while maintaining
the maximum information about the distribution of original
data. To achieve that, it performs mathematical calculations
for the eigenvalues and eigenvectors of the data-matrix. These
eigenvectors of the covariance matrix have the property that
they point along the major directions of variation in the data.
These are the directions of maximum variation in the dataset
[38]. t-SNE on the other hand, is a probabilistic technique
rather than mathematical technique. It is convenient for high-
dimensional data reduction and visualization. It tries to rep-
resent the data of high dimensionality in a lower dimensional
space, while minimizing the divergence between the distribu-
tions of the data in the two spaces. The main advantage of the
t-SNE over the PCA is the preservation of the neighborhood
structure of the original data. Unfortunately, t-SNE performs
heavy computations to achieve this representation, therefore
t-SNE use is limited.
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FIGURE 19. Confusion matrix of autoencoder fusion for parallel structure in signer-dependent mode on KSU-SSL dataset.

For instance, applying another dimensionality reduction
technique before using t-SNE is needed in case of very high
dimensional data [39]. In our case the feature vector in the
first approach had a dimension of 4096, while in the second
approach it had a dimension of 12288.

For that reason, we started by performing PCA reduction
to intermediate space of 50 dimensions by using 50 principal
components. Then, t-SNE was used to project and visualize
the reduced features in a 2D space, as depicted in Fig. 21.
The left side in Fig. 21 shows the features learned by the
single 3DCNN structure and the right side shows the features
learned by the parallel 3DCNN structure. This figure provides
subjective proof of the superiority of the parallel 3DCNN
fused features.

It is clear from the figure that the features learned by the
parallel 3DCNN architecture are more discriminative than
those learned by the single 3DCNN architecture. Unfortu-
nately, the autoencoder achieved the lowest accuracy even
on these more discriminative features. The autoencoder reg-
ularization is dedicated to maintaining strong traces to allow
reconstruction of the reduced data dimensions to the original
dimensions. These traces might not be efficient discrimina-
tors for classification.

In the confusion matrices, we noticed that the perfor-
mance of our system in the signer-independent mode is weak

compared to the performance in the signer-dependent mode.
There is significant variation when the gesture is performed
by a large number of signers. This high variation leads to a
low recognition rate when the system is tested on samples per-
formed by some of the signers while none of the samples per-
formed by these signers were involved in the model training.

We also noticed that there is a high level of confusion
between some classes, especially in the signer-independent
mode. We analyzed the confusion matrices of the three archi-
tectures to investigate the most confused classes. More focus
was given to cases in which two gestures exhibited high
confusion in all architectures in both signer-dependent mode
and signer-independent mode. We found that the confused
gestures had almost the same global signers’ body configura-
tions and very closed relative hand positions and orientations
in the sampled frames.

We can only differentiate between these gestures from
the finger configurations. Unfortunately, the small fingers’
area received insufficient focus and lighting during the KSU-
SSL dataset recording. Furthermore, the hand regions were
blurred as the frame rate of the recording cameras was not
high enough to avoid motion blur. All of these factors may
lead to such misclassification. Samples of the confusing ges-
tures are illustrated in Fig. 22. In this figure, we notice four
pairs of confusing gestures: ‘‘Cold’’ with ‘‘Come in,’’ ‘‘File’’
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FIGURE 20. Confusion matrix of autoencoder fusion for parallel structure in signer-independent mode on KSU-SSL dataset.

FIGURE 21. Feature visualization for single 3DCNN and parallel 3DCNN architectures.

with ‘‘Meeting,’’ ‘‘Sorry’’ with ‘‘Vacation,’’ and ‘‘Cold’’ with
‘‘How are you?’’ The high correlation between the sequences
of frames in each pair is very clear, which is another challenge
with the KSU-SSL dataset.

In Table 6, we compare the performance of the proposed
approaches on the three datasets with some state-of-the-art
methods in the literature. Most of the state-of-the-art methods
in the literature of hand gesture recognition are based on
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FIGURE 22. Sample frames from four pairs of confusing gestures. This four sets of sequences show the confusion between the following pairs: (a):
gestures ‘‘Cold’’ and ‘‘Come in’’ (b): gestures ‘‘File’’ and ‘‘Meeting,’’ (c): gestures ‘‘sorry’’ and ‘‘Vacation’’ (d): gestures ‘‘Cold’’ and ‘‘How are you?’’.

multimodal input. Various channels such as depth maps and
skeletal joints are utilized with the RGB frames in these
methods. To make a fair comparison, we only considered
the RGB based methods, which are similar to our proposed
approach. Unfortunately, The RGB based methods are very
limited in the literature.

The selected methods used different techniques to encode
the spatiotemporal features of the gestures. Four of these
approaches utilized handcrafted features such as combining
the accumulated distance between successive frames and
DCT or LBP-TOPwith conventional classifiers such as SVM,
HMM, K-NN, and Bayesian classifiers.

The most recent two approaches [23], [26] utilized deep
CNNmodels with the RGB frames. The approach in [23] gen-
erates the optical flow information from the RGB frames and
feeds them into the inception model together. This approach
performed better than our single 3DCNN approach on the
KSU-SSL dataset. However, our parallel 3DCNN approach

with MLP fusion achieved comparable performance, even
though the optical flow generation step makes the computa-
tion cost of the approach in [23] higher. In this regard, it was
impossible to execute that approach on the GTX 980 Ti with
6 GB of RAM to make a fair execution-time comparison.
We had to execute it on GTX 1080 Ti with 11 GB of RAM.
On the other hand, the DenseImage approach [26], encoded
each video in a 2Dmatrix by applying the ResNet deepmodel
followed by another CNN model to learn the encoded video
features. On the GTX 980 Ti machine, the DenseImage net
architecture took approximately 195 hours for 1000 train-
ing iterations with the setup mentioned by the authors [26].
On the other hand, our proposed parallel 3DCNN architecture
took approximately 25 hours on the same machine. This
lower training time was expected as we froze most of the
layers in the pre-trained model. The low accuracy of the
DenseImage net architecture might be attributed to the irrel-
evant features extracted from each frame. The application of

79506 VOLUME 8, 2020



M. Al-Hammadi et al.: Hand Gesture Recognition for Sign Language Using 3DCNN

TABLE 6. Recognition accuracy (%) compared with other methods.

ResNet on the entire frame gives the relevant features in the
gesture space and the irrelevant ones outside that space the
same weight, which increases the misclassification rate. Our
approach avoided this issue by employing the face detection
and body parts ratios information to involve only the relevant
space and exclude most of the irrelevant regions in each
frame.

We also evaluated the performance of the DenseImage Net
[26] on the dataset after applying our proposed preprocessing
method to localize the gesture space to see the effect of this
step on the performance. The results showed that there is
an excellent enhancement in the accuracy, however, it is still
outperformed by the two proposed approaches.We think that,
some of the temporal information might be lost by encoding
the video in a 2D matrix. The 2DCNN applied on that matrix
after that did not consider the temporal information of the
gesture.

VI. CONCLUSION
This study investigates the use of 3DCNN for hand gesture
recognition. In the preprocessing phase, linear sampling was
used to normalize the temporal dimension of hand gesture
samples. For spatial dimension normalization, we used the
length of the detected face and human body part ratios. Then,
we used 3DCNN for feature learning in two approaches.
In the first approach, a single 3DCNN instance was trained
to extract the hand gesture features from the entire video. In
the second approach, three instances of the 3DCNN struc-
ture were trained to extract the hand gesture features from
the beginning, middle, and end of the video sample. These
region-based features were then fused before being fed to
the classifier. MLP, LSTM, and an autoencoder were used
for feature fusion. In both approaches, we used a SoftMax

activated layer for classification. The proposed approaches
were evaluated using different datasets. The three datasets
exhibited excellent performance in both signer-dependent
and signer-independent modes. The proposed approaches
were compared with six other state-of-the-art methods from
the literature. They outperformed four of these methods and
showed comparable performance to the other two.

For future work, we will enhance the performance of
the proposed approach by performing a holistic search to
optimize all the hyperparameters. We will test the proposed
approach online while receiving a live video feed. In this
aspect, we may utilize the edge-cloud computing to distribute
the processing over edge devices and the core cloud [40],
[41].
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