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ABSTRACT Due to the intermittent and uncontrollable nature of wind resources and inflexible operation of
conventional generation units, they present challenges for the power system to integrate more wind power.
With its unique flexibility on the demand side, the data center can be considered as an effective solution to
relieve wind curtailment. Moreover, with the help of waste heat recovery module, the data center can reduce
the utilization of conventional thermal units especially in the residential heating sector which increases the
flexibility of system operation and facilitates more renewable integration. In this paper, a flexible workload
management and resource scheduling model are proposed to achieve a multi-energy co-optimization for data
center and enhance the integration of wind power. A two-stage stochastic programming model is formulated
to address the uncertainties involved in this process. The proposed model is examined by a simulative data
center microgrid and the numerical results demonstrate its effectiveness and robustness.

INDEX TERMS Data center, workload allocation, wind energy, waste heat recovery, energy management.

I. INTRODUCTION
Although the wind harvesting techniques have been devel-
oped greatly, it still presents significant challenges to inte-
grate more wind power into power grid due to its intermittent
and uncontrollable nature. It is reported that nearly 17% of
wind power generated (more than 50 TWh) was curtailed in
China in 2016 [1], [2]. It is simulated that 42 million tons of
CO;, emission can be reduced if the abandoned wind of China
was fully utilized [2], [3]. Therefore, exploring the reasons
and solutions for facilitating more wind power integration is
critical from both economic and environmental perspective.
One of the reasons for wind power curtailment is the mis-
match between enormous wind power generation and limited
energy demand caused by transmission congestion [3], [4].
It is reported that about 10% of the wind power curtailment
is introduced by the capacity limitation of transmission [5].
As stated in [3], the maximum daily fluctuation of wind
power can reach 80% of the installed capacity of the utility
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grid. And the wind power profile depicts a certain anti-peak
characteristic. Therefore, an effective solution to improve
the integration of wind power is to enhance the flexibility
of demand side. Zheng et al. stated in [4] that one of the
reasons for the rejection of the wind energy is due to the lim-
ited power demand and prior dispatched traditional energy.
Another reason for wind power curtailment is the inflexibility
of the power system operation during residential heating
seasons, which have contributed more than 90% of wind
power curtailment in Northeast China [5]. This is particularly
significant in the cold areas in which centralized residential
heating is much needed. The widely used combined heat and
power (CHP) units increase inflexibility of the power system
since their minimal power outputs are coupled with residen-
tial heating needs. Consequently, the capability of integrating
wind power to the system would be jeopardized. For instance,
the wind curtailment during the residential heating periods in
Northeast China in 2015 is 26.94 TWh [5]. Wu et al. estab-
lished analytical models to clarify the causes and mechanisms
resulting in high growth and low wind power capacity usage
in [6]. As shown in [7], Jafari et al. presented an optimization
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approach for annual planning of renewable generations and
diesel generators, to reduce the cost and ensure the reliability
of the microgrid operation.

Besides the academia, many methods and techniques have
been analyzed and implemented in industry to solve this
severe problem as well. Internet companies have made out-
standing contribution therein particularly. Data centers, as the
fundamental infrastructure of the cloud computing industry,
have experienced a significant increase in both number
and size for the last decades. The number of data centers
worldwide is estimated to be 8.4 million in 2017 [8] and
may remain its growing tendency for the upcoming decades.
Global growth in internet penetration and cloud computing
paradigms has driven computing service providers, such as
Google, Amazon, and Microsoft, focusing on the hyper-
scale data center construction facilities [9]. At the same
time, this industry contributes a considerable part of energy
consumption worldwide. It is predicted that data centers
will be responsible for more than 30% of global electricity
consumption in 2025 [10]. From this point of view, the total
operation cost of data center is significantly affected by its
energy supply cost. Apart from that, greenhouse gas (GHG)
emission is also top-of-mind concerns for the data center
operators. Therefore, making data center operation more
energy-efficient is becoming a critical undertaking.

As an integrated flexible multi-energy hub, the data center
operator needs to optimize interactive resources scheduling
decisions to meet the workload requirements [11]. As some
of the flexible workloads could be rescheduled after arrived
on the servers, they could be shifted from on-peak to off-peak
electricity tariff hours, or from light wind periods to strong
wind periods if wind resources are available, which gives a
great opportunity to deal with the wind curtailment situation
in some areas and achieve the maximum economic and envi-
ronmental benefits for the whole system.

Many researches have paid attention on the performance
of IT workload scheduling on energy saving and wind power
utilization. Yu et al. proposed the energy management frame-
work for data center microgrid with stochastic renewable
generation considered in the system in [12], and jointly ana-
lyzed the economic and environmental performance of the
workload allocation on the overall microgrid operation. Wang
et al. did similar work on decentralized data centers in [13].
Compared to [12], the authors in [13] applied a different
solution by utilizing dual decomposition to solve the problem,
and showed different angles of the improved results. Based on
that, Guo et al. proposed a stochastic programming model for
data center microgrids with renewable energies and thermal
storage system considered [14]. Kwon et al. developed a
decision-making model based on two-stage stochastic pro-
gramming considering servers operation of the data center
and power procurement for demand response (DR) [15].
To be specific, the model proposed in it exploited an explicit
working algorithm for servers in data center and paid atten-
tion on the computation performance of the servers and the
cost saving of the procedure, without regard to the overall
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operation of the system. Kim et al. explored the impact of
placement for data centers for the purpose of wind curtail-
ment reduction and cost savings [16].

In the meantime, data center is reported to be a promising
role in providing heat to the residential heating sector. It is
convinced that almost all the electricity that information tech-
nology (IT) servers, which are instrumental equipment in data
centers, consumed is converted into heat [17]. Managing the
thermal circumstance of the computing room is essential for
data center. Therefore, reusing the waste heat dissipated from
the numerous IT servers could remove the redundant heat and
repurpose it in heating one’s own premises. This attracts a
growing attention in both academia and industry [18]-[21].
As the cases in [19] depicted, the data centers in Nordic
countries have several benefits, including cold climate, cheap
rent and electricity, high share of renewables penetration, etc.
Finnish district heating utilities have estimated data centers
as the second most potential source for waste heat, after the
forest industry.

To the best of our knowledge, even though numbers of
research works have been done on power management of data
centers for cost saving, environmental footprint reduction and
energy efficiency improvement, limited literature has consid-
ered the heat and power co-optimization potentials within a
data center microgrid, especially on the perspective of facili-
tating wind power integration. The unique multi-energy oper-
ation characteristics of data center can positively contribute to
integrating more wind power. On the one hand, the optimally
scheduled shift-able batch workload can re-shape the electric-
ity load profile to better coordinate with the wind generation
profile. On the other hand, with the help of the waste heat
recovery (WHR) module, data center microgrid can reduce
the requirement of heating supply from conventional CHP
units, which increases the flexibility of the power system
operation and capability of integrating more wind power.
Therefore, both economic and environmental benefit can be
achieved by optimally scheduling multi-energy resources in
the data center microgrid.

This paper proposes a flexible multi-energy scheduling
scheme to manage the resources from both supply and
demand sides of a data center microgrid. The objective is
to reduce wind power curtailment and minimize operation
cost while both heat and power resources scheduling are
considered. The proposed model is formulated as a two-stage
stochastic programming problem to address the uncertain
characteristics of wind power and energy demand [22]-[26].
According to the listed researches, the first stage variables
should be determined prior to others, and the second stage
variables should be scheduled later. In this paper, the first
stage is defined as day-ahead scheduling stage. The hourly
scheduling decisions are optimized in the first stage with
deterministic forecasting results to minimize the operation
cost and greenhouse gas (GHG) emission for the data center
microgrid. In the second stage which is defined as real-time
balancing stage, the decisions from the first stage are adjusted
to satisfy the constraints associated with different scenarios.
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TABLE 1. List of symbols.

Sets and indices:

T Index set of time intervals. teT
S Index set of scenarios. seS
\% Index set of power-only generation units. ve V&V €l
Deterministic Parameters:
e Average external cost for GHG emissions.
L¢ Number of workload capacity in the data center
Pyridmax Transmission line capacity
K Coefficient factor in the waste heat recovery module
94(t) Coefficient factor of GHG emission from the utility
grid at time t
a(i),b(i),c(i) Coefficient factor of the operation cost of the
generator i.
Hgenmax Thermal output limitation for generation unit i
Hgen,min
Stochastic Parameters:
Pya(ts) Wind power output at time # in scenario s
Qihm (L, S) Heating demands in district heating area at time ¢ in
scenario s
Decision Variables:
Pyen (i, 1) Power produced by generation unit / at time ¢
L(t) Processing workload at time ¢
Lqe(®) Delay-tolerant workload arrived to the data center at
time ¢
Hgc(t,8) Heat recovered from the data center at time ¢ in
scenario s
Pepp(u, ) Power produced by CHP generation unit « at time ¢
P,(v,t) Power produced by power-only generation unit v at
time t
Qv Cumulative quantity of the delay-tolerant workloads

till time ¢

U Index set of CHP generation units. u € U& U € 1
1 Index set of all kinds of generation units. i € I
W Index set of heat-only generation units. w € W&W € [
M Number of servers in the data center
a Coefticient factor of the CHP unit
Tgria (t) Spot price in the electric wholesale market at time 7.
R,(1),Rq(i))  Ramp-up and ramp-down limit for generation unit i
Ygen (i, 1) Coefficient factor of GHG emission from the
generator 7 at time ¢
Poen,maxs . . ..
Power output limitation for generation unit i
Pgen,min
Lgs(t,s) Delay-sensitive workloads at time # in scenario s
Hgen (i, 1) Heat produced by generation unit i at time ¢
Gloaa () Processed workload at time ¢
Py (t,s) Power consumed by the data center at time ¢ in
scenario §
Pyria(t) Power bought by the utility grid at time ¢
Hepp (0, 1) Heat produced by CHP generation unit « at time ¢
Hp(w, t) Heat produced by heat-only generation unit w at time

t
rg'e‘ﬂl @ts), Upward and downward adjustment on the heat

rean(irt,s) generation of generation unit 7 at time # in scenario s

rg‘elf, (i,t,;s), Upward and downward adjustment on the heat r;‘;) (uts), Upward and downward adjustment on the power
ré‘é‘,’] (i,t;s)  generation of generation unit i at time # in scenario s rslﬁ) (u,t,s) generation of CHP unit u at time # in scenario s
rgia(ts),  Increase and decrease of the amount of power r?ﬁlf) (u,t,s), Upward and downward adjustment on the heat
roia(t,s)  purchased from the utility grid at time ¢ in scenario s i (u,t,5) generation of CHP unit u at time # in scenario s

In this way, the optimal multi-energy scheduling scheme for
data center can be achieved under the stochastic environment.

Compared with existing works, the contributions of this
paper are summarized into 3 parts:

1. The flexible IT workload allocation decisions are
co-optimized with other resource scheduling decisions
to minimize the operation cost of data center microgrid
and enhance wind power integration.

2. Data center workload allocation (DCWA) and the
WHR decisions are optimized simultaneously in the
proposed flexible multi-energy scheduling scheme.
With the WHR module as linkage between thermal and
the power system, the optimally allocated workloads
could benefit the demand side of the power system and
supply side of thermal system simultaneously.

3. The optimal multi-energy scheduling scheme is ana-
lyzed to demonstrate the benefits of DCWA and the
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WHR on both economic and environmental perspec-
tives. Numerical test cases with four different con-
figurations are examined to illustrate their impacts
respectively.

The remaining of this paper is arranged as follows.
Section 2 depicts the model framework of the proposed
model. The mathematical formulations are established in
Section 3. Section 4 provides numerical test cases to illustrate
the effectiveness of the proposed model and evaluates its
economic, environmental impacts. The conclusion is present
in Section 5.

Il. MODEL DESCRIPTION

The definition of data center microgrid should be clear at first.
As is known to all, data center needs tremendous amount of
stable power supply, and the data center operator business
is investment-intensive and economies of scale dominate as
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Distribution Grid with Data Center

Model: Linear problem

Objective Function:
min Day-ahead scheduling cost + Real-time balancing cost

Main Grid Pgrid(?) |

|| 2Pantt), 2Pty
. GHG

IR

I . -~ |

# Stochastic parameters I

I # Non-dispatchable source

I # Clean energy / No GHG emission
#

| s

L

I

Power I
No operation cost I
I

s.t. Transmission

| |
| |
! |
| |
L _

IConventlonal Power Generation Unlts-I |

s.t. Capacity constraints;

|
(¢ v I
Fossil fuel —> M M—» Powerl |
|
|

GHG I
I

f .t. Capacity constraints ey oS |
S _— — — e — — — "l — Reserveconstraints, . __ __ __
1 IS t&;
N5 A 5 AN—— ~vY ‘
| Data Center Pac(t)/k =Hac(t) |
Power | PPN # Slf)chastic parameters I
I = o = # Dispatchable workloads
System TR # Power consumer — Heat producer I Thermal
I e s.t. Capacity constraints; | S t
I 'T”:i_?m.“ Workloads allocation equations; SYystem
Consumed power calculation equations; I
I Generated heat calculation equations |
oo x - - e e e e T = |

M Heat
I

[ —— _ _ -

|Conventional Heat Generation Units 1 |Thermal Demand Om(t) I
I 2 Henp(t), 2Hn(1) GHG s.t. Capacity constraints; I I y\ A D SToChostie I
Fossil fuell . Ramp constraint.s; I I @ @ ,H_e“t e I
Reserve constraints. |

le _______

# Thermal consumer

_—

Power Flow

FIGURE 1. Architecture of the proposed system.

a generic business strategy [19]. Thus, a data center indus-
try generally equips several supplementary energy suppliers
except the utility grid, such as conventional generation units,
renewable generation units, etc. Therefore, data center could
be operated on-site or off-site. In this monopoly system, data
center has been placed into the position where it has ability to
acquire the construction and operation data of the generators
and schedule the resources. As a result, the ‘data center-
centric’ power supply system is considered as a data center
microgrid [27]-[29].

The architecture of the proposed model for a data center
microgrid is shown in Fig. 1. It can be observed that the power
sector is equipped with resources such as on-site conven-
tional power generators (PGs, i.e. CHP units and power-only
units), distributed renewable units (i.e. wind turbines), and
procurement from utility grid. And the data center could be
considered as the power consumer. In the thermal sector,
the proposed model includes heat resources such as the WHR
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————p Thermal Flow

module from the data center, and on-site heat generators
(HGs, i.e. CHP units and heat-only units). And the residential
heating area is the heat consumer as well. As shown in Fig. 1,
the power system and thermal system are coupled via the
WHR module for data center.

The workloads of data center can be classified into
delay-sensitive workloads and delay-tolerant workloads.
Delay-sensitive workloads generally refer to the service
requests that must be processed within a very short time,
usually a few seconds. With the inelastic processing time,
quality of service (QoS) is required to maintain agreed when
serving this kind of computational jobs [30]. With homoge-
neous servers, the arrival time of the delay-sensitive work-
loads are usually modelled as Poisson distribution during
the operating day of the data center [13]. On the contrary,
delay-tolerant workloads, such as cloud computing tasks, are
more flexible with the execution duration time. This kind
of workloads are computational-intense jobs that are not
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FIGURE 2. Architecture of the proposed programming.

expected to be processed immediately. In other words, they
could be re-allocated to another time slot as long as it is
within the given completion deadline thus QoS can be guar-
anteed. The duration time could range from minutes to hours
[11], [31].

In the proposed model, the decision portfolios for DCWA
and resource scheduling are achieved in a two-stage frame-
work, as shown in Fig. 2. Meanwhile, the spot price of
electric wholesale market, outputs of wind power genera-
tion and energy demand are considered as stochastic param-
eters. A two-stage stochastic programming formulation is
adopted to address those uncertainties. For the first stage,
the operation cost, which includes unit commitment cost,
power procurement cost and emission cost, is optimized
in day-ahead manner. In contrast to that, the second stage
decision making is the adjustment decisions in real-time in
response to the random realization of stochastic parame-
ters [32]. The objective of proposed model is designed to
maximize the economic and environmental benefit of the
target system. Therefore, both operation cost and GHG emis-
sion are considered in the objective function. Since the WHR
module works as the linkage of the thermal and power sys-
tem, the allocation decisions for delay-tolerant workloads
would not only affect the operation of the power system as
a demand but also affect the operation of thermal system
as a potential source. Consequently, the power system and
thermal system in a data center microgrid can be coordinated
by optimally managing the shift-able DCWA along with other
resources.

Combined all the aforementioned factors together, a com-
bined heat and power co-optimization model for optimal
DCWA and resources scheduling is proposed for a data center
microgrid. Both economic and environmental impacts are
included in the objective function and a two-stage stochastic
programming approach is adopted to address the uncertainty
in this process.
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Updated system info. (per hour)
1. Wind output realization
2. Spot price realization
3. Power demand realization
4. Heating demand realization

Real-time decisions (per hour)
1. Unit dispatch decisions
2. Power procurement decisions

Ill. COMPONENT MIODELS AND MATHEMATICAL
FORMULATIONS

A. OBJECTIVE FUNCTION

As stated above, the proposed model aims to minimize the
operation cost and GHG emission within the data center
microgrid by optimally allocating the delay-tolerant work-
load and scheduling generation resources. Therefore, this
model could be modelled as a multi-objective problem. In this
study, monetization of the environmental impacts has been
applied in the objective function [33], which could overcome
the limitation of subjective weighting factors assignment.

A two-stage stochastic programming technique [22]-[24]
is adopted by this model to address the uncertainties in this
proposed problem. The generic mathematical formulation of
the proposed model is shown in (1). The uncertainty nature of
the independent stochastic parameters is characterized by the
probability distribution of their day-ahead forecasting errors,
which are considered as normal distribution [34]. To char-
acterize their uncertain characteristics, a large number of
scenarios are generated through Monte Carlo (MC) approach
to represent the probability distributions of those stochastic
vectors [35], [36]. In the proposed model, Latin Hypercube
Sampling (LHS) method is applied to reduce the number of
scenarios [37].

min C = {®(x) + E[O(x, §)]} (1)
st H(x,£) =0 )
G(x,8)=0 3)
& = [Pwd, Lds» Qtium] )

In the above formulation, ®(x) represents the operation
cost in the day-ahead dispatch model, which is considered
as objective function of the first-stage problem, and ®(x, &)
represents the cost in the real-time balancing model, which is
considered as objective function of the second-stage problem.
In these formulations, x represents the vector of decision
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variables, which in this model are continuous variables with
time scale discretization. The continuous variables comprise
of the scheduling decisions for generation outputs and power
procurement in day-ahead dispatch model and real-time bal-
ancing model. The H(x, &) = 0 and G(x, &) > O represent
the constraints of this model. In (4), £ is the uncertainty set
including the output of wind resources, which is defined as
P4, delay-sensitive workloads for the data center, which are
defined as Ly, and heating demands in the district heating
area, which is defined as Q.

It should be noted that the deviation between the day-ahead
information and real-time information is the forecasting error.
And the uncertainty level of the stochastic parameters is mea-
sured by the variance of forecasting error [35]. Considering
the adjustment function in the second stage, the proposed
stochastic optimization model would minimize the opera-
tion cost and GHG emission cost and the expected value of
adjustment in the operating stage simultaneously over the
entire operation time span. In this way, a flexible multi-energy
scheduling model for the target data center microgrid can be
achieved.

1) DAY-AHEAD SCHEDULING COST

In this paper, the power supply cost and emission cost are
considered as deterministic parameters. The objective for-
mulation in the day-ahead scheduling stage is shown in (5).
As it illustrates, the first-stage objective refers to the cost
of power supply, which includes the operation cost of all
fossil-fuel generators (including all the power generators and
heat generators), denoted as Flg.,, and power purchase cost,
denoted as Fgig, and GHG emission cost Fgug [38].

For the simplicity, the operation cost of on-site generation
units is linearized as stated in [37], [39]. 74,iq(?) is the spot
price in the electric wholesale market at time . ¥¢(¢) and
Ugen(i, t) are the emission factors of external grid and gen-
eration unit { at time ¢, which estimate GHG emissions from
various sources of air pollution. =, is the average external
cost for GHG emissions to quantify the corresponding envi-
ronmental impact.

® (x) = Fgen + Fgria + Fore
=3 {22 [ +b0) - Peenti, 0+(0) - Heeni, 1]

+7Tgria'(t) . Pgrid(t)
+Te [ﬂg @) - Pgrid (t)+2i ﬁgen @1 - Pgen @, t)]}
Q)

2) REAL-TIME BALANCING COST

As mentioned above, the second-stage objective, as illus-
trated in (6), is the minimal value of the cost due to the
adjustment in the real-time operation stage associated with
different realization of uncertainty parameters caused by the
forecasting error. To simulate the stochastic characteristics
of these uncertainties, stochastic scenarios are simulated
by MC approach based on the historical data portfolio,
and then S scenarios which follow the distribution of the
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original datasets are extracted from them by LHS techniques
to reduce the randomness. After applying these techniques,
the expected value of (6) could be replaced by the average
value of all the selected scenarios [36], [40] as shown in (7).
Thus, the objective function of the original two-stage
stochastic programming problem could be replaced by a
single-stage deterministic formulation as shown in (8) [41].

o & =miny {3 [p0)- (red 6.0 —rel Gn)
e @) (G0 = iR ()|
+tgria () (rlia O = 1Dy )
71 [9 0 (rhia © = 1Dy )
+ 3 e i) (1, G0y = 12, 0. 0) ]|
, Vi, t
(6)
09 =g 3 3 [p@- (i G191 .1.9)
e @) (rll Gots) = rliD o, 9)) |
+tgria (1) (ria (0,5) = rhig (0.9))
7 [0 O (rhia (4.9 = 1Dy .9)) |

+D° Dgen (1) - (rglgn i1, 8) = r2, G, 1, s))“
Vi, s
(7
minC = & (x) + O (x, s)
= X [a @+ b0 Peen 1)
+c (@) - Hgen (7, t)]
+7grid (£) + Pgria (1)
+7e [ﬁg @) - Pgrid ®)

+ Y Dgen 20) - Peen )] |

YT o+

(b ot ) =12, 1, 9)) ]

Ftgria O+ (rbf (19) = rBig 1,9))

471, [ﬁg t) - (rglﬁ,.d (t,8) = 2 1, s))

+ " Dgen (1) - (rglgn i, t,8) =2, (i1, s))}
Vit.s (8)

s.t. Day-ahead scheduling equations and constraints (9)-(22)
Real-time balancing equations and constraints (23)-(31)

The constraints in the proposed model can be divided into
two types. The first type of constraints are day-ahead schedul-
ing constraints, where the scheduling decisions for unit com-
mitment and utility power procurement are made. The second
type of constraints are real-time balancing constraints, where

88881



IEEE Access

P. Wang et al.: Flexible Multi-Energy Scheduling Scheme for Data Center to Facilitate Wind Power Integration

the generators and energy purchase decisions should be
adjusted based on different stochastic parameter realizations.

B. DAY-AHEAD SCHEDULING CONSTRAINTS

1) DATA CENTER CONSTRAINTS

a: WORKLOAD ALLOCATION MODEL

Suppose that there are M identical servers in the data center,
the probability of assignments in each server is equal to //M.
All the workloads must not exceed the computational limits,
which is formulated as (9). L¢ represents the number of over-
all data center workloads due to the CPU limits. And the total
workloads at time ¢ consist of delay-sensitive workloads and
delay-tolerant workloads minus the processing workloads,
as defined in (10), All of the delay-tolerant workloads should
enqueue in a FIFO queue during the shifting process, which
is shown in (11) [42]. To satisfy the QoS requirements, all of
the delayed responses should be executed before the end of
its due time, as demonstrated in (12) [18].

L(1) < Lc, ¥t ©9)
L(t) = Las (1) + Lat (t) — Oloaa (t) , V1 (10)
0f (1) = O (t = 1) + Lay (t) — Gloaa (1), ¥t (11)
of' (1) =0 (12)

b: POWER CONSUMPTION MODEL

In a typical data center, the consumed electricity is concisely
divided into two categories based on its consumers, which are
IT equipment electricity consumption and non-IT equipment
electricity consumption. For the electrical usage awareness,
a wide-spread benchmark metric, power usage effectiveness
(PUE), is applied to estimate the total power usage based
on the two classes of power use, which is defined as a ratio
of total power usage to the IT equipment power usage [43].
Thus, the overall power use of the data center could be
estimated by (13) as detailed in [44]. In this formulation,
8 £ Pigie + (PUE — 1) Ppea, it = Ppeak — Pidie, thereinto
Pige and Ppey are the minimum and maximum power con-
sumption of each server.

P (t) =M (8 + nL (1)), Vt (13)

¢: HEAT RECOVERY UNIT MODEL

Equation (14) is the function for the WHR module in data
center to illustrate the percentage of waste heat can be repur-
posed for district heating. In the formulation, the WHR con-
version factor « is introduced to represent the efficiency of
the WHR module [45].

Hgc (t) = kPgc (1) , V1 (14)

2) GENERATION CONSTRAINTS

For each generation unit, the power and heat production are
constrained by the maximum and minimum power output
limits, as listed in (15) and (16). The ramping rate constraints
for on-site generation units are shown in (17) and (18). Note
that power production of HGs is constrained as 0 and the

88882

heat production of PGs is constrained as 0 as well. And
CHP units should satisfy both power constraints and heating
constraints simultaneously. The coupled correlation of heat
and power characteristics for CHP unit is model in (19),
where « represents the coupled correlation factor of heat and
power production for CHP units.

Pgen,min (1) < Pgen (i, 1) < Pgenmax (1) , Vi, t (15)
Hgen,min (1) < Hgen (i,1) < Hgen,max (i) , Vi, t (16)
—Ra (i) < Pgen (i,1) — Pgen (i, — 1) < R, (), Vi, t
(17)

—Rq (i) < Hgen (i,1) — Hgen (i,1 — 1) < Ry (i), Vi, t
(18)
Pepp (u, t) = aHepp (u, 1), Vu, t (19)

3) SYSTEM CONSTRAINTS
a: POWER BALANCE

Pyria (1) + ) Pap(u. 1)+ ) Pp(v.1) + Pya (1)
= Py (t),Vu,v,t (20)

The operation scheduling process must ensure the balance
between supply and demand, as shown in (20). The resources
are modelled on the left-hand side and the demands are listed
on the right-hand side.

b: HEAT BALANCE

Hae (1) + ) Henp (u.0) + ) Hy(w. 1)
= chm (t) ’ VM, w,t (21)

Similar to the power balance constraint, thermal supply-
demand balancing is modelled as (21).

¢: POWER PURCHASE CAPABILITY LIMITATIONS

Pgrid @) < Pgrid,muth (22)

Transmission capacity indicates that how much power
could be purchased from the utility grid to the distribution
grid without compromising system security. So, the power
bought from the wholesale market cannot be greater than that
capacity, denoted by Pgid max, as shown in (22).

C. STOCHASTIC AND REAL-TIME BALANCING MODEL

1) DATA CENTER CONSTRAINTS

a: GENERATION CONSTRAINTS

With the consideration of the upward and downward output
adjustment of the on-site generation units, (23) and (24)
enforce the generation limitation in day-ahead stage and
adjustment limitation in the real-time stage, including power
generators and heat generators. Constraint (25) shows the
coupled correlation of heat and power production for CHP
units considering the adjustment in the real-time balancing
stage. In (23)-(25), the upward and downward adjustment
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are set as positive and negative decision variables mathemat-
ically.

Pgen min (1) < Pgen @i, t)+r gen (l t,s) — gen (1 t,s)

< Pgenmax () , Vi, t, s (23)
ngn min (1) < ngn @it)+r gen (l t,s) — gen (l t,s)

S ngn,max (l) ’ Vl’ t7 N (24)

e, U e,D
Pepp (u, 1) + Tehp (u,t,s) — Tehp (u, t, s)

=« (Hchp (u,t) + rf,’;lg (u,t,s) — chp (u t, s)) JVu, t, s
(25)

b: REAL-TIME RAMPING CONSTRAINTS

Constraints (26) and (27) illustrate the upward and downward
ramping limitations of the adjustment on the on-site genera—
tion units in the real-time stage. r, gen Ui, t,s) and rgen D t,9)
represent the upward and downward adjustment i 1n scenario
s on electr1c1ty generation units respectively, and rgen Ut t,s)

and rgen D t,s) represent the upward and downward adjust-

ment in scenario s on heat generation units accordingly.

—Ra (1)
< ( gen (i, 1) + Igoy Ui t,s)— Teen D1, s))

_(pgen Gt =D Fr8l G—1,9)=reP (i1 — 1 s))
<R,@.Vit,s (26)
—Ra (i)
< ( gen (i, 1) +7 gen (1 t, s)—rgen (i, t, s))

—(ngn Gt =D+riY i 1=1, ) =D i, 1 -1 s))
<R, (), Vit,s 27)

2) SYSTEM CONSTRAINTS IN REAL-TIME STAGE

The balancing in power and thermal system considering the
adjusted power and thermal output relative to the schedul-
ing in day-ahead stage are formulated in (28) and (29).
Constraint (30) imposes the power purchase capacity in
the real-time stage considering the incremental or lessened
changes relative to the scheduling stage. Eq. (31) defines the
power consumed by the data center considering the uncertain
delay-sensitive workloads and the total workload processing
at time f.

( grid (t) +r nd (t S) gid(t’ S))
+ 3 (Pap 1)+ 158w, 1,9) = 101, 9))
+3° (P 004750 1,9 = 1P, ,9)) 4P (1, 5)
= Pd:(t s),Yu,v, t,s (28)
Hye (1, s)+Z( o () + Y g t5) = Y G, s))
+Z<Hh(w,t)+rh (wts)—rh (wts))
= Omm (t,5),Yu,w, t,s (29)
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Pgria () + rpig (1,8) = revig (2,5)

< Pgrid,maxv Vi, s (30)
Pgc (t ’ S)

=MI[§+ - (Las (t,5) + Lar (t) — Oloaa (1))]1VE, s (31)
IV. CASE STUDY
A. SYSTEM CONFIGURATION

1) SETUP DATA
In this section, the proposed model is examined with real-
world data to evaluate the performance. Table 2 reports
the major technical parameters of data center and other
key components. Table 3 lists the economic parameters of
those on-site generation units. In this paper, the ratio of
delay-sensitive workloads and delay-tolerant workloads for
data center is assumed as 50:50 while in practice the work-
loads percentage of those two categories varies depending
on targeting customers [46]. Three conventional generation
units, which are CHP unit, power-only unit, and heat-only
unit, are included in the data center microgrid as controllable
generation resources. The CHP unit and heat-only unit are
fuelled by natural gas and power-only unit is coal-fuelled.

TABLE 2. Technical parameters of data center, on-site generation units,
and transmission line limits.

Source

[53]

Parameters Values
Number of IT servers 11.25 x 10°
Max power consumption (MW) 225
Maximum power allowance for 200
Data server rack (W)

center No-loaded power consumption 100 [27]
for server rack (W)

PUE 1.2

x (WHR conversion factor) 70% [20, 45]
Maximum grid procurement 120 )
capability (MW)

o (Coupled correlation factor for
CHP unit)

Initial output of CHP,
power-only unit and heat-only 0,0,0
unit (MW)

Max power/heat output limit of
CHP, power-only unit and
heat-only unit (MW)

Min power/heat output limit of [56]
6,0,10

Facility

Grid tie

1.1

55,50, 120
On-site
generation

units CHP, power-only unit and
heat-only unit (MW)
Ramping up/down rate of CHP,
power-only unit and heat-only 5,4,8
unit (MW/h)
Upward/downward reserve of
CHP, power-only unit and
heat-only unit (MW)

10,5, 11

In this paper, IT workloads of data center, heating demand,
and wind power output are assumed as stochastic parame-
ters. The stochastic parameters are considered as indepen-
dent parameters. Hourly data for Nov. 28", 2018 of every
parameters is collected from several sources. The reason for
choosing this day is that the temperature on that day is low
and the heat demand in the system is high, which could make
the inflexibility of the system caused by power and thermal
generation constraints more prominent. The workload data is
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TABLE 3. Economic parameters of on-site generation units.

Parameters Value Source
Startup and shutdown cost of CHP, 250, 300, 200
power-only unit and heat-only unit ($)
a(i) of CHP, power-only unit 82.5,35.10, 50.22
Operation  apd heat-only unit ($)
cost b(i) of CHP, power-only unit ~ 37.14, 95.18, 0 (391
and heat-only unit ($/MW)
factors c(i) of CHP, power-only unit ~ 6.73,0, 61.5

and heat-only unit ($/MW)

derived from IT workload forecaster in [31]. And the delay-
tolerant workloads are assumed to be executed within a day.

The spot price data is obtained from PJM wholesale mar-
ket, as shown in Fig. 3(1). The wind speed data are obtained
from [47], and the wind power outputs are calculated based
on [48], as shown in Fig. 3(2). The correlation of spot price
dataset and wind power dataset is calculated to be —0.597,
which means that they have negative impact on the other.
As shown in Fig. 3(1) and Fig. 3(2), the spot price climbs dur-
ing 0:00 to 12:00 and achieve the maximum value at 12:00,
while the wind power profile decreases and reach the min-
imum at 15:00. Then during 12:00 to 24:00, the spot price
decreases and the wind power profile climbs.

34 8
32 7
30 =6
=
~28 =
2 26 =
=24 Z4
2
=) 23
220 Z,
=8 =
16 !
14 0
2 4 6 8 10 12 14 16 18 20 22 24 2 4 6 8 10 12 14 16 18 20 22 24
Time (h) Time (h)
(1) Spot Price (2) Wind Power
5 800+
130 2
5
120 Z 700
Sio Z 600
e 2
,é,luu S 500
=% £ 400
£ 80 g
39 300
£ 2
0 3 200
2 4 6 8 10,12 14 16 18 20 22 24 2 4 6 8 10 12 14 16 18 20 22 24
Time (h)

Time (h)
(3) Thermal Demand (4) GHG Emissions of Utility Grid

FIGURE 3. Hourly historical values of spot price, wind power, heating
demand and GHG emission of the utility grid.

And the thermal requirement is considered as residential
heating demand, which varies with temperature. As reported
in Fig. 3(3), heating demand is generated based on histori-
cal temperature data in Pennsylvania, USA, assisted by the
algorithm demonstrated in [49]. What’s more, as described
above, the waste heat generated from the data center could
not be utilized by the heating demand with long distance
transmission and low-grade recaptured heat. In the reality,
some data centers industries choose to equip other energy
conversion facilities, such as boilers, to heat up and make
good use of the waste heat for district heating. Some tech-
nologies are striking to develop the insulation of the district
heating network, which could feed the lower-grade heat to the
residential heating requirement [19].
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As the primary GHG emitted through human activi-
ties [50], CO, emission is considered in the proposed model
to evaluate the environmental implication. The emission
parameter of on-site generation units and external cost of
CO; are reported in Table 4 based on [51], [52]. And the
hourly emission factor of the utility grid is calculated by the
historical marginal unit mix data of PJM [53]. The calculation
method is shown in [54]. As is known, generators connected
to the utility grid use different types of fuels, which have
different emission accordingly. With the original hourly gen-
eration data fuelled by gas, coal etc., and the emission factors
shown in Table 5, the hourly GHG emission of the utility grid
could be calculated, shown in Fig. 3(4).

TABLE 4. Parameters of the GHG external costs and the emission factors
of the gas- and coal-fueled generators.

Emission External Gas-fuelled Coal-fuelled
Type Cost Generator Generator Source
($/kg) (kg/MWh) (kg/MWh)
CO, 31.48 357 918 [51, 52]

TABLE 5. The performance indexes (CSR, GERR, and WCR) of each
configuration.

CSR (%) WCR (%) GERR (%)
C1 23.39 277 11.16
ci 12.60 3.08 8.67

cir 17.80 3.67 2.01
CIv : 7.96 )

Based on the historical data scenarios of the uncertainties,
1000 scenarios are generated through Monte Carlo simu-
lation. After scenario reduction method, 10 scenarios are
remained. The model is then solved by CPLEX 12.0 solver
on a computer with AMD X6 CPU@2.70 GHz and 8 GB
memory.

2) TEST CASE CONFIGURATION
To illustrate the effectiveness of the proposed workload
management and resource scheduling model for data center
microgrid, four configurations with different functionalities,
as shown in the following, are investigated in this paper.
Configuration I (CI): Optimal case with DCWA and WHR.
Configuration II (CII): Comparison case with DCWA but
without WHR.
Configuration III (CIII): Comparison case without DCWA
but with WHR.
Configuration IV (CIV): Reference case without both
DCWA and WHR.

3) PERFORMANCE INDEXES

To demonstrate the economic and environmental perfor-
mance of proposed model in different configurations,
three performance indexes are introduced as shown in the
following.
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a: Cost saving ratio (CSR)

CSR, as shown in (32), is defined as the relative cost reduction
of the nth configuration compared to the reference case CIV.
In this equation, C4 is the total operation cost of CIV and
C,, is that of the nth configuration proposed above. Higher of
CSR means lower costs in the system of this configuration.

Ci—C
CSR:(“C_")xloo%

4

n=1,2,3 (32)

b: WIND CURTAILMENT RATIO (WCR)

WCR is defined as the ratio of the actually consumed wind
power in the nth configuration to the potential generation
capability, as shown in (33). Pywq,n and Py , are the daily
consumed wind power and the predicted data in the nth con-
figuration respectively. Lower WCR means that fewer wind
power is curtailed, that is, more wind power utilization in the
system of this configuration.

P
v 100%

wd',n

WCR =

n=1,2,3,4 (33)

¢: GHG EMISSION REDUCTION RATIO (GERR)

GERR represents the ratio of the GHG emissions reduction
compared to the reference configuration to evaluate the
environmental performance as defined in (34). Egag 4 and
EcHe,n represent the daily GHG emissions in the fourth con-
figuration and nth configuration respectively. Higher GERR
means that fewer GHG is emitted in the system of this
configuration.

(EGHG.4 — EGHG,n)

GERR = x 100%, n=1,2,3 (34)

EGHG 4

B. NUMERICAL RESULTS

1) SETUP DATA

The numerical simulation results of each configuration are
reported in Fig. 4 to Fig. 6. The optimal DCWA decisions for
those four cases are shown in Fig. 4. Combining Fig. 4 with
and Fig. 3, it can be observed that the delay-tolerant work-
loads in CI and CII are shifted to the periods with lower
electricity price and higher heating demand, such as 0:00 to
8:00 and 21:00 to 24:00 as shown in Fig. 4 (1) and Fig. 4 (2).
Moreover, it should be mentioned that the onshore wind
resources typically have larger outputs during this time inter-
val [47]. Consequently, the optimally rescheduled workloads
in CI and CII, not only served the heating demand but also
enhance wind power integration. Compared to that, the delay-
tolerant workloads in CIII and CIV are non-dispatchable
and must be served upon arrival. As shown in Fig. 4(3) and
Fig. 4(4), those workloads arrive mainly during the peak
hours such as 9:00 to 16:00. Therefore, the benefit of the
WHR in those cases would not be fully utilized by the peak
heating demand.

Fig. 5 shows the power generation and consumption port-
folio of the proposed data center microgrid in four configura-
tions respectively. The histograms above the horizontal axis
represent the power generated from wind turbines and PGs,
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FIGURE 4. Results of DCWA for four configurations.

and purchased from the utility grid. And the power consump-
tion is depicted below the horizontal axis. It can be observed
in Fig. 5(1) that most of the electric power comes from the
utility grid, especially during the early morning and late night,
when the spot market price is relatively low. At the same
time, the second highest power generation comes from the
CHP unit to meet the peak power and heat requirements
simultaneously as shown in Fig. 3 and Fig. 5(1). Furthermore,
on-site wind resources contribute during all day especially
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FIGURE 5. Power generation and consumption for four configurations.

when the electricity cost increases. Fig. 5(2) demonstrates the
power generation and consumption in CII. Overall, the con-
tribution of each power resources is similar to the results in CI
while the biggest difference lies in that the CHP unit gener-
ates the most in CII and stays on all day. The main reason
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FIGURE 6. Heat production and consumption for four configurations.

is that without WHR, most of the heat would come from
HGs. This reveals that WHR process could reduce primary
energy usage and the emission. Without DCWA, as shown
in Fig. 5(3) and Fig. 5(4), power demands are mainly located
in the daytime as stated above. Hence, on-site generation units
operate at high output level during this time period, which
results in producing a large portion of GHG in the meantime.
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Fig. 6 shows the thermally related decision portfolios for
the four configurations respectively. The histograms above
the horizontal axis represent the heat generated from con-
ventional HGs and waste heat repurposed from data center.
And the thermal consumption is depicted below the hori-
zontal axis, i.e. heating demand in the district heating area.
Fig. 6(1) shows heat generation and consumption in the
optimal case CI. As shown in Fig. 6(1), the primary heating
source is the heat-only unit (63.75% of the total heat pro-
duction) and then followed by the waste heat recovered from
the data center (22.18% of the total heat production). The
CHP unit generates 14.06% of the heat and the scheduling
is made coupling with the power system. The heat resource
scheduling results in CII is shown in Fig. 6(2). Due to the
fact that no heat is recovered from the data center, the heat
demand is fully served by conventional units. From Fig. 6(3)
and Fig. 6(4), it can be noted that the heat served by heat-only
unit dominates the most, is 96.30% and 77.85% of the total
heat supply respectively. Especially in CIV, without WHR
module, the HGs produce more heat to cover the heating
demand, which results in higher economic and environmental
burden to the system

The performance indexes of each configuration are shown
in Table 5. It can be observed in the CSR column that the CI
of the lowest cost. Compared with the reference case (CIV),
23.39% of the total cost are saved. The comparison between
the cost of CI&CII, CIII&CIV shows that both DCWA and
the WHR module have positive effect and advantages on
reducing the operation cost. Noticing that the CSR of CII is
little less than that of CIII, which illustrates that the WHR
module contributes more on operation reduction in heating
season. This result may vary with the heating requirements.
From the WCR column, the optimal case (CI) is of the lowest
amount of the wind curtailment compared to the remaining.
The decision portfolio achieved by CI only abandon 2.77% of
the wind power, which reveals that the proposed model could
elevate the wind power usage and stimulate the wind power
utilization potential of the system. Furthermore, by compar-
ing the results in CII and CIII, both DCWA and WHR have
great potential in improvement of the wind power integration.
It is worth to explore the reason of wind curtailment in this
study. The results show that the wind curtailment generally
happens in 20:00-23:00. During this time period, it presents
high thermal requirements in the system. As the power and
heat production is coupled in CHP generators, to meet the
much-needed heating requirement, CHP unit needs to con-
tribute more if the heat-only unit meets the upper limit.
Therefore, more power is generated simultaneously. With
limited power demand, some of the wind power is rejected.
From the third column, it can be observed that 11.16% of
the GHG emission is reduced compared with the reference
case, demonstrating a better environmental performance is
achieved by the proposed model. Meanwhile, both DCWA
and WHR have positive influence on emission reduction, and
the latter contributes more.
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Fig. 7 outlines the comparison of hourly GHG emission
overall in each configuration. As shown in Fig. 7, the overall
GHG emission in CI stays the lowest for most of time, which
reveals the environmental superiority of the proposed model.
The GHG emission of CII is slightly greater than that of
CI. Additionally, the GHG emission of CIII is greater than
CILI. This could be explained that both the WHR and DCWA
process have positive impacts on the emission reduction. CIV
is of the highest emission compared to the others. It should
be noted that the emission of CI is not at the minimum
for all the hours. During the early morning (3:00-5:00 and
6:00-8:00) when the workloads re-allocate in CI and CII,
the GHG emission of both configurations are greater than
that of CIII and CIV. This can be explained that the system
requests more power to cover the re-allocated workloads
during this period in the two configurations, which leads to
more GHG emissions simultaneously.

—=— Emission1
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GHG emission of power-only units (kg)
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Time (h)

FIGURE 7. Comparison of hourly GHG emission overall in four
configurations.

2) FURTHER ANALYSIS

To illustrate the impact of the key parameters on the decision
portfolio for the proposed model, three further sensitivity
analyses are conducted on the GHG emission tax tariffs,
uncertainty analysis and the WHR conversion factors. All the
technical analyses are evaluated in the optimal case.

a: GHG EMISSION TAX TARIFFS

Multiple GHG emission tax tariffs of the grid and on-site
generation units are compared to demonstrate their impacts
on the overall cost. As shown in Fig. 8§, it can be noted that
the increasing of the emission tax tariff introduces a higher
operation cost. With doubled emission tax, the total operation
cost becomes 10% higher than the original value. In addition,
there is a negative correlation between the GHG emission tax
tariff and the emission. This is because higher emission tax
tariff would put a larger weight on the emission cost in the
optimization objective function which leads to lower GHG
emissions.

b: WIND POWER UNCERTAINTY

As mentioned above, the uncertainty level of wind power is
measured by the variance of wind power forecasting error.
To quantify the impact of wind power uncertainty on the
decision-making and justify the effectiveness of proposed
two-stage stochastic programming approach, cases with dif-
ferent uncertainty levels are examined and the numerical
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FIGURE 9. Economic and environmental impacts of the forecasting error
variance of wind power on the optimal configuration.

results are reported in Fig. 9. It can be observed that the
operation cost of the system, as well as total GHG emission
and wind curtailment, go up as the uncertainty level of wind
power increases. This could be explained by the fact that
as the wind power fluctuation increases, more conventional
generation units are scheduled to meet the power and heating
demand and consequently more wind is curtailed. The simu-
lation results show that reducing the wind power uncertainty
(i.e. improving the wind power forecasting) can be critical to
enhance the economic and environmental performance of the
simulation system.
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¢: WHR CONVERSION FACTOR

As stated above, significant amount of wind curtailment is
incurred due to the inflexibility introduced by CHP units
in residential heating section [57]. To further illustrate the
impact of the proposed model on improving the flexibility,
especially for a CHP dominated system, the simulation sys-
tem is modified to have only CHP unit which emphasizes
the inflexibility of system operation due to its coupled heat
and power production characteristics. In the proposed multi-
energy scheduling model, the WHR module of data center
can play the role of relaxing the coupled correlation between
heat and power production since it can relieve the heating
stress of CHP unit. The numerical simulation results are
shown in Fig. 10. It can be observed that the overall operation
cost decreases significantly as the WHR conversion factor
increases. This can be explained that with more waste heat
of data center being repurposed to meet the heating demand,
CHP unit could produce less heat. Consequently, the lower
bound of power production for CHP unit is reduced, which
consequently reduces the inflexibility of system operation
and provides more space to integrate wind power.
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FIGURE 10. Economic and environmental effectiveness for various energy
conversion factor for WHR module in the optimal configuration.

d: SCALES OF WIND POWER GENERATION

Without loss of generality, the proposed system is also ana-
lyzed with various scales of wind power generation during the
heating period, which generally lasts from Nov. to Mar. of the
next year. Based on the historical data [47] and the calculation
method of [48], three scenarios, referring strong wind, moder-
ate wind and light wind scenarios, are analyzed in this section.
The performance indexes compared with the reference case
(CIV) are shown in Table 6. This table outlines a comparison
of the economic and environmental improvement that the
different amount of wind power could achieve. This table also
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TABLE 6. Indexes of various level of wind power generation during
heating period compared with reference case (CIV).

Strong Moderate Light

CSR (%) 58.56 23.39 13.19

GERR (%) 34.07 11.16 9.30
WCR (%) 9.15 2.77 1.81

illustrates that the operation cost decreases with the growing
wind power generation. The drop-off in total GHG emission
of the system could be explained that with more wind power
with competitive price to be obtained, the possibility of the
fossil-fueled generators utilization is reducing. What’s more,
the enormous amount of wind power induces randomness in
the system. Dominated by the inflexibility of the system oper-
ation, large amount of the wind power would be curtailed.
Moreover, this table demonstrates that with DCWA and WHR
module, the economic and environmental performance could
be improved, which also testified the effectiveness of the
proposed model.

3) IMPACT ESTIMATION ON NORTH HEBEI

North Hebei is relatively rich in wind resources, especially
in Zhangjiakou and Chengde. And the number of the wind
generators is booming these years. While, transmission capa-
bility limitation of the grid in North Hebei no longer matches
with requirement of rapidly growing installed wind capac-
ity, which is the main reason inducing the curtailment [58].
Another reason of using North Hebei region as an example is
that this region heavily relies on coal-fired based CHP for
district heating during winter time, which not only results
in higher GHG emission, but also creates inflexibility to
integrate onshore wind power.

In the meantime, there constructed a large number of data
centers in North Hebei [59], which benefit from the local
abundant wind power resources and relatively lower rent
price. Moreover, it is close to rapid developing urban areas
such as Beijing and Tianjin, therefore the data centers would
have number of users.

In this section, the proposed multi-energy scheduling
scheme of data center is applied to North Hebei region in
China to estimate how much economic and environment
enhancement can be achieved.

According to surveys on large-scale data centers within
NH area, the parameters are outlined in Table 7. The aver-
age power consumption of a common server per CPU in
on/off state is assumed as 200 W and 100 W based on [65].
According to the research, the ratio of on-site thermal power
to on-site wind power is 4:4.5 [66] After adjusting some of the
data, the results of this simulation model is shown as follows.

Correspondingly, the results are shown as follows. After
applying DCWA and WHR module in the system, overall
North Hebei region could achieve 20.15% of the cost reduc-
tion, 35.06% of the GHG emission reduction and increase
the wind usage ratio by 2%. What’s more, it is worth to
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TABLE 7. Parameters of large-scale data centers in NH region.

City Data center Number of Source
servers
Big Data Center, JD;
Zhangjiakou 1,500,000 [60, 61]
Zhangbei Data Center, Ali
Chengde Big Data Industrial Park, 400,000 [62]
Deming
Unicom Internet Data Center, 180,000 [63]
Tangshan
Tangshan Weier Cloud Computing
Center, Tangshan Iron and 20,000 [64]

Steel Company

mention that because of the great portion of the CHP units’
integration to the utility grid, the wind power contribution
is relatively low. That is, big amount of the wind power is
rejected. That’s because with the severe heating requirements
in North Hebei during winter, CHP units must operate more
to meet the heating requirements of the system, which could
produce more power simultaneously. With limited power load
request, the wind power would be abandoned. Though the
results in practice may vary from the estimated result due
to the complex energy generation and workload mix, it still
demonstrates great potentials in economic and environmen-
tal performance improvement of DCWA and WHR for the
data center industry by adopting the proposed multi-energy
scheduling scheme.

4) LIMITATIONS OF THE STUDY

The limitations of the study are provided to acknowledge the
weakness of the results and to suggest the future directions
of this study. As the amount of wind curtailment caused
by transmission congestion in short-distance transmission is
limited, the network topology and the transmission conges-
tion are neglected in this paper, in order that the inflexibility
in the system caused by the generation and operation con-
straints is stressed to highlight the contributions of this paper.
In addition, hot water pipeline network is not considered as
well. Though the research in [19] explains that data centers
are usually constructed close to the district heating network
and the transmission loss would be fewer, a more detailed and
sophisticated thermal system with hot water pipeline network
considered would be one of our future probable trends.

V. CONCLUSION

In this paper, a flexible multi-energy scheduling scheme for
a data center microgrid is proposed to optimize its oper-
ation cost while facilitating more wind power integration.
A two-stage stochastic programming formulation is adopted
to address the uncertainties in the scheduling process. The
scheduling decisions for on-site generation units, utility
power procurement, shift-able batch workload allocation
is optimized to meet the thermal and power demand. The
proposed scheme is examined with a simulation system and
numerical results demonstrate its effectiveness on reduc-
ing operation cost and promoting wind power integration.
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Also, the potential impact of the proposed scheme is esti-
mated in the North Hebei Region to demonstrate its potential
effect in larger system.
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