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ABSTRACT Activity recognition from wearable photo-cameras is crucial for lifestyle characterization and
health monitoring. However, to enable its wide-spreading use in real-world applications, a high level of
generalization needs to be ensured on unseen users. Currently, state-of-the-art methods have been tested
only on relatively small datasets consisting of data collected by a few users that are partially seen during
training. In this paper, we built a new egocentric dataset acquired by 15 people through a wearable
photo-camera and used it to test the generalization capabilities of several state-of-the-art methods for
egocentric activity recognition on unseen users and daily image sequences. In addition, we propose several
variants to state-of-the-art deep learning architectures, and we show that it is possible to achieve 79.87%
accuracy on users unseen during training. Furthermore, to show that the proposed dataset and approach
can be useful in real-world applications, where data can be acquired by different wearable cameras and
labeled data are scarcely available, we employed a domain adaptation strategy on two egocentric activity
recognition benchmark datasets. These experiments show that the model learned with our dataset, can easily
be transferred to other domains with a very small amount of labeled data. Taken together, those results
show that activity recognition from wearable photo-cameras is mature enough to be tested in real-world
applications.

INDEX TERMS Daily activity recognition, visual lifelogs, domain adaptation, wearable cameras.

I. INTRODUCTION
Activity recognition through wearable devices has been
largely investigated in the past fifteen years [1]. While early
works were mostly based on the use of simple wearable
sensors such as accelerometers and heart monitors, during
the last decade, a wide variety of sensors have been incorpo-
rated into different and more sophisticated types of wearable
devices, ranging from motion to radar sensors.

The use of wearable cameras in the context of activ-
ity recognition began only very recently. Being small
and lightweight, wearable cameras are ubiquitous and can
autonomously record data without human intervention during
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long periods of time. Unlike other wearable sensors, they
capture external and directly interpretable information, such
as places, objects, and people around the user. With respect to
fixed cameras, wearable ones can daily gather large amounts
of human-centric data in a naturalistic setting, hence offering
rich contextual information about the activities of the user.
As a consequence, activity recognition from wearable cam-
eras has several important applications as assistive technol-
ogy, in particular in the field of rehabilitation and preventive
medicine. Examples include self-monitoring of ambulatory
activities of elderly people [2], [3], monitoring patients suf-
fering dementia [4], [5], determining sedentary behavior of a
user based on their spent time watching TV [6].

However, the opportunities for activity recognition from
wearable cameras come alongwith several challenges aswell.
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FIGURE 1. Our activity of daily living monitoring system via a wearable camera: A deep neural network architecture is trained on images coming
from a specific camera and, more importantly, from a given group of people (ADLEgoDataset). We show that this deep neural network can be
successfully used on pictures captured by distinct cameras and/or unseen people with different lifestyles (jobs/hobbies/cultures), needing just a
very small amount of new labeled data; consequently, the system might be deployed in real-world applications, where typically the training data
distribution differs substantially from the target data distribution.

The main one is to predict the user activities based not on
the observation of camera wearer himself (with his body-
pose, gestures, etc.), but on her/his context: the objects he/she
is manipulating, other people around he/she is interacting
with, and the environment itself. Additionally, first-person
(egocentric) images suffer huge intra-class variation, due to
the camera user not being static and also acting in a large
variety of real-world scenarios. Even more, the lighting con-
ditions are not fixed since the camera can be worn in indoor
and outdoor settings at different times of the day. Lifelog-
ging photo-cameras present yet another specific challenge
with respect to wearable video-cameras. They continuously
take pictures at regular intervals of 20-30 seconds instead
of videos with a high number of frames per second, gen-
erating image sequences with a low frame rate, typically
called visual lifelogs or photo-streams. Therefore, motion
estimation, that is useful to describe the scene [7] and dis-
ambiguate actions/activities [8], become infeasible on such
data.

Besides these technical challenges, recent work has shown
very good performance on the task of activity recognition
from visual lifelogs. This has been achieved mainly by lever-
aging deep learning architectures aiming at capturing the
temporal evolution of semantic features over time, together
with their contextual information [9].

However, as noticed in [10], these methods would need a
more extensive validation on a larger scale dataset and on
unseen users before being deployed in real-world applica-
tions. Indeed, in real scenarios, the distribution of the training,
also called source, typically differs from the distribution of
new data, also called target. For instance, this is always

the case when the target data are acquired by a different
wearable camera than the source data, or when the target
data have been collected by people having a very differ-
ent lifestyle than those who collected the source data, i.e.
having different jobs/hobbies and living in different coun-
tries. In addition, new data can be unlabeled or scarcely
labeled. Therefore, ensuring performance on unseen users
from the same domain does not assure that the model could be
employed in real-world applications. In addition, to guaran-
tee the robustness of the method, performance should keep
stable on larger and more varied datasets. To the best of
our knowledge, currently, there are not large scale dataset of
activity recognition from visual lifelogging. This is mainly
due to several difficulties to be handled: bystander and user
privacy concerns during data collection, the huge effort of the
tedious manual annotation process, the lack of a standardized
action/activity vocabulary, and the inherent ambiguity of the
data annotation itself.

To cope with all these needs for real-world deployment,
we first collected a large egocentric dataset acquired through
a wearable photo-camera and we used it to validate for
the first time the generalization capabilities of five existing
methods for egocentric activity recognition on unseen users.
In addition, we quantified the effectiveness of using together
images from different domains in the same training/test setup.
Furthermore, we show that the model trained on our dataset
can be easily transferred to other domains (i.e. datasets
collected by other wearable cameras, different users, etc.),
achieving competitive performance with a small amount of
labeled images. An overview of the above described capabil-
ities of our system is given in Fig. 1.
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More specifically, our contributions in this paper are
three-fold:

(i) The collection, annotation, and release of a large
egocentric dataset of Activity of Daily Living (ADLEgo-
Dataseta) consisting of 102,227 images, from 15 users, with
an average of 6,682 images per user.

(ii) The ranking of state-of-the-art algorithms in dealing
not only with unseen full day sequences but also unseen users
during training. This ranking also provides a strong baseline
for our newly introduced dataset.

(iii) A set of experiments using the correlation align-
ment (CORAL) adaptation method [11], [12] showing that
the model learned with our dataset can be easily and success-
fully transferred to other existing datasets acquired by two
different wearable cameras (i.e. NTCIR-12 [13], [14], and
Castro et al.’s [15] datasets), providing competitive results
with a very little amount of labeled data.

The rest of the paper is organized as follows. First,
in Section II we review the related work. Next, in Section III,
we introduced our ADLEgoDataset. In Section IV,
we present a classification baseline using state-of-the-art
algorithms on our dataset. In Section V, we present our model
and experiments on how to transfer the learnedmodel to other
domains. Finally, we present our conclusions in Section VI.

II. RELATED WORK
A. ACTIVITY RECOGNITION FROM FIXED CAMERAS
The standard pipeline of human action recognition was intro-
duced in the seminal work of Yamato et al. [16]. This pipeline
consists of first extracting feature vectors from a sequence of
frames and then predicting an action based on them by using a
classifier. This general approach has been extensively used in
the past by varying the hand-crafted features and the type of
classifier, and it is still in use nowadays [17]. This Computer
Vision task, along with several others, has made great strides
since the introduction of deep convolutional neural networks
(CNNs) [18]. These networks learn feature representation
from images and their classification in an end-to-end fashion.
Over the last seven years, new architectures that improve
their efficiency and accuracy have been presented [19]–[23].
Although CNNs do not model the temporal order of
frames from the sequence, temporal learning mechanisms
have been used on the top of them, i.e. fusion mecha-
nisms [24], three-dimensional convolutional layers [25], and
long short-term memory (LSTM) units [26], [27]. Specific
deep architectures for action recognition have combined opti-
cal flow as an additional stream [28], and, later on, mul-
timodal information such as audio [29]. In this work, our
attention is set on activity recognition from wearable cam-
eras. Its main difficulty is that the person himself is only
partially visible in the images through his hands. Although
the approaches detailed above have been adapted to this kind
of camera, other methods have been proposed that rely solely

aThe dataset is publicly available at http://www.ub.edu/
cvub/adlegodataset

on the user interactions with objects, other people, and the
scene. These methods are described below.

B. ACTIVITY RECOGNITION FROM EGOCENTRIC VIDEOS
Several works on first-person action recognition from videos
have focused on exploiting egocentric features. These fea-
tures include the location of hands [30]–[32], the inter-
action with active/passive objects [33]–[38], the head
motion [39], [40], the gaze [41]–[45], or a combination
of them [46]–[48]. Other methods have explored egocen-
tric contexts like social interactions [49] and the tempo-
ral structure of the activities [50]–[52]. Additionally, some
approaches have adapted deep third-person action recogni-
tion methods [53]–[55] and developed new ones based on
reinforcement learning [7]. In this work, we focus on activity
recognition from visual lifelogs. In contrast with egocentric
videos, they cover longer time periods with a low tempo-
ral resolution, hence being suitable for several applications
of assistance technology [2]–[6]. Nevertheless, most of the
approaches described above cannot be used on visual lifelogs
because motion and gaze based features cannot be reliably
estimated on such data.

C. ACTIVITY RECOGNITION FROM VISUAL LIFELOGS
Initial work on first-person action recognition from visual
lifelogs was presented by Castro et al. [15]. Their approach,
based on a late fusion strategy applied at frame-level, com-
bines the output of a CNN with color histograms and times-
tamps. These additional contextual features are justified by
the fact that a person typically performs activities such as
cooking in the same place and about the same time per day.
However, this approach has been tested on a dataset acquired
by a single user and makes sense only for a single user or
several users having the same lifestyle (similarly working
hours, same job, etc). A generalized version of this method
was proposed in [60], where the outputs of different layers
from a CNN were combined to extract more general contex-
tual information. More recent work [9] modeled lifelogs as
sequences instead of a set of unrelated images and proposed
two methods based on LSTMs for exploiting the temporal
evolution of contextual features over time. Recently, informa-
tion from different wearable devices, including a camera, was
integrated using multimodal approaches for activity recogni-
tion. While these methods are promising and are tested on
unseen users, they typically rely on off-the-shelf architectures
for the visual modality [61], [62]. In this work, we provide a
solid proof of the generalization capabilities of several state-
of-the-art architectures for activity recognition from visual
lifelogs by validating them on a new, large visual lifelog
dataset.

D. DOMAIN ADAPTATION
Domain adaptation (DA), also known as the dataset shift
problem [63] and mathematically formalized in [64], deals
with scenarios where a model trained on a source distribu-
tion does not generalize well in the context of a different
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TABLE 1. Comparative overview of existing egocentric lifelogs datasets for action recognition. The activities are grouped into categories according to [1].
The highest attribute values are highlighted in bold.

(but related) target distribution. Two of the currently most
predominant approaches to address the DA problem are
based on the two-stream deep architecture first presented
in [65]. Each of the streams represents the source and target
model, respectively. A carefully designed domain regular-
ization loss is employed to adapt the source to the target
domain. One approach is to reduce the shift between domains
using a discrepancy metric such as the maximum mean
discrepancy (MMD) [65]–[68], the central moment discre-
pancy [69], [70], the correlation alignment (CORAL) func-
tion [12], and the Wasserstein metric [71]. Inspired by [72],
another successful approach is to find a common feature
space using adversarial training [73]–[76]. For example,
in [74], a source encoder CNN is trained and its weights are
subsequently fixed to train a target encoder. The adversar-
ial training of the target encoder aims to deceive a domain
discriminator between samples from both domains. Along
with the same approach, Ganin and Lempitsky [73] simulta-
neously trained a generator and a discriminator by inverting
the gradients using a special layer.

In this work, with the aim of measuring the effectiveness
of our model on data acquired by different cameras and
people, and hence having a different distribution with respect
to the training data, we use a DA technique on our pro-
posed dataset, i.e. the source domain, and two other available
datasets [13]–[15], i.e. the target domains. Although DA is
characterized by not having labeled data on the target domain,
we consider it in a semi-supervised context, where different
amounts of labeled target examples are taken into account.

III. ACTIVITIES OF DAILY LIVING EGOCENTRIC DATASET
A. RELATED DATASETS
Although several egocentric datasets for action recognition
have been published in the last years [77], [78], most of them
were recorded using video cameras. Since these devices have
much higher energy consumption than lifelog cameras, each
video in these datasets do not cover actions from whole days
but capture up to a few hours. Furthermore, considering the

obtrusiveness of the cameras, that are typically mounted on
the head, most of these datasets only include actions in spe-
cific, often indoor, environments. For instance, several exist-
ing datasets have focused on tasks like cooking [41], [43],
[50], [78], [79], interacting with a toy in a laboratory [49],
working [80], [81], or performing indoor daily activi-
ties [35], [82]. Only a few datasets captured outdoor activities
such as basketball [2] or ambulatory activities [83].

During the last five years, a reduced number of egocen-
tric visual lifelog datasets for action recognition has been
introduced. Unlike the egocentric video datasets described
above, these datasets cover full-day activities performed in
a larger variety of settings. Both characteristics made the
lifelogging data collection more difficult to acquire. First,
it requires longer recording times that also makes the pro-
cess more expensive. Second, recording several locations
and people during a day has more privacy restrictions than
indoor locations. One of the first datasets was introduced
in [15] and released in [59]. It describes the life of only
one graduate student using 19 different activities, therefore
it does not allow to test generalization capabilities on other
users. Several other datasets have been presented in the con-
text of image retrieval challenges [13], [56]–[58]. Although
they capture images from several weeks, the number of
originally annotated classes and images is low and mostly
describes transportation and ambulation activities. The life
of three unrelated subjects was presented in the NTCIR-
12 challenge [13]. Although it was independently annotated
with 21 daily activity labels by [14], it only considers three
people. Another dataset for image retrieval consisting of the
annotated moments of two people [56] was released and fur-
ther labeled in terms of four different activities. This dataset
was further used for another image retrieval task in [57].
Finally, a dataset consisting of two subjects and two distinct
activities was introduced for the NTCIR-14 challenge [58].
The characteristics of the above described datasets and ours
are summarized in Table 1. This Table not only considers the
number of people, annotated classes, and images; but also the
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number of day lifelogs. This latter number is relevant since a
robust performance evaluation on frame-sequence data must
be done on full sequences and not only frames. Moreover,
Table 1 also highlights the diversity of the activities of our
dataset as having classes belonging to more activity groups
among the ones proposed in [1]. The main difficulties with
existing visual lifelog datasets are: (i) the small number of
users and lifelog sequences, that prevent to thoroughly test
the generalization capabilities of machine learning methods
for activity recognition; (ii) the limited number of activity
categories and their diversity.

Here, we introduce our ADLEgoDataset, a collection
of 105,529 images describing the lifestyle of fifteen post-
graduate students. In comparison with previous visual lifelog
datasets, the activities are not constrained to a specific domain
and occurred in a wide variety of indoor and outdoor locations
of a city. The set of activity labels is based on previous
works [14], [15], [59] and further expanded to 35 activities,
thus adding 14 more categories. Moreover, the number of
users is greater than in existing datasets by 12 people as seen
in Table 1, allowing them to perform a generalization test.

B. DATA COLLECTION
The data was collected by fifteen computer science post-
graduates students who wore a lifelogging camera using a
lanyard hanging around the neck. The number of female and
male participants were 3 and 12, respectively. The collected
pictures depict different outdoor and indoor locations across
one city. The common place for all the participants was the
university where they work or study.

The participants were instructed to perform their daily
activities while wearing the camera during whole days. How-
ever, they were allowed to put away the camera on situations
that they considered private, e.g. using the toilet. They were
asked to use the camera in a minimum period of 10 days.
For privacy concerns, all participants were allowed to discard
pictures that they considered sensitive, even images from
whole days.

We used the first and second versions of the Narrative
Clip camera, but only two people wore the first version. Both
cameras automatically take a picture at≈ 30 seconds rate, but
their main difference is that the latter has a wider field of view
and an 8 megapixels resolution instead of 5. They can operate
in a period of 10 to 12 hours without a battery recharge, thus
allowing to capture between 1,200 and 1,900 images per day.

The selected categories for the dataset are general activ-
ities from five different egocentric groups [1], as seen
on Table 2. The activity labels were based on previous
works [14], [15], [59], but they were not specifically targeted
to model the student lifestyle and were selected after the
recording. As an illustration, the original number of cate-
gories proposed for annotation included a broader set of activ-
ities such as child rearing, praying, painting or meditating.
However, they were not chosen by any participant during the
annotation process.

TABLE 2. Distribution of the 35 activity categories in our dataset
according to the proposed groups in [1].

C. ANNOTATION PROCESS
Most of the participants were also involved in the annotation
process since they are the best judges to determine not only
what they were doing, but also when an activity started and
ended. The correct activity boundaries in a lifelog sequence
are important because the temporal context of between frames
provides more information in the case of occlusions from sin-
gle frames. For instance, in a cycling sequence a frame might
not show the bicycle steering wheel and could be classified
as walking outside. We used the batch-based annotation tool
introduced in [60]. Finally, each recognizable face of people
not directly involved in the data collection was manually
blurred.

D. DATASET DETAILS
We collected over 105,529 pictures from 15 college students
and researchers, covering in total 191 days and 35 activities.
These activities belong to five of the seven categories pre-
sented in [1], as seen on Table 2. The young student lifestyle
is implicitly reflected on the number of instances of each
activity, for instance, the times the labels used a computer and
gone to a bar frequently appear. The only location in common
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FIGURE 2. Sampled pictures captured by a wearable photo-camera during a day. Each row depicts images from a different person annotated with their
corresponding activity and time.

for all volunteers was the university and most of the time
they did not meet while wearing the camera. Fig. 2 illustrates
different settings and activity sequences of three of the users.
Each participant wore the camera a different number of days
and times, and the mean number of days that the participants
wore the camera was 14.6, resulting in 6,816.73 images on
average.

IV. ACTIVITY RECOGNITION FROM LIFELOGS
In this section, we aim at ranking the generalization capability
of state-of-the-art algorithms for activity recognition from
visual lifelogs. Since our focus is only on visual information,
we selected algorithms that do not rely on additional data
from other sensors as [61], [62]. Our baseline considers two
classification approaches for visual lifelogs: still images and
image sequence based approaches. The first scenario consists
in determining the activity a person is doing from a single
frame; whereas the second scenario takes as input images
from a full-day sequence that typically covers several daily
activities.

We selected two still image classification methods as a
baseline. The first is a convolutional neural network (CNN)
that serves as a backbone for the rest of the algorithms.
Specifically, we used ResNet-50 as backbone network. The
other method is a late fusion ensemble that was introduced by
Castro et al. [15] and further generalized by Cartas et al. [60].
Their approach consists of combining different output layers
from a CNN using a random forest (RF) as a final classifier,

thus named CNN+RF. Concretely, we combined the outputs
of the average pooling and the fully-connected layers.

In the case of image sequences, we evaluated the two tem-
poral training approaches presented in [9]. These approaches
extract the contextual features from a CNN and use LSTMs
as a sequence learning mechanism. The difference between
these approaches consists in their training strategy. The first
approach trains directly over the full-day image sequence.
The second approach trains using a fixed number of LSTM
units and sampling a day sequence in a sliding window fash-
ion. Specifically, we tested both LSTM training strategies
using as input feature extractors the CNN and CNN+RF
methods described above. In order to make a fair com-
parison between the features extracted from CNN and
CNN+RF, the CNN weights were frozen during the training
of LSTM.

In addition to these image sequence approaches, we also
consider an LSTM variant as a temporal learning mechanism.
Namely, we combined the encoding produced by a CNN
with a Bidirectional LSTM (BLSTM) [84]. This kind of
Recursive Neural Network (RNN) evaluates a sequence in
forward and backward order and merges the result. Thus,
it captures patterns that might have been missed by the
unidirectional version and that can lead to potentially more
robust representations. We implemented the CNN+BLSTM
and CNN+RF+BLSTM methods using the same training
approaches described above. All our ranking baseline models
are depicted in Fig. 3.
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FIGURE 3. Ranking baseline models. All models used ResNet-50 as backbone convolutional network [20]. In order to have a fair comparison, after
fine-tuning the CNN baseline model, it was used as a feature extractor for the rest of the evaluated methods.

With the aim of having a more realistic testing setting than
previous works [9], [15], [60], we performed a special split
on the ADLEgoDataset. Specifically, the test split not only
considers multiple seen users and their unseen day sequences,
but also different unseen users during training.

We first detail the dataset split in Section IV-A. Next,
in Section IV-B, we outline the implementation details of
the state-of-the-art algorithms and their bidirectional counter-
parts. Finally, we discuss the evaluation metrics and results of
our experiments in Section IV-C.

A. DATASET SPLIT
Our goal in doing the training and testing partitions was to
make possible the evaluation of generalization capabilities of
several state-of-the-art algorithms on the ADLEgoDataset.
In comparison with previous works [15], [59], we did not
randomly and proportionally split each category of the data.
Indeed, this kind of training/testing partition is not reliable
on sequential data since consecutive frames depicting similar
information might be present in both partitions. Therefore,
instead of hiding single random frames from the training
split, we selected in a test split full-day sequences from seen
users during training. This selection was made as propor-
tional as possible with respect to the categories since it had
to be representative of the dataset. In contrast with [14],
we considered that this kind of partition is not enough to
assess the generalization performance, because similar days
might depict similar activities in the same context of a person.
Consequently, wemade another test split consisting of unseen
users during training. This test split was not constrained to
be representative of the training split. The data percentage
of the seen and unseen test users was around 10% and 5%,
respectively. Moreover, in this experiment we discarded the
activity categories that had less than 200 instances or that
were performed by only one user, except for four categories
(airplane, cleaning, gym, and pets). These categories were
also considered for further comparisons on the experiments
in Section V.

We first created the unseen users split because it reduced
the complexity of the seen users split. The procedure is
detailed as follows:

1) UNSEEN USERS SPLIT
First, we calculated all the possible combinations of unseen
users from the 15 users (i.e. 32,767) by using the Twid-
dle algorithm [85]. Then we calculated the total number of
images for each combination, and filtered the ones that did not
have between 4.5% and 5% of images from the total amount
of images in the ADLEgoDataset. Finally, we selected the
combination with the lowest number of participants.

2) SEEN USERS SPLIT
This split is focused on separating complete days of images
(or full-day sequences) from users, rather than separating
users. A full-day sequence is composed of several images
with different activity labels from one user. The objective
of this test split is to separate full-day sequences from the
training that maintains a similar category distribution as the
whole dataset and thus being representative of what it is
intended to learn. We measure the similarity between cate-
gory distributions using the Bhattacharyya distance.

After removing the unseen users from the dataset,
the remaining number of users is 9 and their number of full-
day sequences is 103. By counting the number of images
from each full-day sequence, 10% of the dataset for the
split is obtained by selecting between 6 and 32 full-day
sequences. We considered that the most representative full-
day sequences are the ones with the closest category distribu-
tion with respect to the whole dataset. Consequently, finding
it involves comparing the category histograms between the
whole dataset and all possible combinations of full-day
sequences. Although the number of test days is low, the search
is prohibitively expensive as is characterized by combinato-
rial growth. For instance, the number of test sets considering
6 days out of the 103 is ≈ 1.42× 109, but for 32 days out of
the 103 is ≈ 4.42× 1026.
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FIGURE 4. Training and test sets summary. Our splitting method generated data splits with similar distribution shapes, except for the unseen users split.
Note that the distributions are normalized and their vertical axis has a logarithm scale.

Finding the best full-day sequences for the split was per-
formed as a two-step optimization search using heuristics.
With the goal of reducing the search space, instead of dealing
with single full-day sequences, we first grouped them into
bins of one or more full-day sequences. This was modeled
as a bin packing problem, where the objects were full-day
sequences, and their weight was its number of images. To fur-
ther reduce the search space by half, these bins were matched
in pairs with similar category distributions. The idea is that
one bin was destined for the training set and the other for the
test set. The resulting number of bin pairs was 32 containing
between one and two full-day sequences.

The second step evaluated all test split candidates to find
the most similar to the ADLEgoDataset distribution. A test
split candidate is a combination of bin pairs that contains all
activity categories and its number of images is approximately
10% of the data. The distributions of all our final splits are
depicted in Fig. 4. It shows that all split distributions have
a similar shape, except for the unseen users split because it
considered random users as described above.

B. RANKING IMPLEMENTATION
1) STILL IMAGE LEVEL
We trained the following two models for static image level
classification:

1) CNN. We used ResNet-50 [20] as CNN network and
replaced the top layer with a fully-connected layer
of 28 outputs. The fine-tuning procedure used Stochas-
tic Gradient Descent (SGD) and a class-weighting
scheme based on [86] to handle class imbalance. More-
over, the last ResNet block and the only fully con-
nected (FC) layer were unfrozen. The CNN initially
used the weights of a pre-trained network on Ima-
geNet [87]. It was trained during 7 epochs using a
learning rate α = 1 × 10−2, a learning rate decay of
5 × 10−4, a momentum µ = 0.9, and a weight decay
equal to α = 1× 10−3.

2) CNN+RF. Two random forests were trained using the
output of different layers from the previously described

ResNet-50 network. Specifically, the first RF was
trained using as input the features extracted from the
average pooling layer. The other RF uses the average
pooling layer plus the concatenation of the FC layer.
The number of trees was set to 500 and used the Gini
impurity criterion [88].

2) IMAGE SEQUENCE LEVEL
The following outlined models take into account temporal
information and use as backbone the previously trained mod-
els.We used as temporal architectures the LSTMandBLSTM
networks. Following [9], the training of each model was
performed in two ways by treating differently an input day
lifelog sequence. The first training strategy operates directly
over a day lifelog, i.e. over the full day sequence. The sec-
ond training strategy truncates a day lifelog sequence into
fixed-size subsequences in a sliding window fashion.

With the purpose of making a fair comparison, their
weights and outputs of the backbone models were frozen
during training. All the models were trained using the SGD
optimization algorithm using different learning rates but the
same momentum µ = 0.9, weight decay equal to α =
5× 10−6, batch size of 1, and a timestep of 5.

1) CNN+LSTM and CNN+BLSTM. These models
removed the top layer of the ResNet-50 network and
respectively added a LSTM and BLSTM layer hav-
ing 256 units, followed by a fully-connected layer
of 28 outputs. For both models, the learning rates
of the full sequence and the sliding window train-
ing were α = 1 × 10−2 and α = 1 × 10−3,
correspondingly.

2) CNN+RF+LSTM and CNN+RF+BLSTM. Both mod-
els were trained using as input the prediction of the best
CNN+RF model, namely the combination of the avg.
pooling and the FC layers. These models respectively
added an LSTM and BLSTM layer having 30 units,
followed by a fully-connected layer of 28 outputs. The
learning rate for both models and types of training was
α = 1× 10−3.
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TABLE 3. Activity classification performance metrics for all models. Best result per measure is shown in bold.

C. RANKING EVALUATION
The model performance was evaluated using the accuracy,
the mean average precision (mAP), and macro metrics for
precision, recall, and F1-score. Using the accuracy as the
only classification metric might be misleading under the class
imbalance present in both test splits. The purpose of using
these macro metrics is to offer a more solid comparison
baseline. Table 3 shows the performance of all the static
and temporal models on the seen and unseen test parti-
tions. The best models for the seen and unseen test splits
were CNN+BLSTM (80.64%) and CNN+LSTM (79.87%),
respectively. In both test splits, the sliding window train-
ing resulted in better performance. Although both models
achieved a similar accuracy on the test splits, the rest of
the metrics remained significantly different. This indicates
that the CNN+BLSTM model suffers from overfitting on
unseen users. Overall, the best model for both test splits
was the CNN+LSTM achieving an 80.12% accuracy, as it
had a similar performance on the seen users split, and better
performance on the unseen users split.

In contrast with the results previously obtained in [14],
our experiments indicate that the CNN+RFmodels decreased
the overall accuracy of the ResNet-50 network. Considering
both test splits, the macro precision improved whereas the
macro recall decreased. Thus, indicating that the CNN+RF
models are confident in their predictions, but theymiss a large
number of class samples. Consequently, both temporal mod-
els trained on top of this configuration (CNN+RF+LSTM
and CNN+RF+BLSTM) have a decreasing score in all the
considered metrics with respect to the CNN baseline. This is

likely due to the fact that here we are using another dataset
(NTCIR-12 [13], [14]) and an unseen users split in our test
set.

The confusion matrices of the best CNN+BLSTM and
CNN+LSTM models for the seen and unseen test splits are
illustrated in Fig. 5. A straight comparison of all classes
between each test split cannot be made, as the number of test
samples is different and it might be misleading. For instance,
not all categories appear on the unseen test split like airplane
or watching tv. Additionally, the proportion of the number of
test samples is less in some classes, e.g. stairclimbing.
Nevertheless, a comparison between the results of each

temporal model and the CNNmodel can be done by calculat-
ing their difference, as shown at the right of each confusion
matrix row in Fig. 5. Since the accuracy improvement with
respect to the baseline is higher on the unseen than on the seen
test split, there are more changes in its difference. Moreover,
the plots show low performance on the CNN model for the
categories Cleaning, Relaxing, Drinking, and Writing. They
might be due to the large intra-class variability of the cat-
egory (Relaxing), the social context ambiguity (Formal and
Informal meeting), and to the fact that same activities occurs
on very similar places (Cleaning,Cooking andDishwashing).
Further results containing the recall scores for each class on
both test splits are reported in the Appendix A.

V. GENERALIZATION TO OTHER DOMAINS
In real-world applications, a system pretrained on a large
scale dataset is typically used on new visual unseen lifel-
ogs during training, belonging to previously unknown users.
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FIGURE 5. Normalized confusion matrices of the best models for the seen and unseen test sets and their difference with
respect to the CNN model. The increase and decrease of confidence is represented by the intensity of red and blue colors.
Note that the classes Airplane, Cleaning, Going to a bar, Gym, and Watching TV do not appear on the unseen users test set.

FIGURE 6. Examples of people performing the same activity from
different domain datasets. Below each image is its corresponding
dataset, egocentric camera type, and body wearing location.

The images composing these lifelogs might have been
recorded from different cameras than the one used to capture
the training dataset. For instance, Fig. 6 shows egocentric
images of different people washing the dishes in their houses
captured with three different wearable cameras. Besides the
visual variability of tap and sinks in different kitchens, one
can notice the contrast of fields of view and the angle distor-
tion produced by different lenses. Due to the different nature

of the source and target domains, performance on the target
domain typically experiences a drop.

In this section, we aim at mitigating the performance drop
by applying a semi-supervised learning technique, namely
domain adaptation (DA). Our goal is to assess the perfor-
mance between egocentric domains with and without transfer
learning, rather than proposing a new adaptation method
tailored at egocentric image sequences. Therefore, we strictly
focus on a simple image-based DA method, the Deep Corre-
lation Alignment (CORAL) regularization loss [12]. We per-
form two experiments using the ADLEgoDataset as the
source domain, and the NTCIR-12 [13] and Castro et al. [15]
datasets as target domains. These datasets were selected as
target domains, as they are the closest to our dataset in
number of activity categories and annotated images, and
were recorded with different camera, as it can appreciated
on Table 1. In the first experiment, we measure the perfor-
mance of adding annotated images from different domains
for training without using DA, and we quantify the differ-
ence between the target and the source domains. In the sec-
ond experiment, we use the CORAL loss function as DA
method on the target datasets and calculate the amount of
labeled target data needed to achieve a good classification
performance.
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FIGURE 7. Domain adaptation training pipeline. During training, two CNNs with shared weights are used for the source and target data
domains, respectively. Since the target domain labels are unknown, only the classification loss for the source CNN is evaluated. The
adaptation from the source to the target domain comes from penalizing the discrepancy of their predictions using the domain adaptation
loss. In this example, the discrepancy of both images should be high, because the source and target images correspond to the classes
eating and driving.

In Section V-A, we detail the domain adaptation tech-
nique we used, namely the CORAL regularization loss. Next,
in Section V-B we outline the datasets we used and their
splits on the two experiments. In Section V-C, we thoroughly
describe the implemented models. The experimental results
evaluation and discussion are presented in Section V-D.

A. DOMAIN ADAPTATION USING A
REGULARIZATION LOSS
Let LS = {yi}, i ∈ {1, . . . ,L} be the labels from the source
domain, and let us assume that the target domain has only
unlabeled examples. During training, both domains have their
own CNN architecture with shared weights, but only the
source domain has a classification loss `CLASS . In order to
adapt the learned model from the source to the target domain,
a regularization loss `DA is used. This domain regularization
loss penalizes the discrepancy between the output distribu-
tions from two single feature layers having a dimension d .
This is a common setting used in [12], [65], [70] and it is
illustrated in Fig. 7, where a single DA loss is penalizing the
output of the fully-connected (FC) layers. The training loss
function can be expressed as:

` = `CLASS +

n∑
i=1

λi`DA (1)

where n is the number of DA regularization layers in the
network and λ denotes the hyperparameter that trades off the
adaptation with classification accuracy. Since our CNNs only
had one FC layer, we only used one DA loss.

Specifically, we used the CORAL regularization
loss [11], [12]. One of its advantages is that only the hyper-
parameter λ requires to be set. In this context, the output
features of the source and target layers are said to come
from the source domain DS = {xi}, x ∈ Rd and the target
domain DT = {ui}, u ∈ Rd , respectively. Then the CORAL

regularization loss can be defined as:

`CORAL =
1

4d2
‖C(DS )− C(DT )‖2F (2)

where ‖ · ‖2F denotes the squared matrix Frobenius norm and
C is the covariance of D given by:

C(D) =
1
m
(D>D −

1
m
(1>D)>(1>D)) (3)

where m is the number of data in the domain D and 1 is a
column vector with all elements equal to 1. The CORAL loss
penalizes the discrepancy between domain features, so that
when the source and target images correspond to different
classes the penalty is high.

B. SOURCE AND TARGET DATASETS DETAILS
In our experiments, we used the ADLEgoDataset as
the source domain dataset, and the NTCIR-12 [13] and
Castro et al. [15] as target domain datasets. Both datasets
were selected as target domains since they used different
cameras and have more annotated categories and images than
other lifelogging datasets, as can be appreciated in Table 1.
Additionally, the domain visual difference with respect to our
dataset can be appreciated in Fig. 6.We did not consider using
the NTCIR-12 [13] and Castro’s datasets as source domains
since they have fewer people, half of the images, and fewer
activity categories. Since their labels correspond to a different
set of activity categories than ours, we manually mapped the
matching categories. More categories would have required an
automatic matching between words. The resulting categories
and data distributions are shown in Fig. 8. The corresponding
number of images of the source and the target for the NTCIR-
12 was 96,632 and 44,902, and for the Castro’s dataset was
68,507 and 39,166. The specific data splits for each experi-
ment are detailed below.
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FIGURE 8. Categories mapping between the source and target domains
with their data distributions. The source domain corresponds to our
dataset, whereas the target domains are the Castro’s dataset (top) and
the NTCIR-12 dataset (bottom). Note that the vertical axis has a logarithm
scale.

1) TRAINING WITHOUT DOMAIN ADAPTATION
The goal of this experiment was to measure the perfor-
mance of adding images from two different domains only
during training without using DA. Therefore, we combined
the source dataset with each target dataset for the training
and validation splits, but the testing split only considered
images from the source domain. Explicitly, we used the same
splits for the source images as described in Section IV-A. The
images from the target domains were randomly stratified in a
90/10% proportion for the training/validation splits.

2) DOMAIN ADAPTATION ON THE TARGET DATASETS
The objective of this experiment was to (i) use transfer
learning in a practical setting and (ii) determine the required
amount of labeled data from the target domain to obtain a
good classification performance. The initial setting of the
experiment considered that only the source domain data was
labeled, but later different proportions of labeled data from
the target domain were added.

First, we randomly stratified the source data into training
and validation sets, and the target data into training and testing
sets. Throughout the experiment, the proportion of training
and validation data of the source images was fixed and set to
90/10%, whereas the proportion of training and testing data
of the target images was initially set to 85/15%. Subsequently,
different proportions (10, 20, . . . , 50%) of images were ran-
domly and incrementally removed from the target training
split. These images were added to the training/validation
splits of the source domain while maintaining their original
90/10% proportion.

FIGURE 9. Sensitivity of the CORAL distance due to different learning
rates using the Xception network. These results were obtained by only
measuring the CORAL distance and not penalizing it (i.e. by having a fixed
λ = 0).

C. GENERALIZATION EXPERIMENTS IMPLEMENTATION
The following paragraphs describe the training settings for
each experiment.

1) TRAINING WITHOUT DOMAIN ADAPTATION
We used a ResNet-50 [20] network as a CNN model and
replaced its top layer with a fully-connected (FC) layer
of 28 outputs. In order to have comparative results with
the classification baseline of Section IV, we explicitly used
the same network. It was trained using Stochastic Gradient
Descent (SGD) with its weights initialized on ImageNet [87].
The last ResNet block and the FC layer were unfrozen during
fine-tuning procedure. The training parameters were a learn-
ing rate α = 1×10−2, a learning rate decay of 5×10−4, and
a momentum µ = 0.9. Since we used two validation splits,
the trainingwas stoppedwhen their epoch losses were not fur-
ther improved. The number of epochs for the target datasets
NTCIR-12 and Castro’s one were 6 and 9, respectively.
Domains Discrepancy: As a means to quantify the dif-

ference between the source dataset and the target datasets,
we calculated the maximum mean discrepancy (MMD) [89]
between them for each shared category. First, we sampled
between 500 and 1,000 images per category that were both in
the source and the target datasets. These sampled images took
into account all users and all days. Then, for each sampled
image, we extracted a feature vector from the last pooling
layer of a ResNet-50 CNN pre-trained on ImageNet [87].
Finally, we calculated the MMD between the sets of feature
vectors of the source and target datasets using a Gaussian
kernel with a σ = 0.1.

2) DOMAIN ADAPTATION ON THE TARGET DATASETS
We initially used two CNN architectures, i.e. Xception [19]
and ResNet-50, as they are more robust and have better
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FIGURE 10. Validation accuracy for the ResNet-50 and Xception on the transfer learning to the Castro’s
dataset (top) and the NTCIR-12 dataset (bottom). Each plot shows the validation accuracy obtained with the
best value of λ and without using domain adaptation (λ = 0). Additionally, the blue and violet areas represent
the range between the minimal and maximal values of the accuracy for λ = 0.1,0.2, . . . ,1.0 on the source and
target domains, correspondingly.

performance than AlexNet [18], the original network used
in [12], [65], [70].

a: ARCHITECTURE SETUP
In comparison with AlexNet, the Xception and ResNet-
50 architectures have only one FC layer, making it the only
layer suitable for the CORAL loss. The weights of this FC
layer were initialized with N (0, 0.005) and its learning rate
was set ten times bigger than the other layers, as stated in [12].
The rest of the layers were initialized using pre-trained
weights on ImageNet [90].We initially kept frozen all the lay-
ers except the classification layer, but it had a negative impact
on the performance in the target domain. Hence, the layers
from the last ResNet block of the ResNet-50 architecture
and the exit flow block of the Xception architecture were
unfrozen. We used SGD as an optimization method for both
networks.

b: LEARNING RATE α TUNING
We experimentally found that an adequate learning rate α had
to be high enough to produce a significant CORAL distance
between the source and the target domain, but not so high
that it did not converge. In order to find it, we first varied
the learning rates while maintaining the other parameters

constant and setting λ = 0. In other words, the training
was performed without penalizing the discrepancy between
domains, but measuring their distance. For instance, Fig. 9
illustrates significantly different CORAL distances for two
different learning rates on both target datasets. In both cases,
the highest learning rates were used as their training con-
verged. Additionally, in our experiments, the lower learning
rate did not produce higher accuracy scores for the training
split of the target domain.

The final training parameters for ResNet-50 were a learn-
ing rate of α = 5 × 10−3, a batch size of 60, a momentum
equal to 0.9, and a weight decay equal to 5×10−4. Addition-
ally, the training parameters for the Xception network were a
learning rate of α = 5×10−2, a batch size of 40, a momentum
equal to µ = 0.9, and a weight decay equal to 5× 10−4.

c: CORAL LOSS WEIGHT λ TUNING
After finding an adequate learning rate, we trained the
ResNet-50 and Xception networks for λ = 0, 0.1, . . . , 1. The
best value of λ was obtained considering only the highest
validation accuracy of the source domain, as the target data
is supposed to be unknown. The best values of λ for ResNet-
50 were 0.3 and 0.5 on the NTCIR-12 and Castro’s datasets,
respectively; whereas the best values of λ for Xception were
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TABLE 4. Activity classification performance results obtained by adding the Castro’s [15], [59] and NTCIR-12 [13], [14] datasets for training without
domain adaptation. Best result per measure is shown in bold. Note that not all categories appeared on the unseen users test set.

FIGURE 11. Maximum mean discrepancy (MMD) between the categories from the source and target datasets. The closer the value to zero the
more similar the domains for that category.

0.5 and 0.2 on the NTCIR-12 and Castro’s datasets, corre-
spondingly.

The validation accuracy plots for ResNet-50 and Xception
networks on both datasets are shown in Fig. 10. Two observa-
tions can be made from these plots. First, the areas between
the minimal and maximal values of the accuracy obtained
using the different values of λ suggest that the training of
Xception network is more unstable than the ResNet-50 net-
work. Consequently, no further experiments were imple-
mented using the Xception network. Second, the difference
between the target accuracy of both datasets (≈ 73.22% for
Castro and ≈ 47.92% for NTCIR-12) shows that a good
performance is not always achieved using the CORAL loss
alone. Therefore, more data from the target domain is needed
to be labeled during training.

d: ADDITION OF TARGET LABELED DATA TO THE SOURCE
DOMAIN
After fine-tuning the hyperparameters, we separately trained
the ResNet-50 network adding different percentages of

random target labeled data to the source domain. The con-
sidered percentages of target data were 0, 10%, . . . , 50% and
were selected as described in Section V-B.

D. GENERALIZATION EXPERIMENTS EVALUATION
1) TRAINING WITHOUT DOMAIN ADAPTATION
The objective of this experiment was to (i) measure the
activity classification performance when mixing the source
and target datasets during training without DA method
and (ii) estimate how different were the source and target
domains. Given the class imbalance present in the dataset
and for comparative purposes, we used the same performance
metrics as the experiments presented in Section IV-A. The
discrepancy between shared categories of the source and
target domains was calculated using the MMD as described
in Section V-C.
The classification results of separately adding Castro’s and

NTCIR-12 datasets for training are presented in Table 4.
It shows that the addition of labeled data from the target
domains diminished all the evaluated performance metrics;
in particular, the accuracy was lower by 13.71% on average.
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TABLE 5. Action recognition accuracy for the domain shifts from the ADLEgoDataset dataset using ResNet-50.Best result per measure is shown in bold.

TABLE 6. Seen users classification recall for all models in the baseline. Best results are shown in bold.

The overall classification performance of adding Castro’s
dataset was better than when adding the NTCIR-12 dataset.
This is also reflected in their calculated discrepancy with
respect to the source domain. Fig. 11 shows the MMD
for each shared category between each target and source
domains, and a horizontal line representing its mean. The
MMD mean for the Castro’s dataset is lower than for the
NTCIR-12 dataset, thus meaning that it is more similar to
the ADLEgoDataset. This difference in discrepancy also is
reflected in the performance of domain adaptation as describe
below. Supplementary results containing the recall scores for
each class are reported in the Appendix B.

2) DOMAIN ADAPTATION ON THE TARGET DATASETS
The objective of this experiment was to use transfer learn-
ing on a practical setting and to determine the required

amount of labeled data from the target domain to obtain a
good classification performance. As in previous works [12],
[65], [70], [73], [91], [92], we use the prediction accu-
racy as evaluation metric for five different training runs.
Our results only consider ResNet-50 architecture, since the
training of the Xception network was unstable as discussed
above. The summarized results are shown in Table 5 and plot
in Fig. 12.

The results in Table 5 show that ResNet-50 was also
susceptible to instability during training, producing a high
variance in some training runs. This instability only affected
Castro’s dataset and can be visually seen in the plot of Fig. 12.
Therefore, the accuracy median was also considered to mea-
sure performance improvement.

The results confirm that performing domain adaptation
without using labeled target data does not necessarily achieve
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TABLE 7. Unseen users classification recall for all models in the baseline. Best results are shown in bold. Note that not all categories appeared on this
test set.

FIGURE 12. Mean test accuracy with respect to different percentages of
added target labeled images to the training/validation source data using
ResNet-50. The colored areas denotes the mean value ± standard
deviation.

a good performance on all target datasets. Specifically,
the median accuracy of the NTCIR-12 was 45.14% whereas
for Castro’s dataset was 72.58%. This low performance was
improved by adding a small subset of labeled target data
to the training. The largest increment in median accuracy

was obtained by adding 10-20% of labeled data, i.e. for the
NTCIR-12 it improved by 33.32% when adding 10% and
for Castro’s dataset it improved by 6.57% after adding 20%.
The most benefited dataset was the NTCIR-12 since their
initial discrepancy was higher as shown by the previous
experiment. The mean and median accuracy curves from
Fig. 12 show a decreasing increment that settles around 40%.
Although a straight comparison with previous works cannot
bemade [14], [15], themean accuracy values at 40%of added
data are competitive. Originally, the accuracy obtained for
Castro’s and NTCIR-12 datasets were 83.07% and 94.08%,
correspondingly.

VI. CONCLUSION
We introduced the so-far largest egocentric lifelog dataset
of activities of daily living consisting of 105,529 annotated
images, theADLEgoDataset. It was recorded by 15 different
participants wearing a Narrative Clip camera while perform-
ing 35 activities of daily life in a naturalistic setting during
a total of 191 days. With respect to other available lifelog
datasets, it contains many more categories, annotated images,
users and types of activities, hence allowing to perform gen-
eralization tests on unseen users.

We presented a strong classification baseline on our dataset
that considers a more realistic comparison by not only testing
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TABLE 8. Activity classification recall by adding the Castro’s [15], [59] and NTCIR-12 [13], [14] datasets without domain adaptation. Best result per
measure is shown in bold. Note that not all categories appeared on the unseen users test set.

on unseen days but also on unseen users. This baseline
was done using existing state-of-the-art algorithms on it,
which also served as a ranking of their generalization capa-
bilities. The best algorithm achieved an 80.12% of accu-
racy and was the CNN+LSTM trained in a sliding window
fashion.

Moreover, we presented experiments of generalization in
different domains. We first showed that the evaluated source
and target datasets have a large discrepancy that diminished
the classification performance by 13.71%on average. Finally,
we used the CORAL loss function as a DA technique and
showed that a good performance is not always achieved on
different target datasets. Specifically, we obtained a median
accuracy value of 72.47% and 45.14% on Castro’s and the
NTCIR-12 datasets.We also showed that the performance can
improve by incorporating a small percentage of labeled target
data to the training. In the case of the NTCIR-12 dataset,
the performance improved to 78.46% by randomly adding
10% of target data.

We consider that further research lines using this dataset
are twofold. First, taking into account the ambiguity of
the context, the activity recognition problem from lifel-
ogs could be posed more naturally as a multi-classification
problem. For instance, a person might be reading a book
while being on train. Second, we only considered full day
sequences on the temporal classification algorithms, but split-
ting them into sub-sequences with higher temporal coherence
could improve the classification accuracy. Moreover, we con-
sider that activity recognition from wearable photo-cameras,
in conjunction with information coming from more sensors,
is mature enough to be tested in real-world applications.
These applications could come from different domains, for
instance, the assessment of several activities of daily living
for the elderly or for monitoring the wellbeing of young
people.

Although the people in our dataset have different lifestyles
and hobbies, their activities reflect the life of computer sci-
ence graduate students. We consider that a dataset captured
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by users having different jobs would help to cope better
with real-world scenarios. For instance, a constructionworker
would have a routine with different activities and settings.

APPENDIXES
APPENDIX A
CLASSIFICATION RECALL FROM DATASET BASELINE
In Tables 6 and 7 are shown the classification recall
scores for ADLEgoDataset baseline from Section IV. These
Tables reflect the results obtained measuring the macro met-
rics, i.e. the best performance for the seen users test split is
obtained the CNN+BLSTM method, whereas for the unseen
users test split is obtained the CNN+LSTM method. Addi-
tionally, both Tables show that the best training strategy is
the sliding window.

APPENDIX B
CLASSIFICATION RECALL FROM GENERALIZATION
WITHOUT DOMAIN ADAPTATION EXPERIMENT
In Table 8 is shown the classification recall scores for
generalization experiments without domain adaptation from
SectionV.Although the performancewas diminished in over-
all metrics, some categories were benefited. The improved
categories for the NTCIR-12 dataset were cooking, drinking,
informal meeting, and shopping. In the case of the Castro’s
dataset, only two categories improved their accuracy: dish-
washing and going to a bar. The latter category was not
present in any of the target images. This table also shows that
overall performance of adding the Castro’s dataset was better
than the NTCIR-12 dataset.
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