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ABSTRACT In the development of modern intelligent Ubiquitous Electric Internet of Things (UE-IoT),
infrared thermal imaging always plays an important role in automated early-warning detection of developing
failures of critical assets such as transformers, disconnects and capacity banks in electrical power substation
non-intrusively. However, the low resolution and contrast of infrared images hinder the subsequent analysis
and recognition of fault points. In contrast, visible images present abundant texture details of the equipment
without thermal information. In order to assist the detection of fault points, this paper proposes a Generative
adversarial networks (GAN) based infrared and visible image fusion method to produce a composite image
with enhanced edges and better quality. The edge loss function is added to represent the perceptual edges.
In the discriminator, the proposed method improves the texture similarity between fusion image and visible
image by minimizing theWasserstein distance in VGG (Visual Geometry Group network) feature space. The
experimental results show that the fault regions become more salient and the details are enhanced. In this
way, it can facilitate the detection of fault points both reliably and accurately.

INDEX TERMS Image fusion, VGG, generative adversarial networks, ubiquitous electric Internet of Things.

I. INTRODUCTION
Since the security and reliability of power infrastructure is
growing more important than ever before, preventing the
breakdown of power devices due to different faults becomes
a main concern. Considering that the complexity between
the symptoms and faults, it is not accurate to perform fault
diagnosis based on single information source. Worse, it may
lead to false or missed judgements [1]. Therefore, the com-
prehensive analysis and evaluation of multiple information
sources is needed. In recent years, the proliferation of Ubiq-
uitous Electric Internet of Things (UE-IoT) in electric power
system has led to the deployment of various sensor devices,
which transfigure traditional devices or environment becom-
ing more intelligent. Consequently, improved fault detection
and remote monitoring can be implemented.

Intelligent inspection robots and unmanned aerial vehicles
have been widely used as terminal nodes in the inspection
of substations and overhead lines in the Internet of Things
[2]. These robots and unmanned aerials often carry infrared
and visible light dual sensors to collect relevant equipment
images and then sent them to cloud platforms for analysis and
processing [3]. Infrared sensor can measure the thermal radi-
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ation of the object non-intrusively in real time, wherefore is
often used for fault detection [4]. Lopez-Perez and Antonino-
Daviu [5] applied infrared images to the fault detection of
induction motors. Zhou et al. [6] designed a fault diagno-
sis and remote detection system to realize the analysis and
processing of the infrared image of the insulator. Qin et al.
[7] used infrared thermal imaging technology to monitor the
process of electrical performance testing and designed an
infraredmonitoring system for thermal batteries. Cui et al. [8]
designed a system to monitor the electrical equipment based
on infrared images in UE-IoT. Although infrared images are
widely used for fault detection in UE-IoT, relying on the sin-
gle infrared image obtained by infrared sensor is not accurate
enough. The infrared image has fewer details, low contrast
and resolution, which leads to inaccurate fault detection.
In contrast, the visible image obtained by the optical sensor
retains abundant texture information of power equipment.
Therefore, by performing edge computing at the terminal and
using image fusion algorithms, the useful information from
different sensors can be integrated together, which can not
only facilitate fault identification and detection [9], but also
compress data and save communication traffic [10].

For decades, numerous infrared and visible image fusion
methods have been proposed. These methods can be mainly
divided into five categories: subspace [11], multi-scale
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transform [12]–[15], sparse representation [16], [17], hybrid
models [18], [19], and the convolution neutral network
(CNN) [20]–[22] based methods. Subspace based fusion
methods convert the whole images into uncorrelated compo-
nents with non-parametric techniques such as PCA or ICA,
then the PCA or ICA coefficients matrices are weighted
by the Piella metric. Multi-scale transform based methods
are the most widely used methods in image fusion, which
decompose the source images into several sub-bands at dif-
ferent scales, and then certain fusion rules are applied to
fuse the sub-bands. Finally the fusion image is reconstructed
by performing inverse transform [23]. Multi-scale transform,
including pyramid transform [12], Wavelet transform [13],
non-subsampled Contourlet transform (NSCT) [14], and non-
subsampled Shearlet transform (NSST) are all introduced in
image fusion. Although multi-scale transform based fusion
method has ever been the mainstream, they fail to capture
the texture details efficiently compared with edge features.
The reason is that they adopt the fixed basis functions.
Therefore, ringing artifacts are always visible in the fusion
images. Unlike the multi-scale transform based fusion meth-
ods, sparse representation based methods divide the source
images into overlapped images patches, then sparsely repre-
sent the image patches as linear combination of atoms from
the learned over-complete dictionary. After that, the repre-
sentation coefficients are fused according to designed fusion
rules. Finally, the fusion image is generated through recon-
struction algorithm. Sparse representation based methods can
express the structured features more efficiently, benefitting
from more flexible choice of the basis functions. ASR [16]
and CSR [17] are typical examples of this category. Hybrid
model-based methods synthesize the advantages of different
schemes to improve the fusion quality. Ding et al. [18] intro-
duced a fusion method based on the Shearlet transform and
sparse PCA features.

In addition to the above methods, the infrared-visible
image fusion method based on CNN is also receiving great
attention in recent years. Liu et al. [20] proposed a new
method for infrared and visible image fusion based on con-
volutional neural network (CNN). Li and Wu [21] studied an
auto-encoder-decoder network, in which dense blocks were
used in the encoder to extract the features and these features
were fused in the decoder to obtain the fusion image. Yu
Zhang et al. [22] proposed a general image fusion framework
based on CNN, which adopted two convolutional layers to
extract the salient image features from multiple input images
and then fuse these features via feature fusion rules. Finally
two convolutional layers were used to combine and recon-
struct these features to obtain the fusion image. The CNN
based fusion methods can extract more meaningful features
and learn the parameters of filters for the image fusion task.

Above mentioned fusion methods for infrared and visi-
ble image perform the same representation framework for
all input images, this is not appropriate for specific fault
detection task. In fact, the thermal information in the infrared
image should be preserved in the fusion image, because it

reflects the important thermal radiation of devices. On the
other hand, the visible image shows the texture structures of
devices and should also be reinforced in the fusion image.
In addition, most fusion methods in the literature choose
fusion rules artificially, which seems a little rigid and lack
of adaptability.

Considering the application of image fusion for the fault
detection in the UE-IoT, this paper proposes an image fusion
method of infrared and visible images based on improved
Wasserstein Generative Adversarial Network (WGAN-gp).
The GAN include two parts: the generator and the discrimi-
nator, contending with each other in a mini-max game. Later,
WGAN [24] was proposed to speed the performance and
maintain the stability of the training process. GAN shows
great potential to generate realistic images and has been
introduced in various vision tasks, such as image registration
[25], image generation [26], super-resolution [27] and image
denoising [28] etc. In our design, the generator is supposed
to preserve the thermal information and the visible gradients
as much as possible, while the discriminator takes the texture
features in the visible image as the constraints. To enforce the
GAN convergence faster, gradient penalty is added during the
discriminator update.

The main contributions of this paper are as follows:
(1) Our proposed image fusion method is based on GANs,

which is a fully end-to-end model and the fusion image can
be generated without explicitly designing fusion rules.

(2) The VGG network is employed in the update process of
the generator and the discriminator, which help to improve the
texture similarity between fusion image and visible image.

(3) Considering that the temperature of the equipment is an
important basis for fault detection, we design a specialized
loss function for infrared and visible image fusion in fault
detection, in which the thermal information is given more
weight than detail information.

The rest of this paper is organized as follows. The
background and related works are presented in Section II.
Section III describes the proposed fusion method. The exper-
imental results and discussion are given in Section IV. Con-
clusions are presented in Section V.

II. RELATED WORK
A. THE UBIQUITOUS ELECTRIC INTERNET OF THINGS
Ubiquitous Electric Internet of Things (UE-IoT) is a smart
service system, which implements modern information tech-
nology and advanced communication technologies. It not
only realizes the interconnection of all things and human-
computer interaction in all links of the power system, but
also realizes the identification, perception, interconnection
and control of grid infrastructure, people and their envi-
ronment. The UE-IoT architecture is the same as other
forms of IoT systems, which can be divided into four lay-
ers: perception layer, network layer, platform layer, and
application layer [29]. The network architecture is shown
in Fig. 1.
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FIGURE 1. Architecture of the ubiquitous electric internet of things.

1) PERCEPTION LAYER
The perception layer is the bottom layer of the ubiquitous
electric Internet of Things, and it is also the hub that connects
field devices and the network layer. Its main function is to
realize information collection and signal processing [30]. Due
to the large number of field device terminals to be connected
to the perception layer, the terminal operating system is not
uniform, and the data provided by the terminal needs to be
integrated and processed by edge computing before reaching
the platform layer.

2) NETWORK LAYER
The network layer is the second layer in UE-IoT, which
consist of access network and transmission network, where
the former undertakes the task of data access while the lat-
ter realizes the function of information transmission. As a
link, the network layer connects the perception layer and the
application layer, responsible for transmitting the information
obtained by the perception layer to the application layer
safely and reliably, and then performs information processing
according to different application requirements.

3) PLATFORM LAYER
The platform layer is located above the perception layer
and the network layer, and below the application layer. It is
the core of the UE-IoT, which is expected to integrate the

huge amount of information resources in the network into a
large interconnected network through computing power, and
solve problems such as data storage, data mining, and privacy
protection.

4) APPLICATION LAYER
The application layer is the top layer of the UE-IoT, and its
role is to analyze the data transmitted from the network layer
and apply it to some practical scenarios to provide users with
a series of services.

B. GENERATIVE ADVERSARIAL NETWORKS
Generative adversarial networks (GANs) are algorithmic
architectures proposed by Ian Goodfellow [31],which involve
a generator and a discriminator. The generator is trained to
produce plausible image with similar characteristics as the
input samples, while the discriminator learns to identify the
fake images from the real images and penalizes the generator
for producing the fake samples. Such adversarial learning
process between generator and discriminator continues until
the generated data distribution cannot be distinguished from
the real one.

Although the original GANhas achieved impressive results
in generating realistic images, it is challenging to train
a GAN model, confronting with the problems of training
instability and non-convergence. In order to solve above
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problems, many improved versions of GANs have been pro-
posed. To make the adversarial network training process con-
trollable, the conditional Generative Adversarial Networks
(cGAN) [32] introduced conditional variables in training
process. In order to solve the gradient vanishing problemin
original GANs, the Least Square GANs (LSGAN) [33]
adopted the least squares loss function for discriminator, thus
performed morestable than original GANs. It was argued
[24] that the JS divergence used in original GANs may
result in gradient vanishing and wrong optimization direc-
tion, so Wasserstein divergence was adopted instead of JS
divergence tomeasure the distance between two distributions,
which greatly improved the stability of GANs. However,
in practical applications, Wasserstein GAN (WGAN) still
suffers from unstable training and slow convergence, and
the improvement is not obvious in experiments compared to
traditional GANs. As an advanced version ofWGAN, namely
the WGAN-gp, Ishaan et al. [34] pointed out that the reason
why such problems appear was that WGAN used weight
clipping directly when enforcing Lipschitz constraints. Thus,
inWGAN-gp, gradient penalty was applied to meet Lipschitz
continuity constraints, which made training process more
stable and converge faster than WGAN.

III. PROPOSED METHOD
A. MOTIVATION
Although the existing fault detection methods of power
equipment in UE-IoT have achieved remarkable success,
there still exist some problems. Most fault detection methods
only consider infrared images of power equipment. However,
the low resolution of infrared images and blurred target edges
make it difficult to locate the fault accurately. On the other
hand, the fast development of information technologies puts
forward higher requirements for the accuracy and speed of
fault detection technology for UE-IoT power equipment.

To integrate the thermal radiation distribution from
infrared image and the texture details from visible image into
one fusion image, we propose an infrared and visible image
fusion method based on improved Wasserstein generative
adversarial networks. In order to preservemore edge informa-
tion in the visible image, we use the first three convolutional
layers of VGG19 networks [35] as feature extractors, and
calculate the edge loss between extracted features of the
generated image and the visible image.

B. METHOD
We assume the fusion of infrared and visible images as the
adversarial learning problem between the generator and the
discriminator in the GAN. Our work can be divided into two
parts, namely training phase and testing phase. As shown
in Fig. 2. In the training phase, firstly, a pair of infrared and
visible image is stacked and fed into the generator. The gen-
erator extracts features from the input images and integrates
them, and then generates the fusion image under the guidance
of the loss function. Next, features of the fusion image and the

visible image extracted by the trained VGG19 are fed into the
discriminator. The discriminator will minimize the difference
between the fusion image and the visible image in the feature
spaces by the Wasserstein distance. This adversarial learning
process between the generator and the discriminator contin-
ues until the maximum number of iterations of the adversarial
network is reached. In the testing phase, we only input the
infrared image and visible image pair into the trained gener-
ator, the output of the generator is the final fusion image.

C. ARCHITECTURE
1) GENERATOR ARCHITECTURE
As shown in Fig. 3 (a), our generator architecture is composed
of five convolution layers. First of all, the stacked infrared
image and visible image are fed into the first layer, where
7 × 7 filters are applied to extract low level features. Then,
these features will be input to the following layer, in which
5× 5 filters are used. In the third and fourth layer, we apply
3×3 filters to further extract the high level features. In order to
keep the output image with the same size as the input image,
the size of filters in the last layer is set to 1 × 1. Consider-
ing that the down sampling and padding operation will lead
to the loss of image details and the artifacts around image
boundary [36], convolution layer without any down sampling
and padding is introduced. Besides, the activation function in
each convolutional layer adopts leaky ReLU. Furthermore,
the batch norm layer is used in the first four layers except the
last one. All parameter settings of the generator are shown in
TABLE 1.

2) DISCRIMINATOR ARCHITECTURE
The discriminator consists of four convolutional layers and
a fully connected layer, as shown in Fig. 3 (b). The filter
size of the first two layers is 5 × 5, whereas 3 × 3 filters
are used in the second two layers. After each convolutional
layer, we adopt the layer normalization rather than the batch
normalization, considering that we only penalize the discrim-
inator with respect to each input independently, not the entire
batch. In addition, we use leaky ReLU activation function for
first four layers, and the stride of filters is set to 2. It should be
noted that the discriminator in traditional GANs is simply a
classifier, which evaluates the probability of the input image
to be real image. But the aim of discriminator in WGANs is
to measure the distance between the input image distribution
and the real image distribution, which can be regard as a
linear regression problem. Thus we use linear layer as the last
layer and remove the sigmoid layer. Parameter settings of the
discriminator are listed in TABLE 1.

D. LOSS FUNCTION
1) GENERATOR LOSS
Since the generator is designed to generate a fusion image
which preserves as much thermal information in the infrared
image and detail information in the visible image as pos-
sible, we update the generator under the guidance of this
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FIGURE 2. Framework of the proposed method.

FIGURE 3. Architecture of the generator and discriminator.

information. The loss function of generator is designed as:

Gloss = Ladversal + θLedge + γLthermal (1)

As shown above, the generator loss consists of three parts:
adversarial loss Ladversal , edge information loss Ledge and
thermal information loss Lthermal , where θ and γ are weight-
ing factors. Considering that the temperature variation is an
important detection indicator for fault detection, we assume
that the thermal information in the infrared image is more
important than the details in the visible image for our purpose.
Thus, we prefer to preserve the thermal information in the
fusion image during the update of the generator, and we set θ
to 1 and γ to 10.

The Lthermal is the thermal information loss between the
fusion image and the infrared image. Since it is well known
that the thermal information of the infrared image is repre-
sented by its pixel intensity [37], we define the Lthermal as
follows:

Lthermal =
∥∥If − Ir∥∥2F (2)

where the ‖·‖F denotes the matrix Frobenius norm, and the
If and Ir represents the fusion image and infrared image,
respectively.

To capture the texture and edge information in the visible
image, style loss proposed in image style transfer task is
employed in [38]. Through extracting the feature maps by the
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TABLE 1. Parameter settings of generator and discriminator.

VGG19 network, it evaluates the difference between feature
maps from different layers.

Ledge =
1
K

K∑
k=1

1
CkH kW k

∥∥∥G (ϕk (If ))− G (ϕk (Iv))∥∥∥2
F

(3)

where the G(·) is gram matrix of feature map, and the ϕk (·)
denotes the feature map in k-th layer of the trained VGG19.
The size of the feature map in k-th layer isCk

×H k
×W k . For

the convenience of calculation, the feature maps are reshaped
into Ck

× H kW k .
The Ladversal represents the adversarial loss between gen-

erator and discriminator, which is defined as:

Ladversal = −
1
N

∑N

n=1
DθD

(
ϕK

(
Inf
))

(4)

where the Inf denotes the n-th fusion image in training set, the
ϕK (·) represents the feature map in the last layer extracted by
the VGG19 and DθD (·) denotes the output of discriminator.

2) DISCRIMINATOR LOSS
To solve the problems of unstable and slow convergence
during the GAN training process, the WGAN-gp [34] added
gradient penalty term during update of the discriminator.

Inspired by that, we also introduce the gradient penalty in
our work. Thus we fine-tune the loss function based on the
original loss function in [34]:

Dloss =
1
N

∑N

n=1

(
DθD

(
ϕK

(
Inf
))
− DθD

(
ϕK

(
Inv
))

+ λLpenalty
)

(5)

where the first two items are included in the original loss
function of discriminator. The Lpenalty is the gradient penalty
term of discriminator, λis a penalty coefficient. The Lpenalty
is defined as:

Lpenalty =
(
∇αDθD

(
ϕK (Iα)

)
− 1

)2
(6)

where the∇α represents the gradient operation, α is a random
number in (0, 1), and Iα = α · Inf + (1−α) · Inv . The Iα can be

regarded as a random sample between visible image and the
fusion image.

IV. EXPERIMENTS
To verify the advantages of the proposed fusion model,
we compare our method with other five state-of-the-art meth-
ods. The compared methods include adaptive sparse repre-
sent (ASR) [16], cross bilateral filter (CBF) [39], latent low
rank representation (LATLRR) [40], ResNet and zero-phase
component analysis (ResZca) [41], visual saliency map and
weighted least square optimization (WLS) [19]. All these
methods can be implemented based on their public codes,
and the parameters are set the same as in original papers.
Experiments are performed on a workstation with 3.2GHz
Intel Xeon CPUW-2104, GPUGeForce RTX 2080, and 8 GB
memory.

A. TRAINING DETAILS
We select 49 pairs of infrared and visible images from TNO
database1 as our training data. However, it is far from enough
to train a good model, so we crop each image into a set of
64×64 image patches by overlapping scheme (i.e., the stride
is 16). Thus, we can obtain 45027 pairs of infrared and
visible image patches. Since there is no padding operation
in the convolutional layer, we pad these patches to the size of
78 × 78 before feeding them into the generator. In this way,
the generated fusion image patch is the size of 78× 78. Both
generator and discriminator use the Adam [42] solver with
the learning rate of 0.002. Penalty coefficient λ is set to 15
and the batch size is set to 1, the max iterations of the GAN
network is set to 20000. The procedure and parameter settings
are summarized in Algorithm1.

B. FUSION METRICS
In recent years, numerous subjective metrics have been pro-
posed to evaluate the quality of the fusion image on the
basis of human visual system. Subjective metrics are usually
carefully designed by measuring the details or distortion

1https : //figshare.com/articles/TNO_Image_Fusion_Dataset/1008029.
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Algorithm 1 Training Procedure of the ProposedMethod
Parameters: Niters = 20000,Ncritic = 5,N : the Num-
ber of Patches λ = 15, θ = 1, γ = 10

for i = 1 to Niters do
for j = 1 to Ncrttic do

for n = 1 to N do
Inf = GθG

(
Inv , I

n
r
)

Lnthermal =
∥∥∥Inf − Inr ∥∥∥2F

Lnedge =

1
K

∑K
k=1

1
CkH kW k

∥∥∥G (ϕk (Inf ))−G (ϕk (Inv ))∥∥∥2F
Iα = α · Inf + (1− α) · Inv
Lpenalty =

(
∇αDθD

(
ϕK (Iα)

)
− 1

)2
Dloss = Dloss + DθD

(
ϕK

(
Inf
))
−

DθD
(
ϕK

(
Inv
))
+ λLpenalty

Gloss =
Gloss −DθD

(
ϕK

(
Inf
))
+ θLnedge + γL

n
thermal

end
Dloss = Dloss/N
Gloss = Gloss/N
Update discriminator by AdamOptimizer:
∇θD(Dloss)

end
Update generator by AdamOptimizer:

∇θG (Gloss)
end

in the fusion image. Here, we compare the performance
of fusion methods under three evaluation indexes, includ-
ing structural similarity (SSIM) [43], mutual information
(MI) [44], and human perception inspired index Qc [45].
Two sources images are referenced as A and B, and the
fusion image is denoted as F. The image variable X can be
A or B.

1) STRUCTURE SIMILARITY
SSIM is a common model that measures the structure sim-
ilarity between the source images and the fusion image.
It models distortion as a combination of three different
factors: brightness, contrast and structure. The SSIM is
defined as:

SSIMX ,F =
2µXµF
µ2
X + µ

2
F

·
2σXσF
σ 2
X + σ

2
F

·
σXF

σXσF
(7)

SSIM = SSIMA,F + SSIMB,F (8)

where the µ and σ represent the mean and standard variance
of the image patch. The σXF indicates the standard covariance
correlation between the source and fusion image. Sliding
windows are applied to calculate the SSIM of the whole
image. The closer the value of SSIM is to 1, the better the
quality of the image.

2) MUTUAL INFORMATION
Mutual information (MI) is a metric that measures how much
information is transmitted from the source images to the
fusion image. The MI is defined as:

QMI = MIAF +MIBF (9)

where the MIAF and MIBFare the mutual information
between the fusion image and the source image A and B, they
are defined as follows:

MIXF =
L∑
i=0

L∑
j=0

PXF (i, j) log2
PXF (i, j)
PX (i)PF (j)

(10)

where the PXF represents the joint gray histograms between
the source and the fusion image. The PX andPF denote the
normalized gray histogram of the source image and the fusion
image. The greater the QMI value indicates the better fusion
image quality.

3) HUMAN PERCEPTION INSPIRED INDEX
QC is a human perception inspired index, it measures the
visual effect of the fusion image by comparing the contrast
characteristics of the fusion image and the source image. The
QC is defined as follows:

QC =
∑
i,j

λA(i, j)QAF (i, j)+ λB(i, j)QBF (i, j) (11)

where QAF and QBF represent the degree of contrast infor-
mation in source image A and source image B retained in the
fusion image, respectively. The λA and λB represent saliency
maps of QAF and QBF .

C. OBJECTIVE COMPARISONS
In order to compare the fusion effects of various methods
in different environments, we select four pairs of infrared
and visible images of power equipment as experimen-
tal images, including transformer, insulator, arrester and
breaker respectively. The sizes of these four pairs of images
are 296× 196, 496× 500, 256× 256, and 1080× 900. The
fusion results are shown in Fig. 4. For the ‘‘transformer’’,
most methods have integrated the information well in the
fusion image, except that the CBF-based method presents
unexpected blocking artifacts around the pillar of the insu-
lating sleeve and the ASR-based method shows obvious
speckles near the fuel tank edge of the transformer. As to
‘‘insulator’’, the fusion image produced by LATLRR appears
some artifacts around the transmission tower, and in theWLS
based fusion image the edges of the transmission tower is
more blurred than other fusion results. The ResZca and our
proposed method perform well in first two pairs of image,
but the ResZca based fusion image appears obvious pseudo-
Gibbs effects in the neighborhood of the voltage stabilization
ring in the third row and the wires in the fourth row, while
our proposed method has avoid such artifacts. The texture
and edge information in visible images are well preserved.
Furthermore, the target in our fusion image is more highlight
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FIGURE 4. Visual result of various methods. From top to bottom: transformer, insulator, arrester and breaker. From left to
right: infrared image, visible image, fusion images of ASR, CBF, LATLRR, ResZca, WLS and our method.

TABLE 2. Quantitative comparison of various methods.

TABLE 3. Running time comparison of various methods (second).

compared with all other methods, which indicate that our
method can keep more thermal information in the infrared
image.

D. QUANTITATIVE COMPARISONS
The quantitative comparison result of three metrics is shown
in Table 2. For the SSIM, the proposed fusion method gets the
largest values in first three fusion images, which indicate that
more texture and details are preserved in the fusion image.
For the MI and QC , the values of our last three fusion images

are significantly higher than other methods, especially in the
last fusion image, which indicate our method not only retains
more information in the original image, but alsomore friendly
for human perception system. Furthermore, considering fault
detection for power equipment in theUE-IoT, real-time is also
a very important criterion. The time costs of differentmethods
are listed in Table 3. As we can see, our method takes much
less time than other algorithms, which means that our method
is more suitable to meet the real-time requirements of fault
detection in UE-IoT than other algorithms.
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V. CONCLUSION
In this paper, we propose an infrared and visible image
fusion method based on improved Wasserstein generative
adversarial network for fault points detection in the UE-IoT.
We adopt the trained VGG19 model to extract the features of
the generated fusion image and the visible image, and min-
imize the style differences between these features to ensure
that the fusion image can obtain enough edge details. Besides,
considering the actual requirements of fault detection, we
emphasize the importance of the thermal information during
training process. Our method is an end to end model, which
can bypass designing fusion rules manually. To verify the
performance of proposed method, we compare it with the
other five methods. The experimental results show that the
fusion image obtained by our method can preserve more
details from source images, and has better visual fidelity.
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