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ABSTRACT The paper proposes an innovative method of locating objects for the Internet of Things (IoT).
The proposed method allows the position of a fixed measuring sensor (MS) to be estimated using one mobile
base station with a known position moving around the MS. The mathematical analysis of the method, and
three algorithms — Newton’s (NA), gradient descent (GD) and genetic (GA) — for solving the system of
non-linear positional equations are presented. Next, the analysis of the position dilution of precision (PDoP)
parameter for the proposed method, and the Cramér-Rao lower bound (CRLB), limiting the accuracy of the
method, are presented. Finally, the results of complex simulation studies on the efficiency of the proposed
method for various selected system parameters of the sensor network and convergence of the algorithms
used to solve the system of non-linear equations are described.

INDEX TERMS Asynchronous transfer mode, radio navigation, wireless sensor networks, IoT.

I. INTRODUCTION
The Internet of Things (IoT) is a concept according to which
uniquely identifiable things or objects can directly or indi-
rectly collect, process and/or exchange data via telecommu-
nication (radio communication) networks. These types of
items include, but are not limited to, household, garden and
agricultural appliances, lighting and heating units, as well as
consumable appliances worn by people or animals [12]. The
IoT offers great potential to change the way in which sys-
tems function, often without the need for human interaction
or involvement. The ability to efficiently collect data starts
with the use of sensors. Sensors are devices that respond to
inputs from the physical world and then take those inputs
and display them, transmit them for additional processing,
and/or use them in conjunction to make decisions and/or
adjust operating conditions. Common IoT sensors that may
be employed include: temperature sensors, pressure sensors,
motion sensors, level sensors, image sensors, proximity sen-
sors, water quality sensors, chemical sensors, gas sensors,
smoke sensors, infrared sensors, acceleration sensors, gyro-
scopic sensors, humidity sensors, and optical sensors [27].

An indispensable element of a properly functioning IoT
are all kinds of telecommunication networks through which
information is exchanged between the things or objects
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FIGURE 1. An example of how to integrate the local sensor network with
a cellular network.

defined above. A problem in the functioning of the IoT
appears when the objects assigned to the IoT are outside of
the operating area of telecommunication networks. One of
the methods of transmitting information for the IoT, espe-
cially when collected outside of the area of cellular networks,
is shown in Fig. 1 [16].

Measuring sensors (MSs) within the local sensor net-
work (LSN) continuously collect information that is peri-
odically transmitted in the direction of a mobile reference
node, called a mobile base station (MBS), which is regularly
moving around the area of network operation and may be
mounted, e.g. on a drone. Apart from a navigation module
(e.g. a GPS signal receiver), the MBS is equipped with a
module for data collection and further transmission. For the
MBS, the direction ofmovement between theMSs in the LSN
area and the base station (BS), which belongs to the cellular
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network (CN), is determined. After collecting information
from individualMSswithin the LSN, theMBS navigates with
the help of the navigation module to the area of the cellular
network, and then, after connecting to the BS, transmits the
collected information to the recipient of information (RI). The
use of the proposed concept significant increases the range of
telecommunication networks for the IoT.

Many localization algorithms and systems have been
developed for both indoor and outdoor environments. Loca-
tion service (LCS) is a primary service of the IoT, while
localization accuracy is a key issue. To achieve higher
localization accuracy, extra hardware equipment is uti-
lized [7]. Many researchers have significant interest in the
IoT, and have implemented many creative advancements
for LCS. As we know, there are several techniques avail-
able for location service such as angle of arrival (AoA),
received signal strength (RSS), time of arrival (ToA),
time difference of arrival (TDoA), and a combination of
these [3], [13], [17], [18], [22], [23].

All of the described methods need appropriate net-
work infrastructure in the form of base (reference) sta-
tions, synchronization mechanisms in the sensor network,
and many other necessary elements for proper operation.
The localization method proposed in this paper minimizes
the network infrastructure and belongs to asynchronous
methods [19], [20], [24], [25].

There are many potential applications for the proposed
method, such as:

• the temporary location of farm animals in an area of
difficult-to-reach pastures,

• the temporary location of animals living in the wild in
areas outside of the range of telecommunications infras-
tructure,

• periodically checking the position of soldiers in an
unknown area,

• periodically checking the position of free-floating mea-
suring buoys on water bodies, and many more.

This paper is organized as follows: Section II describes the
proposed method. In Section III, a mathematical analysis of
the method is presented, and three algorithms — Newton’s
(NA), gradient descent (GD) and genetic (GA) — dedi-
cated to solving the system of non-linear positional equa-
tions for the method, are described. The next two sections
present the position dilution of precision, and the Cramér-Rao
lower bound (CRLB) for the proposed method, respectively.
Section VI is divided into four subsections, which present the
simulation model used for the study, an analysis of the posi-
tion dilution of precision (PDoP) parameter for the proposed
variants of the sensor network configuration, as well as the
obtained CRLB values, and the efficiency of the proposed
locating method. Finally, the last section concludes the paper.

II. DESCRIPTION OF THE PROPOSED METHOD
The architecture of radiolocation sensor networks is usually
based on a set of fixed base stations (BS) and a measuring

sensor (MS) equipped with appropriate technical means,
whose location is sought [6], [14]. In sensor networks,
the position of a measuring sensor is often estimated on the
basis of the radio signals emitted by the MS. In this case,
the sensor network is responsible for the implementation of
appropriate measurements of radio signal parameters and for
MS position estimation. In the problem under consideration,
it is assumed that the MS transmits its measurement data in
one direction. These signals are then received by a mobile
base station (MBS), e.g. a drone, which on the basis of
the measured time dependencies and knowledge of its own
position, estimates the position of theMS. Then, the proposed
method uses the knowledge of virtual differences in propaga-
tion times of radio signals between the MBS with a known
position and the MS, whose position is wanted.

The proposed new method is passive and based on the
reception of signals transmitted by a localized MS, where the
repetition time of these signals may or may not be known.
In general, the structure of a radio sensor network in which
this method can be implemented is shown in Fig. 2.

FIGURE 2. An example of a sensor network structure in which the
proposed method can be implemented.

The measuring sensor transmits location signals with a
known or unknown (but constant) repetition rate. In the case
under consideration, the mobile base station works asyn-
chronously to the MS— it takes measurements in the rhythm
of its own internal clock. The MBS, moving around the MS
(from Location No. 1 to Location No. 4), measures virtual
differences in the propagation time of the radio signals trans-
mitted from MS 1ti, where i = 1, 2 and 3 (for the 2D case).
The radio signals from the MS are measured by the MBS
at known locations (Xi, Yi) at the i-th point (for example,
from the GPS system— the drone’s position indicated by the
GPS receiver is usually given in three dimensions; to simplify
further analysis, the drone’s position has been projected onto
a plane, hence only two coordinates), (x, y) are theMS coordi-
nates, and ti represent time delays of radio signal propagation
between the MS and the MBS. The MBS does not need to
stop at a known location in order to carry out the relevant
measurements. This is due to the assumption that the speed of
the propagation of the electromagnetic wave is much greater
than the speed of the MBS. The resulting measurement errors
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are therefore negligible. It is more important to determine the
exact position of the MBS during the measurements, which
is examined later in the paper. Thanks to the numbering
of the location signals transmitted by the MS, the MBS is
able to estimate the position of the measuring sensor. The
time sequences illustrating the principle of operation of the
proposed method are shown in Fig. 3.

FIGURE 3. Time flows illustrating the principle of operation of the
proposed method.

At the top of this diagram, two consecutive points in time
are marked in which the MS sends location signals with the
repetition period trp. The period trp must be constant even if
not known by theMBS.During this time, theMBS changes its
position and receives location signals at two known locations
(Xi, Yi) and (Xi+1, Yi+1). The MBS position change is key in
the MS position estimation process. The MBS measurements
in different positions enables the necessary parameters of the
received signals to be determined in the process of locating
the MS. The process of position estimation is carried out in
the MBS. Based on the knowledge of the mobile base station
coordinates, radio wave propagation velocity, and virtual dif-
ferences in radio signal propagation times1ti (for i= 1, 2, 3),
it is possible to estimate the coordinates of the MS.

In the proposed method, it is important to accurately mea-
sure the arrival time of the radio signal from the MS. Thus,
the signal processing time in the MBS is not important,
as long as it does not affect the results obtained (e.g. the
same processing time for all received signals). This method
requires a minimum of four radio signals to be collected from
the MS during the movement of the MBS around the MS.
On receiving the fourth signal, the MBS can estimate the
MS’s location. Thus, it can be concluded that the described
method is a real-time method.

The next section will present a detailed mathematical anal-
ysis of the proposed radiolocation method.

III. CALCULATING THE POSITION OF THE OBJECT
Let’s assume that we have N positioning signals received
by the MBS at points with known coordinates. For a
two-dimensional case, the individual MBS coordinates can
be written as (Xi, Yi). The MS transmits location signals with
the trp repetition period, which is constant and unknown.
The MBS measures virtual distance differences1di between

observation points in time (i = 1, . . . , N -1)

1di = v · (ti+1 − ti)+ v · trp = di+1 − di + drp

=

√
(Xi+1 − x)2 + (Yi+1 − y)2

−

√
(Xi − x)2 + (Yi − y)2 + drp (1)

where v represents the propagation speed of radio signals in
the propagation medium (it can be approximately assumed
that v is equal to the speed of light in a vacuum, c ≈ 3 · 108

m/s), ti+1 and ti describe the propagation times of the local-
ization signals from the MS to the i-th position of the MBS,
and (x, y) are the MS coordinates. At this point, it is worth
noting that 1di are hypothetical distance differences, which
result from real distance differences between the localized
MS and theMBS in various known locations, and the distance
travelled by the radio waves in the time interval determined
by the period of repeating localization signals (drp = v · trp).
The above relationship can be used to estimate the position

of the measuring sensor (x, y) assuming that the following are
known:

• coordinates of the mobile base station,
• virtual differences in distance1di between theMBS and
the MS.

In the literature on the subject, it is difficult to find direct
algorithms that lead to the solution of systems of non-linear
equations described by relationship (1). For the purposes of
this study, three well-known algorithms have been adapted to
solve the problem raised in this paper:

• Newton’s algorithm (NA) – a generalized approach that
Foy used in his algorithm [8],

• gradient descent algorithm (GD) [7],
• genetic algorithm (GA) [10].

Assuming the simplest two-dimensional case and N = 4, the
problem of MS position estimation in the presented method
boils down to solving a system of non-linear equations of the
forms 

1d1 =
√
(X2 − x)2 + (Y2 − y)2

−

√
(X1 − x)2 + (Y1 − y)2 + drp

1d2 =
√
(X3 − x)2 + (Y3 − y)2

−

√
(X2 − x)2 + (Y2 − y)2 + drp

1d3 =
√
(X4 − x)2 + (Y4 − y)2

−

√
(X3 − x)2 + (Y3 − y)2 + drp

(2)

By determining the drp from the above first equation and
inserting it into the two others, we obtain

f(x, y) =

{
1d2 − d3 + 2 · d2 − d1 −1d1
1d3 − d4 + d3 + d2 − d1 −1d1

(3)

Therefore, as long as drp (trp) is constant, knowledge of the
exact drp value is not necessary for MS position estimation.
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Based on [5], the linearized version of the above system of
equations can be written as

J(x, y) · h = −f(x, y) (4)

where J(x, y) is the Jacobian matrix described by (5), and
vector h = [hx , hy]T represents the correction of the MS
coordinates in subsequent iterations,

J(x, y) =


X1 − x
d1
+

2 · (x − X2)
d2

+
X3 − x
d3

X1 − x
d1
+
x − X2
d2
+
x − X3
d3
+
X4 − x
d4

Y1 − y
d1
+

2 · (y− Y2)
d2

+
Y3 − y
d3

Y1 − y
d1
+
y− Y2
d2
+
y− Y3
d3
+
Y4 − y
d4

 (5)

All algorithms used to estimate the position of the measur-
ing sensor have been implemented in MATLAB. Appendix A
presents pseudocodes of the first two algorithms, i.e. Newton
and gradient descent.

The last algorithm that is applied to estimate the position of
a MS in the proposed system is a genetic algorithm, in which
evolutionary-probabilistic rules are used to select and create
new solutions. This algorithm uses natural phenomena occur-
ring at the cellular level, which are related to chromosomes,
genes and evolutionary transitions of genetic material from
generation to generation. In addition, GA enables the search
for a solution at many points simultaneously, and in principle
is free from the limitations imposed on the space of search
(e.g. continuity and existence of derivatives of the target func-
tion). A disadvantage of GA is that the solution sought does
not always seek to achieve a real global minimum. On the
other hand, this algorithm is characterized by versatility in
solving various problems, and simplicity of implementation.
The schematic mode of operation of a genetic algorithm
for solving non-linear equations is presented in Fig. 4. This
scheme was used to develop the function in the MATLAB
environment. At the beginning of the algorithm, it is nec-
essary to define the conditions of its termination, i.e. the
threshold value of the target function — in our case, it is
a norm of vector f described by (3) — and the maximum
number of iterations in case of failure to reach the given
accuracy threshold. Next, a given number of potential solu-
tions (w) should be randomly generated from a predefined
area (initial population of chromosomes). For each solution
(chromosome) the values of the target function are calculated.
Next, the chromosomes are sorted according to the value of
the target function (it is assumed that the lower the value
of the target function, the closer the solution represented by
the chromosome is to the real one). Half of the group of the
least matched chromosomes is rejected, while the group of
chromosomes (1/2 · w) for which the values of the target
function are closest to the assumed precision threshold is used
to generate a new population of chromosomes (new potential
solutions) in the process of so-called mutation and crossing

FIGURE 4. Schematic diagram of the genetic algorithm for solving
non-linear equations.

of solutions — analogous to biological evolution processes
(genetic operators).

The next step of the algorithm is a new process of sort-
ing all potential solutions. The algorithm described above
is repeated until a preset precision threshold is reached (the
solution represented by the chromosome with the lowest
value of the target function) or a preset number of iterations,
when the search process does not reach the assumed accuracy.

IV. POSITION DILUTION OF PRECISION FOR THE
PROPOSED METHOD
In classical radiolocation systems, based on measurements
of distance or distance difference between a localized object
and reference stations, the accuracy of position estimation
depends to a large extent on the geometric distribution of
reference stations in relation to the localized object. It is
characterized by the position dilution of precision parameter,
which is a measure of the influence of measurement errors
on the position estimation [26]. The higher the value of this
parameter, the lower the accuracy of the position estima-
tion in the radiolocation system that can be obtained despite
maintaining a constant level of accuracy of measurements
of the radio signal parameters. The PDoP coefficient can be
determined on the basis of the Jacobian matrix, built of par-
tial derivatives (first order) of linearized positional equations
adjusted to the given method

J ·1x = 1d (6)

where J represents the Jacobian matrix, while 1x is a vector
containing, among others, the coordinates of the localized
object, and 1d is a vector consisting of the measured dis-
tances or distance differences between reference stations and
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the localized object, depending on the method. With such
a defined problem, the PDoP coefficient can be determined
from the relation [1, 21]

PD =
√
tr[(JT J)−1] (7)

where tr[·] is the trace of the matrix. The lower the value
of the PDoP, the more advantageous the positioning of the
reference stations because it translates into a smaller position
error. A PDoP value below unity indicates a redundant config-
uration of reference stations. A value of the PDoP coefficient
above 20 translates into a significant location error due to the
mismatched distance between the reference stations and the
object.

V. CRAMÉR-RAO LOWER BOUND
An extremely important parameter describing the potential
effectiveness of the radiolocation system is the Cramér-Rao
lower bound, which defines the minimum mean square error
of an unbiased estimator, which is a solution of a system of
equations describing the applied localization method [15].
For an unbiased case, and assuming that θ is an unknown
deterministic vector, which is estimated using the ρ obser-
vation vector from the probability distribution of the density
p( ρ; θ ), the variance of any unbiased θ̂ – estimator of vector
θ – is limited from the bottom by the inverse of the so-called
Fisher information matrix [11]

var
(
θ̂
)
≥

1
I (θ)

(8)

where

I (θ) = −E
[
∂2 ln p(ρ; θ )

∂θ2

]
(9)

and E[•] is the expected value. In radiolocation systems for
Gaussian error distribution of measurements, p (ρ; θ ) takes
the following form

p(ρ; θ) = −
1

√
2πσ 2

exp
[
−

1
2σ 2 (ρ − θ )2

]
(10)

The starting point for deriving the Cramér-Rao lower bound
for the proposed method is the navigation equation (1).
Taking into account (10) and the considerations carried out
in [2, 4], the probability density function p(ρ; θ ) in the
two-dimensional space can be described by the equation

p(ρ; θ ) =
1

(2πσ 2)
N−1
2

exp
{
−

1
2σ 2

N−1∑
i=1

[1di

−

(√
(Xi+1 − x)2 + (Yi+1 − y)2

−

√
(Xi − x)2 + (Yi − y)2 + drp

)]2}
(11)

where ρ is a vector whose elements represent virtual distance
differences 1di, θ is a vector of estimated coordinates (x, y),
and σ is the standard deviation of virtual measurements of

distance differences. The Fisher information matrix takes the
form

I (θ) =

−E
[
∂2 ln p(ρ; θ )

∂x2

]
−E

[
∂2 ln p(ρ; θ )

∂x∂y

]
−E

[
∂2 ln p(ρ; θ )

∂y∂x

]
−E

[
∂2 ln p(ρ; θ )

∂y2

]
 (12)

where (see Appendix B)

∂2 ln p(ρ; θ)
∂x2

= −
1
σ 2

N−1∑
i=1

[
(Xi+1 − x)√

(Xi+1 − x)2 + (Yi+1 − y)2

−
(Xi − x)√

(Xi − x)2 + (Yi − y)2

]2
(13)

∂2 ln p(ρ; θ)
∂x∂y

= −
1
σ 2

N−1∑
i=1

[
(Xi+1 − x)√

(Xi+1 − x)2 + (Yi+1 − y)2

−
(Xi − x)√

(Xi − x)2 + (Yi − y)2

]

·

[
(Yi+1 − y)√

(Xi+1 − x)2 + (Yi+1 − y)2

−
(Yi − y)√

(Xi − x)2 + (Yi − y)2

]
(14)

∂2 ln p(ρ; θ)
∂y∂x

= −
1
σ 2

N−1∑
i=1

[
(Yi+1 − y)√

(Xi+1 − x)2 + (Yi+1 − y)2

−
(Yi − y)√

(Xi − x)2 + (Yi − y)2

]

·

[
(Xi+1 − x)√

(Xi+1 − x)2 + (Yi+1 − y)2

−
(Xi − x)√

(Xi − x)2 + (Yi − y)2

]
(15)

∂2 ln p(ρ; θ)
∂y2

= −
1
σ 2

N−1∑
i=1

[
(Yi+1 − y)√

(Xi+1 − x)2 + (Yi+1 − y)2

−
(Yi − y)√

(Xi − x)2 + (Yi − y)2

]2
(16)

The above relationships were used to carry out numerical
calculations and simulation tests. The results are presented
in the next section.

VI. SIMULATION RESULTS
The results of numerical calculations and simulation studies
for the proposed method are presented on the basis of the
adopted sensor network model. This research is focused on
the following areas:

• Analysis of the PDoP coefficient,
• CRLB for the proposed method,
• Effectiveness of the method.
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FIGURE 5. Applied topologies of sensor networks for simulation studies.

A. SIMULATION MODEL
The quality of position estimation in the developed radiolo-
cation method was evaluated on the basis of the results of
simulation tests. During the simulation analyses, three vari-
ants (a, b and c) were considered, which faithfully represent
the real working conditions of the system:
a) MBS moved around a full circle with an R-radius, inside

of which the measuring sensor was randomly placed
(var. a),

b) MBS moved around a 1/2 circle, while the location of MS
was the same as before (var. b),

c) MBS moved around a 1/4 circle, and MS was positioned
similar to the previous ones (var. c),

as shown in Fig. 5.
The simulation tool was developed in the universal math-

ematical computational environment, MATLAB. During the
simulation tests, the error of measurement of virtual dis-
tance difference with normal distribution (δd ) was taken into
account. To model this error, the randn function was used in
the following way

δd = σ · randn (17)

where σ is the standard deviation of the virtual distance
difference measurements. Before testing, the degree of corre-
lation between the sequence of random numbers generated by
the randn function and the Gaussian distribution describing
the given random variable (a key parameter in modelling
phenomena occurring in radiolocation systems) was checked
in theMATLAB environment. For different sample sizes, cor-
relation coefficients of probability distribution for generated
sequences of random numbers with the Gaussian distribution
were determined. The obtained results are presented in Fig. 6.

This figure shows, among other things, that in order to
estimate a single statistic, the course of the simulation should
be repeated many times. Therefore, in the conducted simula-
tion studies, it was assumed that each case will be repeated
10,000 times (for this value, the correlation coefficient from

FIGURE 6. Correlation coefficient as a function of the number of random
values generated.

FIGURE 7. The CDFs of the PDoP for the proposed method.

Fig. 6 is close to unity). Increasing the number of repetitions
above this value does not practically improve the reliability
of the obtained results, but only increases the duration of the
simulation studies.

B. ANALYSIS OF PDOP COEFFICIENT
First, the analysis of the PDoP coefficient for the three topolo-
gies of the sensor network discussed above was carried out.
Using (7), numerical calculations were performed in order to
determine the cumulative distribution function (CDF) of the
PDoP coefficient for the proposed radiolocation method [28].
The obtained characteristics (Fig. 7) show that the value of
this coefficient in 100 % of the cases does not exceed the
value of 10 for the configuration of a sensor network in which
a MBS moves around the whole circle. Therefore, it can be
expected that the resultant error of the MS’s position estima-
tion will be small, and it is the most advantageous variant
of the network configuration. On the other hand, the least
favorable configuration of the sensor network occurs in the
third variant, in which the MBS moves around only 1/4 of
the circle. The value of the PDoP coefficient not exceeding
10 occurs in only 25 % of the analyzed cases. Intermediate
results were obtained for the configuration of the sensor
network in which the MBS moved in 1/2 circle — a value
of not higher than 10 for the PDoP coefficient was obtained
for 75 % of the analyzed cases.
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FIGURE 8. RMSE of MS position estimation as a function of the variance
of virtual distance difference measurement errors σ2 for Newton’s
algorithm (NA), gradient descent algorithm (GD), genetic algorithm (GA),
and CRLB for three variants of sensor network configuration.

To sum up, it can be concluded that the value of the PDoP
coefficient for the considered method in the variants of the
configuration of the sensor network that were accepted for
research change from less than one to several dozen, while
there are such areas for which the value of this coefficient
rapidly increases, striving for several hundred and more. This
means that in these areas, problems of reversal of the matrix
described in (7) and relatively large values of errors of MS
position estimation can be expected.

C. CRLB FOR THE PROPOSED METHOD
Using (11) through (16), numerical calculations and sim-
ulation studies were carried out in order to determine the
average root mean squared error in the function of variance
of errors in virtual distance difference measurements between
the measuring sensor and the mobile base station. The RMSE
error of the localized object was determined on the basis of
Cramér-Rao lower bound analysis, as well as calculated using
Newton’s algorithm, the gradient descent algorithm, and a
genetic algorithm. These errors and the variance of virtual
distance measurement errors were related to dimension R
in the adopted model of simulation environment, which is
described in Section VIA. The results presented in Fig. 8 were
obtained for 10,000 random positions of the object in the
examined area. In the NA and GA algorithms, the same max-
imum number of iterations equal to 1,000, and the number of
potential solutions in the genetic algorithm (w = 1 024) —
the size of the matrix of solutions — were also adopted. For
the gradient descent algorithm, the number of iterations was
increased to 105. Moreover, the calculations took into account
the three variants of the sensor network configuration. The
individual axes of the graphs in Fig. 8 are purposefully scaled
to the size of the research area — to the R-radius of the
research area. This approach enables easy scaling of the
obtained results to the size of various areas where the accu-
racy of the virtual distance differencemeasurements is a given
percentage of its radius. For example, for a circle-shaped

area with a radius of R = 1000 m, the variance (0.01R)2

represents 100 m2, i.e. the standard deviation of errors in the
measurement of virtual distance differences represents 1 %
of the radius.

The results obtained in Fig. 8 are as expected. The CRLB,
depending on the assumed variance of the errors of the virtual
distance difference measurements, oscillates between 0.001R
and 0.05R. This means that for the example considered above,
the accuracy of the radiolocation method is limited to a range
from 1 m to 50 m in a circular area with a radius of 1 km
(Fig. 8). In light of this, the accuracy obtained with all algo-
rithms under consideration is several times worse than the
CRLB depending on the configuration variants of the sensor
network.

As we know, the NA and GD iterative algorithms are
sensitive to the initial solution vector, which should be close
to the right solution. In the simulation studies, the initial value
of this vector was always set to the center of the circular
area of operation. However, it is clear that the best results are
obtained for variant a) of the sensor network configuration,
for which the MBS moves evenly throughout the circle of the
analyzed area. On the other hand, the implemented genetic
algorithm does not guarantee the convergence to the global
extremum [9]. Qualitatively obtained GA results are located
between the results obtained with the NA and GD.

D. EFFECTIVENESS OF THE METHOD
Next, a comparative analysis of MS position estimation accu-
racy was carried out in the proposed in Fig. 5 variants of
sensor network configuration using three algorithms: New-
ton, gradient descent, and genetic for selected values of errors
in measurements of virtual distance differences between the
MBS and MS.

At this point, it should be stressed that the choice of the
above three algorithms to solve the system of non-linear
equations was only dictated by the desire to show that such
a solution exists and can be found using iterative algorithms
even if the closed form solution is not known. The aim of
the paper was therefore to present a new locating method, not
to discuss or optimize the algorithms used in the proposed
solution.

On the basis of the results obtained from the simulation
studies, the CDF of the absolute error δ, described in (18),
for the three considered variants of the topology of a sensor
network were plotted.

δ =

√(
x̂ − x

)2
+
(
ŷ− y

)2 (18)

where (x̂, ŷ) are MS coordinate estimates. For each topology,
the accuracy of MS position estimation was analyzed using
three algorithms and two values of standard deviations σ of
the virtual distance differences measurement errors. For the
purpose of generalization of conclusions, the results obtained
were expressed in the R-radius length of the studied area. The
results of the simulation tests are presented in Fig. 9 through
Fig. 12, while two basic cases are considered. The first case
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FIGURE 9. The CDFs of the absolute position error δ for the proposed
method for three sensor network configuration variants using the
Newton (NA), gradient descent (GD), and genetic (GA) algorithms. It was
also assumed that the MBS coordinates were flawless and the error in
measuring virtual distance differences were affected by σ = 0.001R.

FIGURE 10. The CDFs of the absolute position error δ for the proposed
method for three sensor network configuration variants using the
Newton (NA), gradient descent (GD), and genetic (GA) algorithms. It was
also assumed that MBS coordinates were flawless and the error in
measuring virtual distance differences were affected by σ = 0.01R.

concerned the assumption that in the MS position estimation
process, themobile base stationwas characterized by flawless
coordinates, while in the second one, the coordinates of the
MBS were burdened with σ = 0.01R error. Two values of
virtual distance difference errors between the MBS and MS
equal to 0.001R (Fig. 9 and Fig. 11) and 0.01R (Fig. 10 and
Fig. 12) were also considered. As expected, the best results
were achieved for variant a, and the worst for variant c.
Analyzing the results presented in Fig. 9, it can be concluded
that the CDF for individual variants of sensor network con-
figuration are grouped in two significantly different areas.

The first area, in which a significant increase in the value of
the CDF can be observed along with an increase in the abso-
lute error, is reserved for relatively small values of standard
deviations σ for measurement of virtual distance differences
between the MBS and MS and for variant a and variant b of
the network configuration. The shape of the curves in this area

FIGURE 11. The CDFs of the absolute position error δ for the proposed
method for three sensor network configuration variants using the
Newton (NA), gradient descent (GD), and genetic (GA) algorithms. It was
also assumed that the error in measuring virtual distance differences and
the coordinates of the MBS were affected by σ = 0.001R and 0.01R,
respectively.

FIGURE 12. The CDFs of the absolute position error δ for the proposed
method for three sensor network configuration variants using the
Newton (NA), gradient descent (GD), and genetic (GA) algorithms. It was
also assumed that the error in measuring virtual distance differences and
the coordinates of the MBS were affected by σ = 0.01R.

are typical for Gaussian error distribution and zero average
values. In the second area for variant c, the increase in the
value of the CDF is mild as the absolute error increases. From
the analysis of the CDF graphs, it can also be concluded
that, in general, the gradient descent algorithm provides more
accurate estimation of the MS position compared to the other
algorithms: Newton and genetic.

In the other three diagrams (Fig. 10 through Fig. 12), the
CDF curves as a function of absolute error are arranged in
three distinct groups. Each of these groups is assigned to
a proposed variant of the MBS’s trajectory. In a favorable
sensor network configuration (variant a), the best results were
achieved using the gradient descent algorithm, regardless of
the assumed error of measurement of virtual distance dif-
ferences between the MBS and MS as well as the assumed
error of determining theMBS’s coordinates. For the other two
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FIGURE 13. Norm of navigation equation as a function of the number of
iterations for three sensor network configuration variants using the
Newton (NA), gradient descent (GD) and genetic (GA) algorithms. It was
also assumed that the error in measuring virtual distance differences and
the coordinates of the MBS were affected by σ = 0.001R and 0.01R,
respectively.

variants of the network configuration, b and c, satisfactory
results were obtained for the genetic and Newton algorithms.

For large values of measurement errors of virtual distance
differences (10 % of the radius of the area where the sensor
network is located) and for the proposed network configura-
tion in variant c, the results obtained are below expectations.

At the end of this section, it is also worth considering the
convergence of the algorithms used to solve the system of
non-linear equations. In Fig. 13, we plot the changes in the
norm of the criterion function as a function of the number of
iterations. The form of the criterion function depends on the
algorithm under consideration (see Appendix A). For the NA,
the norm of a criterion function is described as ||(JT ·J)−1 ·JT ·
f||, for the GD algorithm, the norm is ||0.5·fT ·f||, while for the
GA, the norm is ||f||, with the vector f being described by (3)
and matrix J described by (5). The algorithm convergence
studies were performed for a case where it was assumed that
the error in measuring virtual distance differences and the
coordinates of the MBS were modeled by σ = 0.001R and
0.01R, respectively.

As was to be expected, the fastest converging algorithms
among those considered were NA and GA. The value of the
criterion function equal to or less than one is obtained after
several iterations, but in the case of the NA, it results from
the properties of this algorithm, while for the GA, it results
from the size of the table of potential solutions, which in
the considered case was w = 1024. The least preferred in
this respect was the GD algorithm. At least several hundred
iterations were needed to obtain the value of the criterion
function at the unity level and below. However, in the era
of dynamic performance developments of computational sys-
tems, the solution of the system of non-linear equations with
any of the proposed algorithms leads to the realization of this
process practically in real-time.

It is also worth noting that the convergence of the GA is
not guaranteed, hence its final results may be characterized
by higher final errors despite more iterations than the other
algorithms. In addition, it is an algorithm based on random
searches of different parts of the solution space. This provides
the opportunity to find a global solution, but it does not
guarantee it. The other two algorithms (NA and GD) use
information about the variability of the target function around
the current search point, hence should find a minimum of
target functions faster and give a more accurate solution, but
in a case where the target function has not only a global
minimum but also some local minima, the convergence of NA
and GD to the global minimum is again not guaranteed.

The analysis of the results obtained for the proposed locat-
ing method leads to the following conclusions:

• regardless of the measurement error values of virtual
distance differences, the best results were obtained for
the gradient descent algorithm,

• for the variant a sensor network configuration, the error
values are on average 15 % higher for the NA and GA
algorithms compared to the gradient descent algorithm,

• for variants b and c of the sensor network configura-
tion, the MS position estimation errors are on average
between a few and a dozen percent higher for the NA
and GA algorithms compared to the GD algorithm,

• in practical applications of the proposed locating
method, it is recommended that variant a or b of the
sensor network configuration be used.

• the use of any algorithm (NA, GD or GA) to solve a sys-
tem of non-linear equations allows the implementation
of the MS position estimation practically in real-time.

VII. CONCLUSION
The paper presents an innovative asynchronous radiolocation
method for application in the IoT. A novelty in this method
is to perform measurements of virtual distance differences
between a mobile base station and a stationary measuring
sensor. A mathematical analysis of the proposed method was
carried out taking into account the implementation details of
the Newton, gradient descent, and genetic algorithms to solve
the system of positional equations.

Next, attention was paid to the unfavorable value of the
PDoP coefficient, assuming that it is determined in an analo-
gous way to the classical solutions of radiolocation systems,
i.e. on the basis of Jacobian matrix knowledge. For obvious
reasons, in the studied area, there are places particularly
privileged in terms of this coefficient.

In the next section of this paper, the Cramér-Rao lower
bound, i.e. the limit of accuracy of this method, which is a
reference point for the evaluation of the developed algorithms
of the estimation of the object’s position, with the assumption
of a Gaussian distribution of measurement errors, was pre-
sented. The set of curves representing the root mean square
error of the estimation of the object’s position as a function
of absolute error δ were plotted. The results obtained with the
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Algorithm 1 Pseudocode of Newton’s Algorithm
k ← 1 F Iteration counter
x ← 0 F Inital coordinates of MS
y← 0
while k < niter and norm > thold do

d1←
√
(X1 − x)2 + (Y1 − y)2 F Estimated distances

between MS and MBS
d2←

√
(X2 − x)2 + (Y2 − y)2

d3←
√
(X3 − x)2 + (Y3 − y)2

d4←
√
(X4 − x)2 + (Y4 − y)2

J1,1←
X1−x
d1
+

2·(x−X2)
d2
+

X3−x
d3

F Jacobian

J2,1←
X1−x
d1
+

x−X2
d2
+

x−X3
d3
+

X4−x
d4

J1,2 +
Y1−y
d1
+

2·(y−Y2)
d2
+

Y3−y
d3

J2,2 +
Y1−y
d1
+

y−Y2
d2
+

y−y3
d3
+

Y4−y
d4

f1,1← 1d2−1d1− d3+ 2 · d2− d1 F Vector f
f2,1← 1d3 −1d1 − d4 + d3 + d2 − d1
h←−

(
JT · J

)−1
· JT · f F Correction of MS

coordinates
x ← x + h1
y← y+ h2
norm← ‖h‖ F h vector norm
k ← k + 1 F Iteration counter

end while

use of gradient descent algorithm are the closest to the CRLB
boundary.

The results of complex simulation studies of the proposed
asynchronous method for four cases and for various system
parameters were presented. In total, four sets of characteris-
tics of the CDF as a function of absolute error were plotted.
The estimation of theMS positionwas performedwith the use
of the three abovementioned algorithms: Newton, gradient
descent, and genetic. The analysis shows that the most accu-
rate results for all variants of sensor network configuration
can be obtained using the gradient descent algorithm. Slightly
worse results were obtained for the genetic algorithm. The
worst result was obtained for Newton’s algorithm, especially
for relatively large assumed measurement errors.

The proposed method can be widely used in IoT appli-
cations, especially where local sensor networks (e.g. related
to measurements or surveillance of a designated area) are
outside of the cellular network coverage area. In local sensor
networks, assuming low-cost operation, where the equipment
of the measurement sensors has been reduced to a mini-
mum, there is a need for their location. According to the
analyses and simulation tests, the accuracy of the method in
different configurations of a sensor network can satisfy many
applications. However, a certain limitation of the method
may be the time between measurements. The accuracy of
the measurements depends on the stability of the frequency
standard placed on the drone. For example, if the stability
of the frequency standard is 10−9, taking measurements at

Algorithm 2 Pseudocode of the Gradient Descent Algorithm
Require: λ > 0 F Initial correction rate coefficient
k ← 1 F Iteration counter
x ← 0 F Inital coordinates of MS
y← 0
while k < niter and norm > thold do

d1←
√
(X1 − x)2 + (Y1 − y)2 F Etimated distances

between MS and MBS
d2←

√
(X2 − x)2 + (Y2 − y)2

d3←
√
(X3 − x)2 + (Y3 − y)2

d4←
√
(X4 − x)2 + (Y4 − y)2

J1,1←
X1−x
d1
+

2·(x−X2)
d2
+

X3−x
d3

F Jacobian

J2,1←
X1−x
d1
+

x−X2
d2
+

x−X3
d3
+

X4−x
d4

J1,2←
Y1−y
d1
+

2·(y−Y2)
d2
+

Y3−y
d3

J2,2←
Y1−y
d1
+

y−Y2
d2
+

y−Y3
d3
+

Y4−y
d4

f1,1← 1d2−1d1− d3+ 2 · d2− d1 F Vector f
f2,1← 1d3 −1d1 − d4 + d3 + d2 − d1
normk ← 0.5 · fT. f F f vector norm
if normk > normk−1 then
λ← λ/2 FReduction in case of divergence

end if
h←−λ·JT·f FCorrection ofMS coordinates
x ← x + h1
y← y+ h2
k ← k + 1 F Iteration counter

end while

10 second intervals leads to an error of distance measure-
ments of 3 m.

APPENDIXES
APPENDIX A
See Algorithms 1 and 2.

APPENDIX B
The second derivatives of Fisher’s information matrix in (13)
to (16) are presented without components that are equal to
zero when the coordinates of the mobile nodes match the
results of the virtual distance measurements. Full expressions
for these derivatives are presented below. First, let’s focus
on the relationship describing the first and second derivative
p(ρ; θ) to the x variable:

∂ ln p(ρ; θ )
∂x

=−
1
σ 2

N−1∑
i=1

{[
−

√
(Xi+1−x)2+(Yi+1−y)2

+

√
(Xi−x)2+(Yi−y)2−drp+1di

]
·

[
(Xi+1−x)√

(Xi+1−x)2+(Yi+1−y)2
−

(Xi−x)√
(Xi−x)2+(Yi−y)2

]}
(B1)
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∂2 ln p(ρ; θ )
∂x2

=−
1
σ 2

N−1∑
i=1

{[
−

√
(Xi+1−x)2+(Yi+1−y)2

+

√
(Xi−x)2+(Yi−y)2−drp+1di

]

·

 (Xi+1−x)2[
(Xi+1−x)2+(Yi+1−y)2

] 3
2

−
(Xi−x)2[

(Xi−x)2+(Yi−y)2
] 3
2

−
1√

(Xi+1−x)2+(Yi+1−y)2
+

1√
(Xi−x)2+(Yi−y)2

]

+

[
(Xi+1−x)√

(Xi+1−x)2+(Yi+1−y)2
−

(Xi−x)√
(Xi−x)2+(Yi−y)2

]2
(B2)

Taking into account expression (B1), it can be seen that the
first square bracket of the second derivative p(ρ; θ ) function
equals zero, so that ultimately the second derivative of this
function takes the form of (13).

Now let’s look at the form of the second derivative of the
p(ρ; θ) function relative to the x and y variables.

∂2 ln p(ρ; θ )
∂x∂y

=−
1
σ 2

N−1∑
i=1

{[
−

√
(Xi+1−x)2+(Yi+1−y)2

+

√
(Xi−x)2+(Yi−y)2−drp+1di

]

·

 (Xi+1−x) · (Yi+1−y)[
(Xi+1−x)2+(Yi+1−y)2

] 3
2

−
(Xi−x) · (Yi−y)[

(Xi−x)2+(Yi−y)2
] 3
2


+

[
(Xi+1−x)√

(Xi+1−x)2+(Yi+1−y)2
−

(Xi−x)√
(Xi−x)2+(Yi−y)2

]

·

[
(Yi+1−y)√

(Xi+1−x)2+(Yi+1−y)2
−

(Yi−y)√
(Xi−x)2+(Yi−y)2

]}
(B3)

As before, the first square bracket of the second derivative
p(ρ; θ ) function equals zero, so that ultimately the second
derivative of this function takes the form of (14). In the same
way, relationships (15) and (16) can be derived.
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