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ABSTRACT A smart factory is a highly digitized and connected production facility that relies on smart
manufacturing. Additionally, artificial intelligence is the core technology of smart factories. The use of
machine learning and deep learning algorithms has produced fruitful results in many fields like image
processing, speech recognition, fault detection, object detection, or medical sciences. With the increment
in the use of smart machinery, the faults in the machinery equipment are expected to increase. Machinery
fault detection and diagnosis through various deep learning algorithms has increased day by day. Many types
of research have been done and published using both open-source and closed-source datasets, implementing
the deep learning algorithms. Out of many publicly available datasets, Case Western Reserve University
(CWRU) bearing dataset has beenwidely used to detect and diagnosemachinery bearing fault and is accepted
as a standard reference for validating the models. This paper summarizes the recent works which use the
CWRU bearing dataset in machinery fault detection and diagnosis employing deep learning algorithms.
We have reviewed the published works and presented the working algorithm, result, and other necessary
details in this paper. This paper, we believe, can be of good help for future researchers to start their work on
machinery fault detection and diagnosis using the CWRU dataset.

INDEX TERMS Bearing, deep learning, machine learning, machinery fault detection and diagnosis, CWRU
dataset.

I. INTRODUCTION
Nowadays, electric machines are used ubiquitously in manu-
facturing applications. With the rapid growth and improve-
ment in science and technology, and the development of
modern industries, machinery equipment is operated in daily
basis and for almost all applications which, sometimes, make
these machines work under unfavorable conditions, humidity
and excessive loads resulting in motor breakdowns leading to
huge maintenance expenses, degradation in production level,
severe monetary losses, and potential risk of loss of lives.
The rotating machines and induction engines play a crucial
role in the industrial systems. These rotating machines are
composed of numerous elements, such as stator, rotor, shaft,
and bearings [1]. Rolling element bearings, also commonly
known as bearings, are the core and vulnerable components
in the machinery whose health condition, i.e., the crack or
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faults in different places when operated under varying load,
directly affects in the performance and efficiency, stability,
and lifespan of the machines [2]. The rolling element bearing
(REB) consists of four components: inner-race, outer-race,
ball and cage. Fig. 1 shows the experimental platform of the
CWRU bearing test rig for the ball bearing system [3], [4],
the bearing components, and its cross-sectional view.

Numerous studies [5], [6], regarding the possibility of
induction engine failures, reveal that a bearing fault is the
top common fault category that accounts for one-third of
the entire defects, and the failure of these REBs is one of
the most common causes of machine breakdown resulting
in severe loss of safety and property and even the crash of
the machine or loss of the lives in some cases [7]. For these
reasons, fault detection and diagnosis of these REBs have
become an essential part of development and engineering
research. Condition monitoring and fault detection mecha-
nism of REBs are expected to provide information about
the real working state of the machinery at each moment
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FIGURE 1. (a) An Experimental platform of the CWRU bearing test rig for
ball bearing system [3], [4], the components of REB, and (b) its
cross-sectional view.

FIGURE 2. (a) Vibration data collection process, (b) general flow diagram
of the implementation of different techniques and their respective
performance for bearing fault detection using vibration data.

without stopping the production line. Moreover, for the
proper understanding of processes associated with bearing
faults, the mechanical vibration signals, which can detect,
locate and distinguish different types of faults, are consid-
ered as one of the most useful and productive sources of
information [1], [8].

The working procedure for the bearing fault detection con-
sists of sensors placed at different locations of the machine
through which these signals are sent to the data acquisi-
tion system for further processing [9]. Fig. 2 (a) shows the
vibration data collection process for the CWRU dataset. The
performance of fault detection methods does not only depend
on the quality of the vibration signals collected, but also on
the effectiveness of the applied signal processing and feature
extraction techniques [1]. Traditionally, the maintenance of
these types of machinery used to be performed after the
machine fault had happened. Such a posterior maintenance
approach generally leads to unexpected machine breakdown
resulting in financial losses and casualties [10]. Thus, it is
significant to monitor the bearing health condition on the
working state of the machine. For detecting and diagnosing
the faults in machinery and REBs, many signal processing
approaches, machine learning (ML)-based approaches, and
deep learning (DL)-based approaches have been proposed
and implemented.

The conventional signal processing methods can be ana-
lyzed in the time-domain, frequency-domain, and time-
frequency-domain. The methods like fast Fourier transform
(FFT) [11], wavelet transformation (WT) [12], empirical
mode decomposition (EMD) [13], ensemble empirical mode
decomposition (EEMD) [14], empirical wavelet transform
(EWT), wavelet packet transform (WPT) [15], variational
mode decomposition (VMD), stochastic resonance, sparse
decomposition, etc., have been suggested and implemented
for the fault signal analysis and classification of the col-
lected vibration data. These approaches belong to either of
time-domain or frequency-domain or time-frequency domain
analysis.

Time-domain analysis, which usually involves the scalar
indices to determine bearing condition, is the most
straightforward technique for detecting and diagnosing faults
in bearings [16]. In this analysis, the signal is studied
through temporal vibrational signal data, and based on its
value, the bearing condition can be estimated. Some of the
approaches in this method are measuring the peak value,
peak-to-peak value, root-mean-square (RMS), and crest fac-
tor [17], skewness, kurtosis [18], and spectral kurtosis [19],
impulse factor, shape factor, and clearance factor [20]. Sim-
ilarly, frequency-domain or spectral analysis is the most
broadly used method for fault diagnosis in REBs. Here,
the time-domain vibration signals are converted to discrete
frequency components using FFT. The FFT and discrete
Fourier transform (DFT) algorithms are used to analyze the
raw vibration signal in the frequency-domain. The advan-
tage of frequency-domain over the time-domain analysis is
that the frequency-domain method can detect the required
specific frequency components effortlessly [16]. The bearing
vibration signals are the combination of periodic components,
which are cyclic, time invariance and non-stationary, leading
to the development of time-frequency analysis approaches.
The frequency-domain technique has the advantage that it can
handle both the stationary and non-stationary vibration sig-
nals. Many time-frequency strategies like short time Fourier
transform (STFT) [21], Wigner-Ville distribution [22], and
wavelet transform [12] have been used in machinery fault
detection and diagnosis (MFDD).

Even though a suitable height of anomaly diagnosis accu-
racies was stated, the signal processing methods have some
kinds of disadvantages. Temporal analysis cannot determine
the defective component of a machine. The frequency peak
of bearing fault is not strong enough to be distinguished in
FFT analysis of bearing fault. Similarly, cepstrum analysis
produces many unwanted large peaks near the zero point,
which makes the output difficult to interpret. Moreover,
it uses several FFTs and IFFTs on each frame, which can
be computationally expensive. Envelope analysis requires
the knowledge of the resonance frequency and filtering
band in advance, which demands some experience. Wavelet
transform, on the other hand, comes up with problems like
difficulty in the selection of the suitable mother wavelet,
the choice of decomposition level, and its frequency band,
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which contains the necessary information for fault detec-
tion [1]. Again, the maximum of these methods needs dif-
ferent features for different types of vibration data. The
conventional methods entirely depend on the values at the
fault characteristics frequencies to determine the existence
of a bearing fault [2]. Features such as mean, median, kurto-
sis, peak-to-peak, minimum, maximum, standard deviation,
absolute mean, skewness, and RMS are the general char-
acteristics of the vibrating signal, which help describe the
exact condition of the bearing. From this, one can easily
guess how troublesome and crucial it is to choose the right
features to characterize the specific signals that are used
for the classification. Thus, the manually selected or hand-
crafted features may not best describe the motor bearing data,
and the data cannot achieve the fundamental solution for
the detection and diagnosis. Putting it simply, what features
extraction is needed for the optimal choice for a particular
signal are remained unanswered up to date [23], [24]. There
may occur some exceptional patterns or relationships unseen
in the data themselves that can expose a bearing fault, and
these distinctive features can be almost impossible for human
beings to identify at the initial stage. Thus, many scholars
have applied several machine learning procedures for the
detection of bearing faults from those vibration data.

Machine learning is a branch of artificial intelligence,
which is used to teach machines how to handle data more
efficiently. Its working algorithm can be summarized in three
steps: It takes some data, finds patterns in data, and predicts
new patterns from the data. ML algorithms are used exten-
sively in almost every sector, like speech or text recognition,
industrial applications, medical diagnosis, social networking
sites, and finance [25]. In MFDD, the use of these ML algo-
rithms for developing a knowledge base system has become
useful for early diagnosis of a defect to prevent catastrophic
failure and reduce operating costs [26]. In bearing fault
detection some of the broadly practiced ML algorithms are
artificial neural networks (ANN) [27], principal compo-
nent analysis (PCA) [28], support vector machines (SVM)
[29], [30], k-Nearest Neighbors (k-NN) [31], singular value
decomposition (SVD) [32]. These algorithms better ana-
lyze the data, learn from them, and then apply what they
have learned to make smart decisions concerning the occur-
rence of bearing faults. Furthermore, these machine learning
approaches have yielded a satisfactory result in this field.

The use of deep learning has been increased these days
rapidly. Deep learning is a subfield of machine learning,
which defines both higher level and lower level categories
with higher accuracy. It works excellently with a massive
amount of data. Deep learning techniques provide better
efficiency and accuracy than ML as the techniques of deep
learning tend to solve the problem end-to-end, whereas
the ML techniques firstly need the problem statements to
break down into different parts and finally combine their
results [33]. Fig. 3 shows the working algorithm of both ML
and DL, and their performance with the amount of data [34].
Looking at the significant advantages of deep learning,

FIGURE 3. (a) DL/ML working algorithm, (b) performance of
DL algorithms vs. older algorithms with the amount of data [34].

DL-basedmethods have been proposed and are being increas-
ingly used for the MFDD too. Fig. 2 (b) shows the general
flow diagram of the implementation of different techniques
and their respective performance for bearing fault detection
using vibration data.

The methodology implemented in this review paper is like
this: the research works which implement deep learning-
based approaches using the CWRU dataset, more specifically
Drive-End (DE) defects data and normal-baseline data, for
bearing fault detection and diagnosis are overviewed here.
Except for [143], all the papers summarized here use DE
(12k or 48k) faulty data and normal-baseline data as healthy
bearing data in their deep learning models, whereas [143]
uses all the records (drive-end, normal-baseline and fan-end
data) of the CWRU bearing dataset.

This paper presents a detailed overview of the recent works
and popular DL-based approaches for theMFDD. The outline
of this paper is as follows: Section I introduces the machinery
fault, conventional signal processing, and ML/DL approach
used in bearing fault detection. Section II contains a brief
introduction of the publicly available datasets used in bearing
fault detection and diagnosis. Section III is the central part of
this paper, which describes the popular DL-algorithms used
in machinery fault detection and diagnosis. In this section,
we present a detailed overview of the most recent works
using DL-based methods like auto-encoders (AE), convolu-
tional neural networks (CNN), deep belief networks (DBN),
generative adversarial networks (GAN), recurrent neural net-
works (RNN) and long short-term memory (LSTM), and
reinforcement learning (RL). Section IV is about some of the
works which use transfer learning and domain adaptation-
based DL methods. Since this paper mainly focuses on the
works using the CWRU dataset, section V points out some of
theweaknesses of the CWRUdataset. SectionVI lists some of
the limitations and challenges using DL models for MFDD,
and the next section presents some recommendations from
the authors. Finally, the paper is concluded in section VIII.

II. DATASET
Data is the fundamental unit and the foundation for all
ML or DL architectures. Deep networks and DL algorithms
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are influential ML structures that work most excellent if
trained on vast amounts of data [35]. With the small training
dataset, we get limited sample variations, and the network
efficiency decreases. So, the quantity and the frequency of
data availability has a vital role in DL applications. It can
be said that an adequate amount of data for training in each
class leads to a better prediction of that class. Generally,
the more the data, the better the accuracy. The data structures
with different labels can be better learned using abundant
variations, and the model will recognize the invariant features
compared to such differences [36]. Usually, a dataset can be
categorized into two groups depending on its complexity:
Simple dataset and a Complex dataset. A simple dataset,
which is also called a good dataset in general terminology,
is much easier to use, tends to allow for effective and easy data
manipulation and calculations for some sort of meaningful
statistical analysis [37]. Again, a well-labeled and balanced
dataset which does not contain the aberrant data or missing
values is also considered as a good one.

On the other hand, a complex set of data can be defined
as a big dataset, which has a large volume, wide variety,
large velocity and large veracity [38]. The real-world data
are mostly highly skewed, and learning from these datasets
is a challenging task for standard classification algorithms.
When presented with complex imbalanced datasets, these
algorithms fail to represent the distributive characteristics
of the data accurately and resultantly provide unfavorable
accuracies across the classes of the data. Though it is quite
challenging to deal with the complex or imbalanced data,
the imbalanced data are the characteristics of multiple real-
world applications such asmedical diagnosis, fraud detection,
machinery fault detection, pricing catastrophe [39], [40]. The
problem of imbalanced datasets has been approached from
two main directions. The first approach is to preprocess the
data by under-sampling the majority instances or oversam-
pling minority instances. The latter is a cost-sensitive clas-
sification approach. In this approach, a specified learner is
changed to incorporate a fluctuating penalty for each of the
considered groups of samples [41].

Similarly, data obtained from multiple sources often mean
messy data or leads to the data that follow a different internal
logic or structure, which increases its complexity. The other
factor that makes the data complex is its size. Generally,
the bigger the data, the more complicated it is [42]. Tradi-
tional techniques simply could not identify all the features of
imbalanced data because they assume the data is balanced,
and the prediction is biased to the class where the sample
number is relatively high. A better approach would be to
develop a more generic organizing principle that can accom-
modate all possible types, rather than individual approaches
that deal with specific types one by one [41].

The bearing is the broadly applied topic formachinery fault
detection or anomaly detection. The reasonmay be the readily
available public dataset [43]. Some of the accessible open-
source bearing dataset used for the bearing fault detection and
diagnosis are as follows:

• CWRU Dataset
• Paderborn University Dataset
• FEMTO Dataset
• MFPT Dataset
• IMS Dataset

A. CWRU DATASET
The CWRU dataset is a popular, open-source, and easily
accessible dataset. The generated dataset is recorded and
available on the CWRU website, which provides access to
the bearing data for normal and faulty bearings. In this
database, the data were collected for normal bearings, single-
point drive-end (DE), and fan-end (FE) defects. The CWRU
bearing dataset serves as the standard reference [23] and the
fundamental dataset [2] to authenticate the performance of
different ML and DL algorithms.

The bearing test rig arrangement used to obtain the CWRU
dataset is shown in Fig. 1, which consists of a 2 hp Reliance
electric induction motor, a torque transducer, a dynamometer,
and control electronics, which is not shown in the figure. The
test bearings support the motor shaft. Torque is applied to the
shaft through a dynamometer and electronic control system.
The faults were seeded on the REBs, the inner-race (IR)
and outer-race (OR), and each faulty bearing was reinstalled
on the test rig. Electro-discharge machining was used to
introduce the single point faults to the test bearings with fault
diameters of 7 mils, 14 mils, 21 mils, 28 mils, and 40 mils.
One mil is equal to 0.001 inches. SKF bearings were used for
the 7, 14, and 21 mils diameter faults, whereas for the 28 mils
and 40 mils faults, NTN equivalent bearings were used. The
depth of the fault was 0.011 inches for all the bearings
except for inner-race faulty bearing of diameter 0.028 inches,
an outer-race faulty bearing of diameter 0.040 inches, and
a ball bearing fault of diameter 0.028 inches. The depth of
the fault is 0.050 inches for both inner-race faulty bearing
of diameter 0.028 inches and outer-race faulty bearing of
diameter 0.040 inches. Moreover, for the ball bearing fault
of 0.028 inches diameter, the depth of the fault is found to be
0.150 inches [4].

Acceleration data was measured at locations near to and
far-off the motor bearings. The data is collected frommultiple
sensors placed at different places. Accelerometers, which
were attached to the housing with magnetic bases and placed
at the 12 o’clock position at both the DE and FE of the motor
bearing, were used for collecting vibration data. Additionally,
for some experiments, an accelerometer was attached to the
motor supporting base plate too. Once the data was collected
using a 16 channel DAT recorder, it was processed in a
MATLAB environment, and all the data files were stored in
MATLAB (.mat) format. Each file contains one ormore of the
recorded DE, FE, and base plate acceleration (BA) data. The
sampling frequency of 12 kHz and 48 kHz were used for the
collection of data. For the drive-end bearing experiments, data
was collected at 12k and 48k samples per second. Fan-end
data was collected at 12k samples per second. For the normal
baseline, the data collection rate was 48k samples per second.
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Vibration data was recorded for motor loads of 0 to 3 horse-
power, with motor speeds of 1720 to 1797 rpm after the
faulted bearings were reinstalled into the test motor. The
dataset consists of data files for different torque loads applied
by the dynamometer. However, ‘load’ is virtually meaning-
less in bearing fault detection and diagnosis because of a lack
of a mechanism to convert the torque to a radial load-borne
by the bearings. The main consequence of the motor load is
on the shaft speed, which is declined by approximately 4% in
the maximum load (3 hp) case, and this would have minimal
effect on the diagnosable of the datasets [4], [23].

The dataset consists of 161 records, which are grouped
into four classes: 48k normal-baseline, 48k drive-end fault,
12k drive-end fault, and 12k fan-end fault. Each group, again,
consists of datasets for ball bearing (B) fault, inner-race fault,
and outer-race faults. According to the fault location relative
to the load zone, the outer race faults are further classified
into three categories: ‘centered’ (fault in the 6.00 o’clock
position), ‘orthogonal’ (3.00 o’clock), and ‘opposite’
(12.00 o’clock). For the names of the data files, the first letter
represents fault position, the next three numbers signify fault
diameters, and the last number denotes bearing loads. For
example, the data file ‘B007_0’ contains the ball bearing
fault data, which has the fault of diameter 0.007 inches
operated under the motor load of 0 hp. Similarly, the data
file ‘OR014@6_1’ contains the fault data of outer-race fault
of diameter 0.014 inches when the load was centered (fault
in 6 o’clock position) and operated under the motor load
of 1 hp [4].

‘‘Defective bearings produce vibration equal to the rota-
tional speed of each component bearing frequencies. They
relate notably to the rotation of the balls, the cage, and the
passage of the balls on the inner and outer races’’ [1]. The
bearing fault frequencies associated with the defective inner-
race, outer-race, cage, and ball are as follows:

BPFI =
nf r
2

(1+
d
D
cos (1)

BPFO =
nf r
2

(1−
d
D
cos (2)

FTF =
fr
2
(1−

d
D
cos (3)

BSF =
Df r
2d

(1−
[
d
D
cos

]2
) (4)

where, BPFI is inner-race ball pass frequency, BPFO is outer-
race ball pass frequency, FTF is fundamental train frequency
(cage speed), BSF is ball (roller) spin frequency, Further-
more, fr is the shaft speed, n is the number of rolling elements,
d is the rolling element diameter, D is the bearing pitch
diameter, and D is the angle of the load from the radial plane.
Fig. 1 (b) shows the cross-sectional view of REB, where
the parameters Dd and α can be visualized. Furthermore,
Table 1 shows the information of the bearings used in the
CWRU dataset, whereas Table 2 tabulates different bearing
fault frequencies. These frequencies are helpful when detect-
ing the faults through signal processing methods.

TABLE 1. Bearing information1.

TABLE 2. Information of bearing fault frequencies.

TABLE 3. Dataset length information.

Again, CWRU bearing dataset is long, varied, and com-
plex. Each data file consists of data of different lengths, which
is not an integer multiple of 2. The Table 3 shows the bearing
length information for 4 classes of CWRU dataset.

As mentioned earlier, the CWRU bearing dataset is widely
used and is taken as the standard reference for validating
many ML and DL algorithms. The dataset does not contain
the masking sources, which make it easier to use [22]. The
review of the research employing DL algorithms using this
dataset is presented in section III.

B. PADERBORN UNIVERSITY DATASET
This dataset [44] is also for bearing fault diagnosis and is
provided by the KAT datacenter in Paderborn University. The
essential components of the test rig are a drive motor, a torque
measurement shaft, a test module and a load motor. Fig. 4 (b)
shows the mechanical setup of the test rig for the Paderborn
University dataset. The Paderborn university bearing dataset
consists of the high-resolution vibration data, which are col-
lected from experiments performed on six healthy bearings,
and 26 damaged bearing sets. Out of the 26 damaged bearing
sets, 12 were artificially damaged, and 14 were damaged
using accelerated life tests to simulate real damage [45].
It provides the basis for the development, validation, and

1I.D.: Inside Diameter O.D.: Outside Diameter B.D.: Ball Diameter P.D.:
Pitch Diameter
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FIGURE 4. Overview of (a) PRONOSTIA experimental platform [53] (b) Mechanical setup of the test rig for Paderborn
University dataset [44], and (c) experimental setup for IMS dataset [62].

training of the diagnostic algorithms for conditionmonitoring
(CM) of rolling bearings. The test rig was operated under
different operating conditions to ensure the robustness of
CM methods at different operating conditions [44]. In total,
experiments with 32 different bearing damages in ball bear-
ings of type 6203 were performed. This dataset consists of the
synchronously measured motor currents and vibration sig-
nals, which enable more accurate testing and implementation
of the ML algorithms in practical applications, where the real
defects are generated through aging and the gradual loss of
lubrication [2]. References [45]–[48] use this dataset in their
research.

C. FEMTO DATASET
FEMTO dataset [49], [50] is provided by FEMTO-ST Insti-
tute, Besancon, France. The real experiments on bearing’s
accelerated life tests, which are generated using an exper-
imental platform called PRONOSTIA, are provided in this
dataset. PRONOSTIA is an experimentation platform dedi-
cated to test and validate bearings fault detection, diagnos-
tic and prognostic approaches [51]. The main objective of
PRONOSTIA is to provide real data related to accelerated
degradation of bearings performed under constant and/or
variable operating conditions, which are controlled online.
The experimental platform, which is shown in Fig. 4 (a),
allows to conduct bearings’ degradations in only a few hours,
and thus it is possible to get a significant number of exper-
iments within a week. PRONOSTIA testbed is composed
of three main parts: a rotating part, a degradation genera-
tion, and a measurement part. The operating conditions are
characterized by two sensors: a rotating speed sensor and
a force sensor. In the PRONOSTIA platform, the bear-
ing’s health monitoring is ensured online by gathering two
types of signals: temperature and vibration signals with the

help of horizontal and vertical accelerometers. Furthermore,
the vibration signals were recorded every 10 seconds with
sampling frequency 25.6 kHz, which allows catching all the
frequency spectrum of the bearing during its whole degrada-
tion. The vibration signals related to the degraded bearings
are then compared to a nominal vibration signal of a nonde-
graded bearing or nominal bearing. Finally, the monitoring
data provided by the sensors can be used for further pro-
cessing in order to extract relevant features and continuously
assess the health condition of the bearing. In total, 17 run-to-
failure data under three different operating conditions were
included in the FEMTO dataset, but the specific faulty mode
of the failed bearing under each test is not declared [52], [53].
Some of the publications using this dataset are: [54]–[56].

D. MFPT DATASET
Another dataset for fault detection and diagnosis of REBs
is the MFPT dataset [57], which is provided by the Society
for Machinery Failure Prevention Technology. The goal of
the Condition Based Maintenance (CBM) fault database is
to provide various datasets of known good and faulted con-
ditions for both bearings and gears. A bearing fault dataset
has been provided to facilitate research into bearing analysis.
The dataset comprises data from a bearing test rig (nominal
bearing data, an outer race fault at various loads, and inner
race fault at various loads), and three real-world faults [57].
Three real-world example files include an intermediate shaft
bearing from a wind turbine, an oil pump shaft bearing from a
wind turbine, and a real-world planet bearing fault. The data
made available by theMFPT uses a NICE bearing. The defect
seeding processes is not described. Three measurements with
a load of 1201 N on the bearing are provided for the baseline
condition and an outer race fault, as well as seven measure-
ments for both the outer and inner race faults over a range
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of 0–1334 N bearing load [58]. This dataset, thus, is freely
distributed with example processing code with the hope that
researchers and CBM practitioners will improve upon the
techniques, and consequently, sophisticated CBM systems
will be developed. The research which use this dataset for
rolling bearing fault detection are [58]–[61].

E. IMS DATASET
This bearing dataset [62], [50] is provided by the Center
for Intelligent Maintenance Systems (IMS), University of
Cincinnati, and can be downloaded from the Prognostic data
repository, which is hosted by NASA. The Prognostics data
repository is a collection of datasets that have been donated
by various universities, agencies, or companies. The data
repository focuses exclusively on prognostic datasets, i.e.,
datasets that can be used for the development of prognostic
algorithms [50]. For the collection of the IMS bearing dataset,
four test bearings were mounted on one shaft driven by an
AC motor and coupled by rub belts. The experimental setup
for this dataset is shown in Fig. 4 (c). The rotational speedwas
kept constant at 2000 rpm [43]. This database consists of three
different datasets. In set one, 2 high precision accelerometers
have been installed on each bearing, whereas in datasets two
and three, only one accelerometer has been used. Each dataset
is formatted in individual files, each containing a 1-second
vibration signal snapshot, recorded at specific intervals. Each
file consists of 20,480 points with a sampling rate set
of 20 kHz. The file name indicates when the data was
collected [62].

Some of the research works which employ this dataset
are [63], [64].

Among all the datasets mentioned above, Case Western
Reserve University (CWRU) dataset is the most widely used
dataset [23] for the classification and detection of fault diag-
nostics of machinery bearings; thus, it serves as the funda-
mental dataset to validate the performance of the ML and
DL algorithms [23]. This paper focuses on the works carried
out for the bearing faults detection using the CWRU dataset
with DL-based approaches. The following section describes
the DL- based approaches used for bearing fault detection and
diagnosis.

III. DEEP LEARNING-BASED APPROACHES FOR BEARING
FAULT DIAGNOSIS
Deep learning is a branch of ML that is based on ANNs
and inspired by the functionality of human brain cells called
neurons. It is not mandatory to program everything explicitly
in deep learning. It allows computational models, which are
composed of multiple processing layers, to learn represen-
tations of data with multiple levels of abstraction. These
methods have dramatically improved the state-of-the-art in
speech recognition, visual object recognition, object detec-
tion, anomaly detection, and many other domains. DL dis-
covers complicated structure in large datasets by using the
back-propagation algorithm to indicate how amachine should
change its internal parameters that are used to compute the

representation in each layer from the representation in the
previous layer [65]. After analyzing some simple features in
the early levels, the network sends this information to the
following level, which takes this simple data, combines it
into something more complex, and transfers it on the third
level. This process lasts until the final layer, where the classi-
fication or output is obtained. Deep convolutional nets have
brought about breakthroughs in processing images, video,
speech, and audio. On working with both structured and
unstructured data, DL networks perform automatic feature
extraction without human involvement [66], [67].

Deep learning approaches can further be classified into
supervised learning, unsupervised learning, semi-supervised
learning, and reinforcement learning. A supervised learning
algorithm is based on training a model with the data that are
correctly classified or labeled. In this algorithm, the model
learns to map the input variables to the output variables. The
goal is to approximate themapping function sowell that when
the new data is introduced to the model, it can easily pre-
dict the output variables. Logistic regression, classification,
and back-propagation neural networks are some examples
of using supervised learning algorithms. However, most of
the real-world data are found to be unlabeled. Labeling each
datum is a complicated and expensive process and needs
expert supervision. So, there is an algorithm that works for
unsupervised data, and it is called unsupervised learning.
This learning algorithm can learn and organize information
without providing error signals to evaluate the potential solu-
tion [68]. Clustering, dimensionality reduction, association,
anomaly detection, etc. use this algorithm.

In almost all real-world applications, the data is sparsely
labeled. Semi-supervised learning lies in between supervised
and unsupervised learning in which only the small set of data
has corresponding labels. Data provided is with a mixture
of labeled and unlabeled data. The semi-supervised learn-
ing algorithm is the one in which one can use both super-
vised learning techniques to make a best-guess prediction
for the unlabeled data with the back-propagation algorithm
and unsupervised learning technique to discover and learn
the structure in the input variables [69], [70]. This algo-
rithm overcomes the drawbacks of supervised and unsuper-
vised learning and is being implemented these days widely.
Another deep learning algorithm is reinforcement learning
(RL), in which the algorithm is presented with examples
that lack labels. This algorithm, which is the combination of
ANNs and RL architecture, allows software-defined agents
to learn the finest actions possible to achieve their goals.
In this type of learning, the algorithm must make decisions,
and these decisions relate to a consequence. It deals with
delayed rewards and trains the structures to learn from the
consequences of their own decision [71]. It is analogous to
trial and error in human learning.

Again, common ML systems conventionally address
isolated tasks. Transfer learning tries to change this by
developing methods to transfer knowledge learned in
one or more source tasks and use it to improve learning in
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a related target task. Transfer learning is a machine learn-
ing with an additional source of information apart from the
standard training data: knowledge from one or more related
tasks [72]. The ML and DL algorithms work efficiently
when the data is massive. However, having a vast amount of
data is not always favorable in real-world applications. So,
to overcome this issue, transfer learning approaches were pro-
posed. It solves the problem of insufficient training data [73].
In this algorithm, the information flows in one direction only,
from source task to the target task. Among all the transfer
learning approaches, domain adaptation is one of the most
popular methods [2]. Domain adaptation deals with scenarios
in which amodel trained on a source distribution is used in the
context of a different target distribution. In general, domain
adaptation uses labeled data in one or more source domains
to solve new tasks in a target domain [74].

Because of the above mentioned and other numerous
advantages of DL-based algorithms, they have been used
in multiple studies. Image recognition, pattern recognition,
object detection, text recognition, speech recognition, fault
detection, and anomaly detection are some of the fields in
which DL algorithms have performed well. In MFDD, both
the supervised and unsupervised methods have been imple-
mented. The DL models like auto-encoders, convolutional
neural networks, deep belief networks, generative adversarial
networks, recurrent neural network and long short-termmem-
ory, and reinforcement learning have shown their excellent
performance with higher accuracy and reliability.

The following section describes the deep learning algo-
rithms that have been applied for the task.

A. AUTO-ENCODERS AND MODIFIED AUTO-ENCODERS
Auto-encoders are widely adopted unsupervised learning
procedure which is trained to copy its input to its output.
Inside, it has a hidden layer h, which defines a code that is
used to denote the input. The network can be regarded as con-
taining two parts: an encoder function h = f (x) and a decoder
that produces a reconstruction r = g(h) [67]. Fig. 5 shows
the common structure of an auto-encoder where x denotes the
input data vector {x1, x2, . . . ,xn}, h represents the vector in the
hidden layer {h1,h2, . . . , hm}, r is the outcomes of the output
layer {r1,r2, . . . , rn}, and simultaneously, it also signifies the
reconstructed data vector. Here, W1 and W2 are the weight
matrices that complete the connection between the adjacent
layers. The ANN takes the mean-square-error between the
original input and output as a loss function, which intends to
imitate the input as the final output. After this, the structure is
trained, and the decoder part is removed, and only the encoder
part is kept. Hence, the output of the encoder is the feature
representation that can be introduced in next-stage classifiers.

Many studies have been carried out for the bearing fault
detection and diagnosis with an auto-encoder and modified
auto-encoders. F. Jia et al. did the pioneering work in [75],
where they utilized a 5-layer auto-encoder based deep
neural network (DNN) and pre-trained it layer by layer with
the unsupervised technique and further fine-tuned the DNN

FIGURE 5. Architecture of an auto-encoder.

with a back-propagation algorithm for classification of the
fast Fourier transformed faults and normal bearing data. The
merit of this architecture is that it can adaptively obtain fault
characteristics from the measured signals for many diag-
nosis problems, and the technique is good at establishing
the non- linear mapping relationship between the different
health conditions of machinery and the corresponding mea-
sured signals. The number of classes used was 10 and, the
classification accuracy for the CWRU bearing data ranges
from 99.68 to 99.95 percent, which is much better than the
accuracy obtained by using the BPNN-based method. They
implemented the PCA method to verify the ability of the
proposed method.

Similarly, in [76], the authors have used a stacked auto-
encoder to construct a DNN. Their algorithm involves two
steps of first training the auto-encoder with the input set to
get the feature vectors (say h) and then removing the output
layer of the auto-encoder, which was trained before, and
setting the feature vectors obtained, h, as the input set for the
next auto-encoder. So, they stacked the auto-encoder for the
classification of the faulty bearing data. In the beginning, they
implemented several data preprocessing procedures where
they divided the data from various groups into segments
of 600 points with 80% overlap, and then FFT was applied on
every section to get the amplitude, which was so small that it
needed to be multiplied by a certain coefficient. The number
of neurons in hidden layers was 800 and 400, respectively,
and the number of fault classes was 6. They also used the
PCA method to reduce the data dimensions for visualizing.

Some other works which employ auto-encoder in bear-
ing fault diagnosis using the CWRU dataset are listed and
described in Table 4. The references [77], [78] are some of
the works carried out on MFDD with an auto-encoder using
a dataset other than the CWRU dataset.

B. CONVOLUTIONAL NEURAL NETWORKS
After first proposed by LeCunn for image processing [86],
we can see how the CNNs have massively improved the
performance in computer vision, object detection, natural
language processing and speech recognition with the
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TABLE 4. Some published works employing auto-encoders in MFDD2.

increment in the production and memory of GPU. No doubt,
CNNs are the most representative model of deep learning.

2A. R.: Article Reference N.C.: Number of Classes H.P.: Hyper-
Parameters LReLU: Leaky ReLU

Thus, the use of CNNs has proliferated within computer
vision. After the fruitful overview of AlexNet [87], the period
of deep 2-D CNNs has starred and immediately exchanged
the outdated classification and acknowledgement approaches
within a short period.
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FIGURE 6. 1-D CNN architecture.

FIGURE 7. CNN architecture for vibration Image used in [93].

Again, 1-D CNN is the modified version of 2-D CNN in
which forward propagation (FP) and back-propagation (BP)
are simple array operations rather than matrix operations,
which makes them more efficient for specific applications
in dealing with 1-D signals. Also, 1-D CNN is a relatively
shallow structure, which makes them able to learn challeng-
ing tasks involving 1-D signal, and they are also suited for
real-time applications [24]. Fig. 6 and Fig. 7 show the basic
2-D and 1-D CNN structures, respectively. The use of CNNs
in bearing fault detection has been practiced in recent years.
Some of the published works for detecting and diagnosing
machinery bearing faults with a CNN architecture using the
CWRU dataset have been described briefly in the following
section.

A hierarchical adaptive deep convolutional neural network
(ADCNN) is applied on the CWRU dataset in [88], which has
two hierarchically organized components: a fault determina-
tion layer and a fault size evaluation layer. Here, the learn-
ing rate is changed dynamically so that a better trade-off
is maintained between the training speed and accuracy. The
ADCNN model in the first layer is based on the classical
LeNet5 models proposed by LeCun. The number of layers
used is 9, and the batch size is 100. The number of classes
used is 4, among which one is the ‘healthy’ bearing class,
and the other three are for fault bearings. The overall accuracy
is 97.7%. SoftMax is used in the classification layer.

In [89], a CNN-based approach with multiple sensor fusion
is proposed for fault diagnosis of rotating machinery in which
both spatial and temporal raw data from the drive-end and
fan-end are stacked by converting 1-D vibration data into
2-D input matrix and sent to CNN as input. Representative

features were learned directly from raw signals by train-
ing the CNN model, where no hand-crafted features were
needed. Out of the total samples, 70% were used for training,
15% for validation, and 15% for testing. The average accu-
racy with two sensors was found to be 99.41%, whereas that
with only one sensor is 98.35%. Minibatch stochastic gradi-
ent descent and dropout were utilized in the training process
with increased efficiency and prevention of overfitting when
the size of available data was small. The number of classes
used was 9, and SoftMax is used in the classification layer.

An intelligent rotating machinery fault diagnosis based on
DL using data augmentation technique is proposed in [90].
The authors use two augmentation methods: sample-based
and dataset-based, and five augmentation techniques in gen-
eral: additional Gaussian noise, masking noise, signal trans-
lation, amplitude shifting, and time stretching. Raw vibration
signals are directly used as input without any preprocessing
in this research where CNN structure and residual learning
algorithm are further applied to train the network. A 1-D
convolutional layer is first used with FN filter kernels of
FL length window size. The raw data are processed for fea-
ture extraction initially and transformed into multiple feature
maps. Next, residual blocks are stacked to learn high- level
abstract representations. In each block, two convolutional
layers are adopted for residual learning. For the convolutional
layers in the proposed network, the zeros-padding operation
is implemented to keep the feature map dimension from
changing. They also use the batch normalization technique
after each convolution layer to accelerate the training process
and dropout for reducing the data overfitting. ReLU is used
as an activation function, whereas SoftMax is used as a
classifier. The number of labels used is 10. The best accuracy
obtained on the CWRU dataset is 99.91% for 400 training
samples.

Some other works employing CNN for MFDD using the
CWRU bearing dataset are tabulated in Table 5. Again, [24],
[91]–[93], and [94] are some of the published works which
use CNN architecture for MFDD using a dataset other than
the CWRU bearing dataset

C. DEEP BELIEF NETWORKS
Deep Belief Networks, first proposed in [100], are the net-
work architectures consisting of many intermediate layers of
Restricted Boltzmann Machine (RBM) in which each RBM
layer communicates with the earlier and the following layers.
Also, there is no intra-layer communication. The final layer
is for the classification. In contrast to other models, each
layer in deep belief networks learns the entire input. The
deep architecture of DBN addresses the issues with Multi-
Layer Perceptrons (MLPs) getting stuck at local optima by
representingmultiple features of input patterns hierarchically.
Furthermore, they also benefit in optimizing the weights at
each layer. This problem-solving approach involves making
the optimal choice at each layer in the sequence, ultimately
finding a global optimum.
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TABLE 5. Some published works employing CNN in MFDD.

These greedy learning algorithms start from the bottom-
most layer and move up, finetuning the generative weights.
Here, the learning takes place on a layer-by-layer basis train-
ing layers of the DBN one at a time. Consequently, each
layer obtains a different type of data. Except for the first
and last layers, each layer in a DBN has a dual role, i.e., it
serves as the hidden layer to the earlier nodes, and as the

input or a visible layer to the following nodes. It can be
called a network built of single- layer-networks. These net-
works can solve many problems like low velocity and the
overfitting phenomenon in deep learning. An architecture of
DBN is shown in Fig. 8. Besides being used widely in the
field of recognizing, clustering, and generating images, video
sequences and motion-capture data, they have also been used
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FIGURE 8. Architecture of DBN [106].

in detecting and diagnosing rotary machinery fault. Some of
the published works in MFDD using the CWRU dataset are
described below.

A rolling bearing fault diagnosis using adaptive DBN with
a dual-tree complex wavelet packet (DTCWPT) is proposed
in [101]. Here, an adaptive DBN is constructed to improve the
convergence rate and identification accuracy with multiple
stacked adaptive restricted Boltzmann machines (RBMs).
The authors used three-layer DTCWPT to preprocess the
raw vibration signals to improve fault features. Three exper-
iments were conducted. In experiment 1, first, DTCWPT,
EMD, EEMD, and WPT are used to preprocess the raw
vibration signal, respectively. Then, nine feature parameters
are, respectively, extracted from each frequency-band signal
of DTCWPT and WPT and effective IMFs of EMD and
EEMD. Finally, all the normalized feature parameters are
directly fed into the adaptive DBN. The decomposition level
of DTCWPT is set as 3, and the architecture of the adaptive
DBN is 72-400-250-100-16. The initial learning rate and
momentum are selected as 0.03 and 0.86, respectively. The
increasing factor, decreasing factor and threshold are 1.25,
0.6, and 0.2, respectively. The pre-training of each adaptive
RBM is completed using 200 iterations. ForDBN andEEMD,
the ensemble number is chosen as 100, and the added noise
amplitude is 0.005 times the standard deviation of the ana-
lyzed signal. The first 10 IMFs containing almost all valid
information are selected, and the DBN architecture is 90-500-
300-100-16. In experiment 2, DTCWPT is applied to pre-
process the raw vibration signal, and then, the nine features
are extracted from each frequency-band signal of DTCWPT.
Finally, without any manual feature selection, all the nor-
malized feature parameters are directly fed into the adaptive
DBN, BP, general regression neural network (GRNN), and
SVM, respectively. The testing accuracy using the proposed
method is 94.37%. In Experiment 3, sixteen sensitive features
are manually selected from the original feature set, including

eight kurtosis values and eight wavelet packet energy val-
ues. Then, the selected 16-dimensional features are fed into
the adaptive DBN, BP, GRNN, and SVM, respectively. The
architecture of the adaptive DBN is 16-80-45-25-16.

Similarly, [102] talks about DBN and Dempster-Shafer
(DS) evidence theory for bearing fault diagnosis. Here,
researchers installedmultiple sensors where the features from
the signals from each sensor are extracted using DBN and
classified with SoftMax. Then, the predicted result from the
SoftMax is fused by DS evidence theory to generate the final
prediction of bearing health status. In experiments, vibration
signals from DE and FE sensors, which are of four bearing
health conditions, are considered. To obtain enough data for
the training and testing model, each single vibration data file
is split into segments that have equal length. They used the
FFT algorithm as the preprocessor for the raw time-domain
data. For the feature learning and feature classification, two
DBNs are designed to learn fault features from the bearing
signals. Since signals from both sensors are vibration signals,
they develop both DBN models with the same configuration.
The training processes of DBNs are carried out step by step.
After the feature learning process, two feature sets, each from
FE and DE sensors is obtained. Two SoftMax classifiers are
employed to classify these two feature sets. The classification
results of two SoftMax classifiers are combined to achieve
a better result. DS evidence theory is exploited to fuse the
decisions and generate the final prediction. The proposed
method achieved 100% accuracy. Also, the proposed system
does not require to be retrained when the working condition
(load) changes. They also evaluated the model performance
under different noisy conditions, in which the worst-case
accuracy was 98.5%.

Some of the other remarkable works regardingMFDwhich
employ DBN using the CWRU dataset are listed in Table 6,
and the references of the works using other datasets:
[103]–[108].

D. GENERATIVE ADVERSARIAL NETWORKS
Generative adversarial networks (GANs) are deep neural net
structures that are comprised of two nets, competing one
against the other. They belong to the set of generative mod-
els, which means they can generate or create new content.
They typically work with random input and produce some-
thing on output. They were first introduced in [114] by Ian
Goodfellow and other researchers. Here, the discriminator,
D and the generator, G play the following two-player mini-
max game [114] with value function

MinGMaxDV (D,G) = Ex∼pdata(x)[logD(x)]

+Ez∼pz(z)[log(1− D(G (z)))] (5)

For the provided training dataset, the generator intends to
create samples that have an equal probability distribution as
the real data or training dataset. The discriminator belongs to
the conventional binary classifier and is primarily responsible
for dual tasks. In the first one, it is essential to determine
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TABLE 6. Some published works employing DBN in MFDD.

whether the input arrives from the real data distribution or the
generator. In the second task, the discriminator directs the
generator over the back-propagation gradient to produce a
more realistic sample, which is the only method for the gen-
erator to improve its performance of generating fake samples.
During this two-player min-max game, the generator takes in
impulsive noise as input and outputs a fake sample, which
should be maximized by the discriminator as the probability
of the result from the original training set. During the training
period, the discriminator processes the sample of the training
set as an input for half of the time duration and takes in the
fake sample GSample generated by the generator as an input
for the other half.

The discriminator, in this process, is trained to optimize or
maximize the distance between groups, and to differentiate
between the actual image from the training set and the fake
sample generated from the generator. Thus, the generator
should be capable of making the created probability distri-
bution and the actual data distribution as near as possible so
that the discriminator cannot decide which one is real and
which one is a fake sample. Hence, in this adversarial process,
the generator’s capability to study the actual data distribu-
tion becomes stronger and stronger, and the discriminators’
feature learning and discriminative capacity also become
stronger and stronger. Eventually, the training will reach
Nash equilibrium, where the Discriminator will be unable to

FIGURE 9. Architecture of GAN.

differentiate between two distributions, i.e., D(x)= 1/2. Since
this equilibrium is very tough to find, there are many research
papers [115], [116] for cracking this issue [114] [117].
Fig. 9 shows an overview of GAN architecture. Like in
every other field, the use of GAN is increasing in bearing
fault detection also. Several works have been published using
GAN for the machinery bearing fault detection and classifi-
cation using the CWRU dataset. Some of them are described
briefly in the following section.

Being inspired by the Wasserstein distance of optimal
transport, Cheng et al. proposed aWasserstein distance-based
deep transfer learning method [13]. The authors created a
deep transfer learning (DTL) algorithm to perform learn-
ing in the target-domain by leveraging information from an
appropriate source-domain to determine the domain feature
illustrations to minimize the distributions between the source
and target domains through adversarial training. CNN based
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feature extractor generates those illustrations. They applied
Wasserstein-1 distance to measure the loss of domain dis-
criminator because Wasserstein-1 distance is the optimum
transport plan with the bottommost transport cost. In their
research, they inspected four types of bearing condition
data acquired by CWRU. Simple data preprocessing tech-
niques like dividing the samples equally in source-domain
and target-domain for their modification to a stationary pro-
cess, implementing FFT to compute the power spectrum in
frequency-domain of every sample, and clipping the left side
of the power spectrum calculated by FFT as the input of
WD-DTL are applied to the bearing datasets. They pro-
posed three transfer scenarios, including two unsupervised
and one supervised scenario. Unsupervised transfer scenarios
are for transfer between motor speeds (US-Speed) and trans-
fer between datasets at two sensor locations (US-Location),
whereas a supervised transfer scenario is for transfer between
dataset at two sensor locations (S-Locations). The proposed
WD-DTL model achieved the best transfer accuracies with
a 95.75% average score.

In [118], the authors proposed an unsupervised fault diag-
nosis of rolling bearings using DNN based on GANs in
which they designed categorical adversarial auto-encoder
(CatAAE). By adding a classifier on the latent layer of
adversarial AE, they introduced a newmodel named CatAAE
for unsupervised clustering. In this work, an auto-encoder is
trained through an adversarial training process and carries out
an earlier distribution on the latent coding space. The raw
data of rolling bearings is in the time-domain. To keep the
consistency of vibration signals under the same faulty condi-
tion,multiple features, including time-domain and frequency-
domain, are extracted to describe the health status through
FFT and statistical methods completely. Next, a classifier is
trained to differentiate the prior distribution from the fake dis-
tribution by harmonizing shared data between instances and
their forecasted categorical class distribution. Although the
encoder can extract features from the input data, the proposed
method still relies on computational time and frequency-
domain features of raw data. The number of labels used
in this study is 10, and different clustering indicators were
obtained when the model was performed under different SNR
and across the varying loads. Mixed time-frequency features
are employed in the procedure to get better robustness under
different environments. For the original signal, the clustering
indicator was found to be 98.36, and for 0 dB SNR, the clus-
tering indicator was found to be 94.35. Also, across the
different loads, different clustering indicators were obtained.
The average was found to be 90.15. SoftMax was used in the
last layer as the classifier. For the data preprocessing, multiple
features, including time-domain and frequency-domain, were
extracted.

In [119], F. Zhou et al. addressed the problem of misclas-
sification when the data is unbalanced and proposed a fault
diagnosis algorithm based on global optimization GAN in
which they combine a robust feature extraction capabilities
of DNNwith data generation capabilities of GAN for solving

this issue. In this paper, the authors designed a new generator
and discriminator of GAN to generatemore discriminant fault
samples using a scheme of global optimization. The generator
is designed to generate those fault features extracted from a
few fault samples via auto-encoder instead of fault data sam-
ple. The training of the generator is guided by fault feature
and fault diagnosis error instead of the statistical coincidence
of traditional GAN. The discriminator is designed to filter
the unqualified generated samples in the sense that qualified
samples are helpful for more accurate fault diagnosis. The
adversarial training mechanism is arranged by alternately
optimizing the generator and the 2-level discriminator. Here,
the network parameters of the generator, G, are fixed, and
the authenticity discriminator, D2, is optimized. Then, a
DNN-based fault diagnosis discriminator, D1, is established
by using the original unbalance dataset. The DNN fault diag-
nosis model can be updated by the generated samples to
get a smaller fault diagnosis error. Finally, the generator, G,
is optimized for making the generated samples more qualified
for fault diagnosis. The global optimization is accomplished
once the discriminator D1, D2, and generator G reach a Nash-
equilibrium, which increases the model’s efficiency. For pre-
processing data, a sliding window is used. The diagnostic
accuracy of this method for the three kinds of faults: inner-
race, roller, outer-race, for 10:1 unbalanced accuracy ratio is
94.58%, 96.85%, and 93.28%, which is far more than that of
using SAE.

Some of the other works which implement GAN for
MFDD using the CWRU dataset are as tabulated in Table 7.

Moreover, some of the references for the published
article using other datasets than the CWRU dataset
are [117], [125], [126].

E. RECURRENT NEURAL NETWORKS
Recurrent neural networks, which are abbreviated as RNNs,
are a class of neural networks that permit earlier outputs
to be processed as inputs while having hidden states. They
remember the past, and their decisions are influenced by
what they have learned from the previous state. Thus, RNN
recurrently processes the input data [127]. Since RNN has the
typical gradient vanishing or gradient exploding issue caused
by its nature, the LSTM networks were born to solve the
problem. LSTM, an abbreviation of Long Short-Term Mem-
ory, is the widespread network of these days. They are also
called the cells network, and these cells take the input from
the previous state and the current state. Not only in natural
language processing, text recognition, or speech recognition,
but RNNs are also widely used in machinery fault detection
and diagnosis. Fig. 10 shows the basic architecture of the
LSTM network.

In [128], an improved bearing fault diagnosismethod based
on the combined unified structure of 1-D CNN and LSTM
was proposed whose input is the raw sampling signal without
any pre-processing or traditional feature extraction. Here, the
entire architecture is composed of a 1-D CNN layer, a max-
pooling layer, an LSTM layer, and a SoftMax layer as the last
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TABLE 7. Some published works employing GAN in MFDD.

FIGURE 10. Architecture of RNN.

layer classifier. First, a part of raw bearing data is used as
the training dataset for the model, and when the number of
iterations reaches a specific value, the simulation ends. Then,
the rest of the signal data was input in the trained model as
the testing dataset to verify the effectiveness of the model.
The best testing accuracy ranges up to 99.6%.

Fault diagnosis of rolling bearings with RNN-based auto-
encoders is proposed in [129] in which a Gated Recur-
rent Unit (GRU) based denoising auto-encoder is used to
predict the multiple vibration value of REB of the follow-
ing period are forecasted from the preceding period. These
GRU-based non-linear predictive denoising auto-encoders

(GRU-NP-DAEs) are trained with a strong generalization
ability for each different fault pattern. The trained GRU-
NP-DAEs are received a multiple-input data, and the fault
diagnosis result is determined by the relevant GRU-NP-DAE
that produces the minimum reconstruction error between the
delay of the input and the model output. The concept of
classification accuracy is adopted to evaluate the feasibility of
the proposed method for health condition detection and fault
type classification. During the supervised learning process,
the data destruction method is selected, and the length loss
method is proposed to enhance the robustness of models. The
classification result of GRU-NP-DAE is not lower than 96%,
and even SNR decreases to 1 dB.

Some other works on MFDD employing RNN or LSTM
using the CWRU bearing dataset are tabulated in Table 8.

Moreover, [132]–[135] are some of the research carried out
for MFD using a dataset other than the CWRU dataset.

F. REINFORCEMENT LEARNING
Reinforcement learning is an area of machine learning that
deals with delayed reward and trains the systems to learn from
the consequences of their own choices. It resolves a kind of
problem where decision making is consecutive, and the goal
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TABLE 8. Some published work employing RNN in MFDD.

FIGURE 11. RL architecture.

is long-term. Employed by several machines and software to
determine the best probable path or action it should take in a
situation, reinforcement learning is all about taking favorable
action to augment reward in that situation. With the help of
simple reward feedback, the machine learns which action is
the best to perform, and this is known as the reinforcement
signal. Reinforcement learning and supervised learning are
different in a way that the training data has the answer key
with it in the supervised learning due to which the model is
trained itself with the accurate answers, whereas in the rein-
forcement learning as there is no answer, the reinforcement
agent chooses what to do to complete the given task. In the
absence of a training dataset, it is bound to learn from its
own experience [136], [137]. An overview of RL is shown in
Fig. 11. From teaching the machines to play Atari games to
its application in the manufacturing industry, reinforcement
learning is widely used these days. This reinforcement learn-
ing is being applied in the machinery bearing fault detection
and diagnosis also.

In [138], Wang et al. proposed a neural network architec-
ture automatic search method based on reinforcement learn-
ing for fault diagnosis of rolling bearings. The framework of
the proposed method contains two components: a controller
model and child models. The controller is a recurrent neu-
ral network and generates a series of actions; each action
specifies a design choice to construct the child models for
fault diagnosis. Then, the controller parameters are updated
using the policy gradientmethod of reinforcement learning by
maximizing the accuracy of the child models. They used the
CWRUdataset for the experimental verification inwhich they
used 12K sampling frequency data. There are 12 different
working states in which one was the healthy state, and the
remaining 11 were fault states. The vibration data measured
at 1750 rpm in each working state were divided into 400 sam-
ples, where each sample contains 300 data points. The first
350 samples are used to construct training samples, and the
remaining 50 are test samples.

Other important details are shown in Table 9.
The researchers used the RL system with kurtosis as an

index in [139] for MFD. The dataset used for carrying out
this research was other than the CWRU dataset.

IV. DEEP TRANSFER LEARNING AND DOMAIN
ADAPTATION METHOD
The ML and DL algorithms work efficiently when the data
is massive. However, having a massive amount of data is
not always favorable in real-world applications. So, to over-
come this issue, transfer learning approaches were proposed.
Transfer learning is an essential tool in machine learning,
which solves the problem of insufficient training data [73].
Cross-domain adaptation, one of the most popular methods
among the transfer learning approaches, is implemented with
situations in which a model trained on a source distribu-
tion is used in the context of a different, but related tar-
get distribution. In general, domain adaptation uses labeled
data in one or more source domains to solve new tasks in
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TABLE 9. Other necessary details of [138].

FIGURE 12. Overview of transfer learning algorithm.

a target domain [74]. By discovering the domain-invariant
features, domain adaptation creates a knowledge adaptation
from the source domain to the target domain, which mitigates
the distribution discrepancy between two domains [140].
Fig. 12 shows an overview of the transfer learning method.
Recently, the combinations of deep transfer learning with
domain adaptation are being widely practiced. Some of the
deep transfer learning and cross-domain adaptation strategies
used in REB fault detection and diagnosis are briefly summa-
rized and overviewed in this section.

In [141], the authors proposed a novel cross-domain fault
diagnosis method based on deep GAN in which artificially
generating the fake samples for domain adaptation, and their
model provided the reliable cross-domain diagnosis results
when testing data are not available for training. In this paper,
the authors used the maximum mean discrepancy (MMD)
to measure the distribution discrepancy. Here, they designed
a two-stage model where the first stage aims at artificially
generating different classes of fault data in the target domain,

and the cross-domain classifier is trained in the second
stage. In first-stage, three modules are adopted, i.e., feature
extractor, generator, and a primary classifier. First, a fea-
ture extractor is used to process the data sample, which is
the frequency-domain signal of the collected vibration data,
from which the high-level representation of the input can
be obtained. Next, a primary classifier is used for diagno-
sis, which ensures the extraction of discriminative features
under source supervision. Again, the generators are used
for data generation, and each generator is trained explicitly
for generating data of each fault class, respectively. After
training in Stage 1, the parameters of the feature extractor
are fixed and used for obtaining high-level representations
of input data. The cross-domain classifier module takes the
extracted representations as inputs and outputs the final diag-
nosis results. Specifically, in the implementation, the zeros-
padding operation is used to keep the feature map dimension
from changing. The dropout technique is preferred with a rate
of 0.5 to avoid overfitting. The sigmoid and rectified linear
unit activation functions are generally used in the network.

In [142], the authors proposed a model for overcoming the
problem of the requirement of a large amount of training data
for bearing fault detection and created a model that works
efficiently with limited training data. They proposed a based
few-shot learning approach, which is based on a siamese
neural network model based on deep CNN with wide first-
layer kernels (WDCNN). The model works by exploiting
sample pairs of the same or different categories, measuring
the distance of two WDCNN twins feature vector outputs in
terms of whether their outputs are considered quite similar
versus dissimilar. In a small training set with 90 training
samples, the method can achieve an accuracy of 92.56%.
They used the raw data directly without any preprocessing.

Similarly, [143] talks about an automatic classification
based on deep learning in which faulty signals are clustered
without human knowledge. Here, a dataset, in which each
sample is given a random label, is configured after extracting
the features of vibration signals from the frequency-domain
and used to train DNN to obtain an initial classification. The
classification results are assessed by testing the sub-signals
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extracted from the raw data, and the sample labels are modi-
fied according to the evaluation result. The modified dataset
is used to train the DNN a second time. Samples with char-
acteristic faults are clustered in various classes after iterating
the DNN training and testing. Here, time-domain signals are
converted to the frequency-domain, and the feature extraction
and dimensionality reduction are made. A sample dataset is
built, giving a random label to each sample. Then, a DNN
is constructed and trained. They used the PCA technique to
validate their model.

In [144], a domain adaptation method for MFDD based
on deep learning in which adversarial training is introduced
for marginal domain fusion, and unsupervised parallel data
are explored to achieve conditional distribution alignments
concerning different machine health conditions. Here, FFT is
firstly applied to the temporal signals to obtain the frequency-
domain information, which is then fed into the network
as inputs. The source-domain supervised data are explored
to extract the discriminative features for different machine
health conditions. The marginal data distributions of the
source and target domains are supposed to be drawn into the
same subspace to generalize the fault diagnostic knowledge
in the presence of a significant distribution discrepancy. The
additional unsupervised parallel data are utilized to align
the domain representation structures, and sensors collect the
supervised training data and the unsupervised testing data
at different places on the machine. Four categories of the
input data are considered, i.e., labeled source-domain data,
unlabeled target-domain testing data, and additional unla-
beled parallel data in both the source and target domains. The
number of classes for CWRU bearing data was 10. SoftMax
was used for a classification layer. The authors claim that
when the unsupervised parallel data cover a more extensive
range of classes, higher accuracies can be obtained. Gener-
ally, over 80% of accuracies can be achieved if the parallel
data contain more than 3 classes. When only a few parallel
data are available, higher than 50% accuracies can still be
obtained.

Similarly, a transfer CNN for fault diagnosis based on
ResNet-50 is proposed for fault diagnosis of bearings in [48]
in which they used transfer CNN (TCNN) with the depth
of 51 convolutional layers. TCNN applies ResNet-50, which
was trained on ImageNet as a feature extractor. First, for the
input of ResNet-50, a signal-to-image method was developed
for converting time-domain fault signals to RGB images for-
mat. Then, a new structure of TCNN(ResNet-50) is designed.
Finally, the proposed model was tested on three datasets,
including bearing damage dataset provided by KAT data-
center, motor bearing dataset provided by CWRU, and self-
priming centrifugal pump dataset. The number of classes
used for the CWRU dataset was 10, and they used SoftMax
in the classification layer. ReLU was used as an activa-
tion function, and BN was adopted after each convolution
layer. The prediction accuracies of TCNN(ResNet-50) for
the CWRU dataset was found to be 99.99%. They com-
pared their model with VGG-16, VGG-19 and Inception-v3,

in which their model performed more efficiently than those
all.

Some of the other works using transfer learning or domain
adaptation strategy using the CWRU bearing dataset for
machinery fault detection are tabulated in Table 10. Some of
the works employingDL-based transfer learning and domain-
adaptation approaches using the dataset other than the
CWRU dataset are [145] –[147].

V. WEAKNESSES OF CWRU BEARING DATASET
CWRU bearing dataset is long, varied, and complex. The data
is collected from multiple sensors placed at different places.
Each data file consists of data of different lengths, which
is not an integer multiple of 2. Again, one can analyze that
most of the datasets are exposed to non-classical features of
fault recognition; relatively few of the records gave classical
characteristics for the specified bearing fault type. Again,
many of the datasets exhibit non-stationary characteristics.
All the faults cannot be recognized correctly. The data records
ranged from very easily diagnosable to not diagnosable [23].
The variance is high because the bands of measurements
in the same file are dissimilar. Additionally, not all the
frequency components are regular; some are occasionally
large or small [143]. So, using preprocessors like FFT or other
signal processing techniques for feature extraction can be
tough. The main challenges will be in selecting the features-
which feature to choose and which feature to ignore.

Again, some records are heavily affected by the data acqui-
sition process, i.e., some records are corrupted with patches
of electrical noise, some DE and FE measurements are iden-
tical except for a scaling factor, some records appear to be
clipped in sections. Moreover, the bearing test rig assembly
appeared to affect the detection and diagnosis results more
than the fault itself, with an indication of mechanical loose-
ness detected in many of the datasets [23]. Also, the CWRU
dataset consists of the data which is operated under fixed
speed and load. The significant difference can be seen in
the same bearing fault class when operated under varying
loads or speeds.

VI. CHALLENGES USING DL MODELS FOR MFDD
The mechanical vibration signal, indeed, is one of the most
essential and abundant sources of information for a proper
understanding of the phenomena related to bearing effect.
Moreover, because of the numerous advantages, the use of
DL algorithms for bearing fault detection has been practiced
widely. However, DL algorithms have some limitations. The
challenges of a DL model are related to its architecture and
training process. Even though there is extensive published lit-
erature on DL implementations in FDD systems, they require
prior knowledge regarding their architecture [153]. That is
why many industrial applications do not generally prefer this
black box tool. Some of the challenges using DL techniques
for machinery fault detection are listed below:
• Deep learning models perform well when fed with enor-
mous data. So, it is a great challenge to collect vast
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TABLE 10. Some published work employing deep transfer learning and domain adaptation in MFDD.
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amounts of faulty or healthy machinery data for DL
algorithms to work effectively in machinery fault detec-
tion and diagnosis.

• Training DL models is extremely computational and
expensive. The most sophisticated models take weeks
to train using high-performance GPU machines. Also,
a huge memory is required to train the model [154].

• Again, DL works poorly when the dataset is unbal-
anced. It misclassifies the class with a higher number
of data samples. Furthermore, having a balanced bear-
ing dataset is itself a significant challenge. So, other
different approaches should be implemented to train
DL models when the data is unbalanced.

• The working condition of mechanical systems are very
complicated and keep on changing from time to time
according to production requirements. So, it is quite
unrealistic to collect and label enough training samples
for DL algorithms to work on bearing fault detection and
diagnosis.

• Industry systems are not allowed to run into faulty states
due to the consequences, especially for critical systems
and failures, and most of the electro-mechanical failures
occur slowly and follow a degradation path such that
failure degradation of a system might take months or
even years, which makes it challenging to collect related
datasets.

• Vibration signals need expensive sensors. Again, for the
accurate data, the sensors must be mounted tightly on
the machine for which the experts may be needed [9].
Otherwise, the data obtained may not be of good quality,
which will result in the poor performance of DLmodels.

• The DL architectures like auto-encoders require a pre-
training stage and become ineffective if errors are
present in the first layers. Such errors may cause the
network to learn to reconstruct the average of the train-
ing data. CNNs, on the other hand, heavily rely on
labeled data and may require many layers to find the
entire hierarchy. Moreover, DBNs do not account for
the 2-D structure of an input image, which may signif-
icantly affect their performance and applicability when
2-D images are used as input. Again, the steps towards
further optimization of the network based on maxi-
mum likelihood training approximation are unclear in
DBN [155]. Furthermore, finding Nash-equilibrium in
GAN training is itself a challenging process. RRNs,
on the other hand, encounter the problem of gradient
vanishing/ exploding [2]. Moreover, RL needs constant
supervision of the subject, and it also needs to know
where actions lead to estimate actions andmake choices.

• Much deeper networks may have difficulties and chal-
lenges such as exploding or vanishing gradients and
degradation in the training process, and there is a reduc-
tion of accuracy when the depth of the network exceeds
maximum [156]. So, network optimization is another
challenge with deep network architecture.

• The data quality may not always be good. Sometimes
the data is of poor quality and redundant too. Though
DL models work great with noisy data, they are still
struggling hard to learn from weak quality data, which
is a challenging work for DL algorithms in MFDD [38].

VII. RECOMMENDATIONS
For the successful implementation of DL algorithms in
machinery fault detection and diagnosis using the CWRU
bearing dataset, the authors make the following suggestions:
• Before developing any model or algorithm, we highly
recommend future researchers to study and analyze the
CWRU dataset and the benchmark study thoroughly.

• CWRU is a varied and complex database. A well-
designed classification method and algorithm is needed
for classifying such varied and complex dataset. For a
DL model to work efficiently, there should be enough
data. So, one can apply data augmentation techniques
before training the model. The accessible data augmen-
tation techniques like GAN, additional Gaussian noise,
masking noise, signal translation, amplitude shifting,
time-stretching, overlapping, and so on can be used.

• The CWRU dataset is also used as the validating dataset
for the accuracy of the model. When the data from other
sources than the CWRU dataset is used, the accuracy
may drop down because of the influence of noise or
variation in motor speed. So, proper measures should be
taken before doing this.

• Much of the research has been carried out in a balanced
dataset. Comparatively, it is easier to use a balanced
dataset than the imbalanced one. The imbalanced dataset
is the characteristic of real-world-applications. There are
many approaches to deal with imbalanced data. Authors
recommend the readers to have a thorough research
about the methods. Traditional techniques simply could
not identify all the features of imbalanced data. A better
approach would be to develop a more generic organizing
principle that can accommodate all possible types, rather
than individual approaches that deal with specific types
one by one.

• Condition monitoring with vibration signals is itself a
challenging task. Vibration signals need expensive sen-
sors. Again, for the accurate data, the sensors must be
mounted tightly on the machine for which the experts
may be needed [9]. So, if the researchers are interested
in working with their data, a proper procedure must be
applied when collecting the vibration data.

• Faults in bearings often manifest themselves at high
frequencies [23]. If the researchers are interested in
generating the fault samples, the use of a high sampling
rate is recommended.

• The authors recommend the bearing fault researchers to
follow the systematic and comprehensive approach in
documentation as well, which will be helpful for future
researchers.

93174 VOLUME 8, 2020



D. Neupane, J. Seok: Bearing Fault Detection and Diagnosis Using CWRU Dataset With DL Approaches

VIII. CONCLUSION
In the age of industry 4.0, deep learning algorithms have
attracted increasing attention for several research applica-
tions. Recently, DL models have been broadly employed in
machinery fault detection and diagnosis systems. With con-
tinued rapid advances in computer technology, DL models
will continue to be robust and attractive tools in machinery
fault detection and diagnosis systems. An attempt to sum-
marize and review the recent works and research on MFDD
using the CWRU dataset applying deep learning algorithms
has been made in this paper. We tried our best to cover the
recent workswhich useDE defects bearing data of the CWRU
dataset employing DL-algorithms detailly. The challenges in
dealingwith vibration data, employingDL-basedmodels, and
the recommendations from the authors are listed, which will
surely help future researchers.
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