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ABSTRACT In order to further improve the accuracy and real-time performance of the traditional Single
Shot Multibox Detector (SSD) object detection model, an improved SSD multi-object detection model is
proposed. Firstly, aiming at the defect of weak correlation between prediction object score and positioning
accuracy in the traditional SSD model, the improved model enhanced the correlation between the two by
adding Intersection Over Union(IoU) prediction loss branch. Secondly, in order to reduce the spatial redun-
dancy of traditional SSD model, a multi-frequency feature component convolution module is designed, which
greatly reduces the calculation overhead and hardware overhead of the traditional model. Finally, in order
to accelerate the convergence speed of the improved model, the Adaptive and Momental Bound (AdaMod)
optimizer is introduced to modify the adaptive learning rate of the improved model which is too large in
the training process. Experimental results show that the improved model has stronger detection capabilities,
better overall detection results, and improved detection accuracy and real-time detection.

INDEX TERMS Object detection, IoU predicting loss, SSD, multi-frequency feature component convolu-

tion, AdaMod optimizer.

I. INTRODUCTION

With the continuous improvement and development of the
object detection technology, there are more ideal use expe-
rience and a wide range of applications. In the aspect of
traffic [1], object detection can be efficiently completed
by detecting pedestrian, vehicle, road signs, traffic lights
and other objects on the road to assist traffic management.
In the medical field [2], object detection is often applied to
the pathological detection and recognition of images, which
makes a significant contribution to the prevention and cure
of diseases. The application of these aspects shows that the
work done by the object detection instead of the human
is very efficient and convenient. In the military field [3],
object detection is usually used to track the missile hitting
the target, which plays an important role in the intelligent
development of the military field. In the field of security [4],
object detection is used to track suspicious vehicles and
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detect illegal and criminal behaviors in real time, providing a
favorable guarantee for social security protection. At present,
there are two kinds of common object detection algorithms,
which are based on two-stage and single-stage processes.
In the two-stage object detection algorithm, the candidate
boxes area are first generated, and then the candidate boxes
are classified and adjusted. Its main representative algorithms
are R-CNN series algorithms. Such algorithms have high
accuracy, but there are problems such as slow detection
speed and low real-time detection of algorithms. However,
the object detection algorithm based on single-stage process
generates object bounding box and probability classification
directly, without the need to generate the candidate box
areas, which improves the speed of object detection, but the
accuracy rate has decreased. Representative object detection
algorithms based on single-stage and two-stage processes
include SSD [5] and Faster R-CNN [6].

In order to solve the problems in object detection, many
scholars at home and abroad have done a lot of research
work. In 2014, Ross Girshick et al. proposed R-CNN
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(Region-based Convolutional Neural Networks) [7] algo-
rithm, which introduced the deep learning [8] model CNN
(Convolutional Neural Networks) into the object detection
field for the first time, and the detection effect was sig-
nificantly improved compared with the traditional object
detection algorithms. However, the R-CNN algorithm needs
to acquire the features of 2000 Rol (Region of Interest)
from select search [9] no matter in the training or predic-
tion stage of the model, which results in the slow detec-
tion speed of the network model. In addition, the process
of feature extraction can’t be updated because the relevant
feature extractor of CNN is separated from the SVM used
for prediction. Therefore, after R-CNN algorithm, Ross gir-
shick proposed Fast R-CNN [10] algorithm in 2015, which
was optimized for the defects of R-CNN and improved the
training and prediction speed of R-CNN detection algorithm
to some extent. After that, Faster R-CNN was proposed by
Shaoqing Ren et al. Based on Fast R-CNN, this algorithm
constructed a region proposal network (RPN). The prediction
network directly generated Region Proposals instead of the
ROI obtained by selecting the search method. With the help
of RPN, the detection speed of Faster R-CNN was further
improved. Because R-CNN needs to obtain a large number
of proposals, and the large amount of overlapping proposals
causes a lot of unnecessary repetitive work. You only look
once (YOLO) [11] modified the prediction idea based on
proposal in the R-CNN series of algorithms, dividing the
input image into several small cells, and making prediction
in each small cell. YOLO algorithm realized the end-to-
end detection effect and improved the detection rate, but the
detection accuracy was deficient due to its coarse granularity.
The SSD algorithm draws on the ideas of the YOLO cell
and the anchor mechanism of Faster R-CNN, which is a
multi-object detection algorithm that directly predicts the
object categories and boundary boxes. The SSD algorithm
uses the methods of generating default box and convolution
prediction to achieve the purpose of multi-object detection
by comprehensive utilization of the output feature maps of
different convolution layers. The SSD algorithm generates
multiple default boxes for each predicted position in the
output feature maps and sets different aspect ratios and sizes.
During the prediction, SSD algorithm generates categories
scores for the object in each default box and processes the
corresponding default boxes. However, there are some prob-
lems in SSD detection algorithm, high network space redun-
dancy and the high redundancy between each feature map,
which are not conducive to the accurate positioning of the
objects in the input image. Therefore, Fu et al. improved the
original algorithm by combining stronger feature extraction
network and adding more context information through the
deconvoltional module, and proposed the Deconvolutional
Single Shot Detector (DSSD) [12] model. However, with the
replacement of feature extraction network and the addition of
deconvolution module, the real-time detection performance
of model is greatly reduced. In order to improve the detection
accuracy of SSD object detection algorithm, Jeong et al. [13]
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improved the method of feature fusion, so as to make full
use of the features of each output layer. Li et al proposed
the feature fusion single shot multibox detector (FSSD) [14]
model, which obtained more details of the output feature
layers through feature fusion and down-sampling, so as to
improve the detection accuracy of the model.

In order to improve the detection accuracy and real-time
performance of traditional SSD object detection algorithm,
the model of this paper makes the following related work:
Firstly, to enhance the correlation between object score and
positioning accuracy, the IoU prediction loss branch was
added to the improved model. Secondly, in order to reduce
the spatial redundancy of the SSD model, the multi-frequency
feature component convolution module is designed for the
original model. Finally, in order to accelerate the conver-
gence of the improved model, the abnormal adaptive learning
rate during the model training process was modified by the
AdaMod optimizer [15].

Il. RELATED WORK

A. MULTI-FREQUENCY FEATURE THEORY

With the continuous improvement and development of related
technologies in the field of computer vision, convolutional
neural network has been applied in many fields such as
object detection, image recognition [16], semantic segmen-
tation [17] et al., and has achieved great success. Although
in recent years, convolutional neural network has made some
achievements in reducing the redundancy of relevant model
parameters [18]-[20] and channel dimension of network
feature maps [21]-[24], the output feature maps generated
by convolutional neural networks still have a lot of redundant
information in the spatial dimension. In the output feature
maps generated by the network model, each location sep-
arately stores the relevant feature information of its own
location. However, the feature information stored in adjacent
locations is often similar, and these public information can be
stored and processed together. Due to the existence of a large
amount of redundant information, the execution efficiency of
the network model is reduced.

Perform a related Fourier transform on the natural image.
The transformed image usually contains two parts: low fre-
quency and high frequency. The region with slow change
in the grayscale image of the natural image corresponds to
the low frequency part, while the region with drastic change
corresponds to the high frequency part. The low frequency
region represents the overall structure of the natural image,
while the high frequency part focuses more on the detail edge
in the natural image. Inspired by this, the multi-frequency
feature theory [25] divides the relevant output feature maps
of convolutional neural network into high-frequency region
and low-frequency region. In order to reduce the spa-
tial redundancy information, the low-frequency information
that changes more gently is stored in a tensor with lower
dimension.
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On the premise of satisfying the information exchange
and update between different frequencies, the low frequency
region and high frequency region of the feature maps are
operated separately by convolution kernel. The relevant flow
of multi-frequency feature representation is shown in figure 1.

FIGURE 1. Relevant process of multi-frequency feature representation.

In order to perform correlation operations on multi-
frequency feature maps, it can be seen from Figure 1 that
the multi-frequency feature theory is extended to the general
convolution neural network, and divides the feature maps of
the general convolutional neural network into high-frequency
and low-frequency feature maps. By sharing adjacent location
information, the spatial features of low-frequency groups are
reduced and stored in the tensor of low-resolution, so as
to reduce spatial redundancy. With the reduction of spatial
redundant information, the memory resource consumption
and the computation cost of the convolutional neural network
are greatly reduced.

B. ADAMOD OPTIMIZER

In order to accelerate the convergence of the algorithm,
the Adma [26] algorithm is widely used at present, but due to
its poor convergence, not only the applicability of the algo-
rithm is limited, but also the convergence result is not ideal.
Therefore, in order to obtain better experimental results, the
Stochastic Gradient Descent (SGD) [27] algorithm is still
widely used in sample classification prediction. But better
experimental results are at the expense of real-time detection.
Therefore, the AdaMod optimizer based on the Adma algo-
rithm is proposed. During the training process of the network
model, the AdaMod optimizer does not need to warm up and
is not sensitive to the learning rate of the network model.
By calculating the average value of the adaptive learning
rate, the abnormal learning rate in the training process is
modified, thus improving the convergence of the optimizer.
The AdaMod optimizer principle is as follows:

The related parameters of the optimizer are set, including
step length &, moment estimation exponential decay rate p1,
p2 € [0,1], smaller constant value § for numerical stability,
and initial parameter 6. The first moment and second moment
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variables s, r and time step ¢ are initialized. Randomly select
m samples from the training data set, {x1, x2, X3,..., Xm},
the corresponding relevant target is y;. The gradient of the
relevant sampling data set is calculated by equation (1) and
the time step is updated.

1
g < Vo) L 0), y)
t =141 1))

Through equations (2) and (3), the first moment and second
moment estimates are updated.

s < p1s+ (1 —p1)g 2)
r < por + (1 — p)g* )

The deviation of the first moment and the second moment is
corrected by equations (4) and (5).

N

§ <« 4)
1—p}
e ®)
F<— —
1—p}
Equations (6) and (7) are used to update the parameter 6.
A § (6)
= —E&—-
Vits
0 < 0+ A0 @)

The above process expresses the optimization principle of the
Adma optimizer. Based on the Adam optimizer, the AdaMod
optimizer adds a hyper-parameter p3 to describe the length of
memory during the model training process. Before updating
the relevant parameter 0, the relevant update operation of the
smooth value u is added, as shown in equation (8).

&
Vi = —
T Vi+s
uy = p3u—1 + (1 — p3)vy (8)

In formula (8), p3 represents the measure of memory length,
and 1/p3 represents the range of exponential average sliding.
The closer the value of p3 is to 1, the larger the memory
range of the optimizer. After the smooth value i is calculated,
it is compared with the learning rate v, calculated by the
optimizer. In order to avoid a high learning rate in the training
process, the smaller value of the two is selected to update
the relevant parameter 6. The relevant description can be
expressed by equation (9).

0y = 0,—1 — min(v;, u;)§ 9

As described in the related literature of AdaBound [28],
abnormal learning rate and the fluctuation of learning rate
generally appear at the end of training, which is not conducive
to the convergence and generalization of the optimizer.
Referring to the idea of exponential moving average,
the AdaMod optimizer first calculates the low-order moment
value of the gradient. Secondly, the hyper-parameter p3 is
introduced to describe the length of memory in the training
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process of the model. Through the parameter p3, the long-
term memory in the training process is introduced into the
next step of the optimizer process, so as to avoid the optimizer
falling into a bad state and trim the adaptive learning rate of
excessive value. Thus the generalization and convergence of
the optimizer are improved. In addition, the AdaMod opti-
mizer can control the change of the adaptive learning rate at
the beginning of training to ensure the stability of the training
start and training process, eliminating the relevant ‘‘warm-
up phase”, so that the convergence result of the optimizer
is better, the convergence speed is faster, and the overall
performance is better.

Ill. ALGORITHM DESIGN

A. LOSS FUNCTION

As atypical single-stage object detector, SSD object detection
model has the advantages of simplicity and efficiency, and
has been widely used in many fields [29], [30]. However, due
to the low correlation between the predicted object category
score of the model and the accuracy of object positioning,
which leads to the decline of the performance of the SSD
model.

In terms of loss function, the improved SSD model
enhances the correlation between the object classification
score and the object positioning accuracy. The improved
model uses Visual Geometry Group 16 (VGG-16) [31] as
the basic network, and adds an IoU prediction loss branch
to predict the IoU value between the default bounding box
and the real bounding box. Multiply the classification score of
the predicted object and the predicted IoU value, and use the
result as the detection confidence of the improved model. The
improved model includes classification loss branch, regres-
sion loss branch and IoU prediction loss branch. The loss
structure of the improved SSD model is shown in figure 2.

FIGURE 2. Improving the loss structure of SSD mode.

An IoU loss prediction branch was added to the improved
SSD model. In order to ensure the effectiveness of the
improved scheme and not affect the efficiency of the model,
the head of the IoU prediction branch is similar to other
branches, only including a 3 x 3 convolution layer, and the
sigmoid activation function layer ensures that the predicted
value of IoU is at [0,1]. Since the range of IOU prediction
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value is between [0,1], the Binary Cross Entropy (BCE) loss
is taken as the IOU prediction loss, which can be expressed
by equation (10). In addition, the classification loss of the
improved model adopts Cross Entropy (CE) loss, while the
regression loss adopts smooth L1 loss, which is respectively
represented by equations (11) and (12). In the training process
of the model, the three loss branches participate in the training
together.

N

Liou = Z BCE(IoU;, 16U;) (10)
Pos i€ePos
1 N M

Las = —(D CE(ip) + ) CE@ip) (1)
Pos iePos ieNeg
1 N

Lie = & YooY smooth (I =& (12)
oS

iePos mecx,cy,w,h

The total loss of the model can be expressed by equations(13).
Lan = Leis + Lioc + Liou (13)

Before outputting the prediction box of the object to be
detected, the final score of the default box is calculated by
equation (14), in which the parameter p is used to control the
weight of the category score and the IoU value. Compared
with a single classification score, the calculation method of
the default box score enhances the correlation between the
detection confidence and the positioning accuracy. Applying
the calculation results to the ranking in the NMS process can
better suppress the poor local detection.

S =plloU; ™" (14)

B. MODEL STRUCTURE DESIGN

1) DISASSEMBLY OF FEATURE MAPS

Based on the scale space theory, a series of Gaussian filters
can be used in the processing of related images. With the
change of the size of the Gaussian filter, the representation
of the image at different scales can be obtained. Assuming
that H (x, y) represents a two-dimensional image and the
two-dimensional Gaussian function is G (x, y; t), the linear
scale space of the relevant image can be obtained by convo-
lution of the two, as shown in equation (15).

L((x,y; 1) = H(x,y)"G(x, y; 1)
)C2 '2

1
= H(xy) 5 e o (15)
T

where t = ¢2 represents the variance of the Gaussian filter,
which is called the scale parameter. The larger the value of 7,
the more dramatic the smoothing of the related image. When
t = 0, the image is not smoothed.

The convolution result is equivalent to the image itself.
Similarly, the output feature maps of the convolutional layer
can be divided into two parts, high-frequency features and
low-frequency features. The low-frequency feature compo-
nents of the correlation feature maps are obtained by the
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Gaussian filter with ¢t = 2. The components not processed by
the Gaussian filter are called high-frequency feature compo-
nents. Due to the redundancy of the low-frequency features,
the low-frequency component correlation feature maps was
halved to 1/2 of the high-frequency component correlation
feature maps.

Suppose the input feature tensor of the convolutional layer
of the improved SSD model is X € R*"*" where ¢ repre-
sents the number of feature maps, and /2 and w are the spatial
dimensions of the input tensor. X is divided into two parts:
high-frequency feature component Xy and low-frequency
feature component X . Xy € RU—Aexhxw x, c RBxexhxw
B € [0,1] represents the proportion allocated to low frequency
feature component.

2) CONVOLUTION OPERATION BASED ON HIGH AND LOW
FREQUENCY FEATURE MAPS
Although the decomposition of the feature maps can effec-
tively reduce the spatial redundancy, it is also accompanied
by corresponding problems. Because of the difference of
spatial resolution between the low-frequency feature and the
high-frequency feature, the traditional convolution calcula-
tion cannot directly operate the decomposed input feature
tensor. In order to act directly on the decomposed feature
tensor X = {XL, Xu}, so as to avoid extra computing cost
and hardware overhead, the following strategies are adopted.
It is assumed that W € R**¥ represents the kxk con-
volution kernel of the improved model, and X, Y € Rexhxw
represent the input and output of the correlation convolution
calculation. Based on section 3.2.1, the input characteris-
tic tensor X of convolution calculation is divided into two
parts: high and low frequency characteristic components,
X ={Xu, XL}, and the corresponding output ¥ ={Yy, YL }.
Suppose that the input and output of convolution calculation
have the same dimension c, that is, ¢j; = cout = ¢. In order
to obtain the convolution result Y, the convolution kernel
W 1is divided into Wy and Wi, as shown in Figure 3, and
corresponding convolution calculation process is represented
by equations (16) and (17).

Yu = f(Xu; Wu—n) + upsample(f Xp; Wi ), 2)
— YH*)H + YL%H
q

st
~pe
Qe o
7 R
N L
Zi
Z
7
A 7
A ’
7z
, /]
y 7
, ’
, ’
, 7
3
v
7
A=B)en | Wasn Wi Al

FIGURE 3. Decomposition of convolution kernel.
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Z H—LT H
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For the Yy_.py part in equation (16), the information is
updated using normal convolution calculation. While the
YL g part, the low frequency feature component X is
up-sampled, and then the corresponding convolution oper-
ation is performed. Similarly, Yy in equation (17) is
processed by average pooling. In equations (16) and (17),
(p, g) represents the position coordinate, My = {((i,)):(i =
S = (R ) Y and Y
represent the internal 1nf0rmat10n update of the high and
low frequency feature components. Yy, and Yp_.g rep-
resent the information exchange between the high and low
frequency feature components.

3) THE CONVOLUTION OPERATION MODULE AND
COMPATIBILITY PROCESSING

The traditional SSD object detection model takes VGG16 as
the basic network and replaces the fc7 of the basic net-
work with conv7. By adding Conv8_2, Conv9_2, Conv10_2,
Convl1_2 detection layers to increase the convolution
depth. The detection model combines Conv4_3, Conv7,
Conv8_2 and other convolutional layers to detect and identify
the objects.

To enhance the detection efficiency of the detection model,
reduce the calculation overhead and hardware overhead of the
model, the improved model processed the ordinary convolu-
tion layers of the traditional SSD detection algorithm, decom-
posed the relevant input feature tensor, and compressed the
spatial resolution of the low-frequency feature component.
Then the purpose of reducing model calculation overhead and
related memory overhead is achieved. In addition, through
the setting of the switch control parameter B, the processed
ordinary convolution layers has good compatibility with the
convolution layers participating in the object detection, and
the relevant process is shown in figure 4.

In the related improved SSD detection algorithm, in order
to convert ordinary features into multi-frequency feature
components for representation, the algorithm sets By = 1
and Bi, = 0 in the Convl1_1 layer. Except for the relevant
convolutional layers used for object detection, the remaining
convolutional layers are all set to Bout = Bin = B. In order
to ensure the compatibility of the multi-frequency feature
component convolution modules and the object detection
layers, it is necessary to transform the multi-frequency feature
representation outputs from the general convolution layers
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C ibility with general

FIGURE 4. Convolution operation and compatibility processing of the improved model.

into the common feature representation. Therefore, before
relevant object detection, set Bgy to 0. At this time, the
convolution path related to the output of the low-frequency
feature components will be disabled, so as to generate the
output of a single full-feature layer for the detection of related
objects in the input image.

C. OPTIMIZATION OF TRAINING PROCESS

To further improve the real-time detection of the SSD model
and accelerate the convergence speed of the model. Instead
of using the traditional SGD algorithm, the improved model
uses the AdaMod optimizer to optimize the real-time perfor-
mance of model detection. The AdaMod optimizer is used to
adjust the abnormal adaptive learning rate during the training
of the improved model, which guarantees the stability of the
training process. The AdaMod optimizer introduces a hyper-
parameter to describe the length of memory during the model
training, which improves the generalization and convergence
of the SSD model and accelerates the model’s convergence
speed.

IV. EXPERIMENT

A. EXPERIMENTAL DATA SETS AND EVALUATION
INDICATORS

The related experiments are based on the MS COCO data
set, which contains approximately 118,000 training images,
5000 verification images, and 20,000 unlabeled test images.
It contains 500,000 labeled objects from 80 object categories.
In addition, in order to verify the generality of the improved
SSD algorithm, the relevant experiments based on the
PASCAL VOC2012 data set were expanded, which is com-
posed of 17125 training images and 5138 test images.

The evaluation indicators of the improved model are car-
ried out from two aspects: On the one hand, the detection
accuracy of the improved SSD model is measured by the
following four types of AP values: APg 9 value when the IoU
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threshold is set to 0.9, APy 75 value when the IoU threshold
is set to 0.75, APgs value when the IoU threshold is set to
0.5, and the average AP value (Average for APy 5, AP¢ 75 and
APp9). On the other hand, the FPS value is used to evaluate
the real-time performance of the improved model.

B. RELATED RESEARCH

1) RESEARCH ON SETTING OF HYPER-PARAMETER o IN loU
PREDICTION BRANCH

In order to explore the impact of the IoU prediction loss
branch on the improved SSD model, a series of studies have
been carried out on the relevant parameters p. The relevant
IoU prediction loss branch uses binary cross-entropy loss,
and the detection confidence of the improved SSD model is
calculated by the formula § = p/ IoU; ~” . The results of the
exploration are shown in tables 1 and 2.

TABLE 1. Effect of hyper-parameter p on AP values of SSD 300 (based on
MS COCO data set).

p AP APos APo 75 APoo
SSD algorithm 26.47 43.1 25.8 10.5
pi*loU; 28.33 453 27.3 12.4
1.0 27.87 46.2 26.4 11.0
0.9 28.60 47.5 26.8 11.5
0.8 29.17 48.1 27.3 12.1
0.7 29.63 48.6 28.0 12.3
0.6 29.83 49.0 28.3 12.2
0.5 30.27 49.4 28.6 12.8
0.4 30.83 49.7 29.4 134
0.3 30.77 50.1 29.1 13.1
0.2 28.80 447 28.1 13.6
0.1 26.70 42.3 24.9 12.9

0 0.37 0.4 0.4 0.3

The detection confidence of the model depends on the
two parts of the category score and the IoU value, and the
relevant contribution of the category score and the IoU value
to the model detection confidence depends on the parame-
ter p. It can be seen from table 1 that when the value of p
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TABLE 2. Effect of hyper-parameter p on AP values of SSD 300 (based on
PASCAL VOC2012 data set).

p AP APy s APy.75 APoo
SSD algorithm 52.77 75.8 58.2 243
pi*loU; 53.83 76.4 59.4 25.7
1.0 53.63 76.8 58.9 25.2
0.9 54.30 77.2 59.8 25.9
0.8 54.73 77.4 60.5 26.3
0.7 55.17 77.8 60.9 26.8
0.6 55.60 78.3 61.4 27.1
0.5 56.00 78.5 61.7 27.8
0.4 56.63 79.1 62.3 28.5
0.3 56.80 79.4 62.1 28.9
0.2 51.17 74.6 56.4 22.5
0.1 46.37 69.8 50.7 18.6

0 0.6 0.8 0.6 0.4

is set to 1, the average accuracy value AP of the model is
slightly increased by 1.4% compared with the original SSD
algorithm, which indicates that IOU prediction loss branch
of the improved SSD model is beneficial to improve model
performance. When the value of p is set to 0.4, the average
accuracy value AP of the improved model reaches the best,
which is 4.36% higher than the original SSD algorithm.
In addition, according to the experimental data in table 2,
it can be seen that when p is 1, the average accuracy value
AP is slightly improved by 0.86% compared with the original
algorithm. When p is 0.3, the average accuracy value AP is
56.8% and the accuracy is improved by about 4%.

The experimental data in table 1 and table 2 are respec-
tively based on the experimental results of MS COCO and
Pascal VOC 2012 data sets, which verify that the IoU pre-
diction loss branch has good generalization on different data
sets and the effectiveness of the model accuracy performance
improvement. In addition, in the process of p value contin-
uously decreasing from 1 to 0.3, the contribution of the pre-
dicted IoU value to the detection confidence is continuously
increasing, and the AP values of the relevant improved SSD
model tend to increase, which obviously indicates the rela-
tionship between the prediction loss branch of IOU and the
positioning accuracy of the model, and effectively improves
the performance of the model. The change of AP value is
shown in Figure 5.

2) RESEARCH ON SETTING HYPER-PARAMETER S IN
MULTI-FREQUENCY CONVOLUTION
When decomposing the output feature maps of the convolu-
tional layers, the calculation cost of the improved SSD model
and the related memory consumption are closely related to
the parameter 8. With the change of parameter $, the optimal
setting of parameter § is explored based on the PASCAL
2012 data set, and the parameter p of the IoU prediction
loss branch is set to 0.3. The calculation cost and memory
consumption proportion change of the improved model are
shown in table 3

It can be seen from table 3 that the increase of param-
eter B makes the relevant low-frequency feature com-
ponents of the improved model increase continuously,
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FIGURE 5. Relationship between hype-parameter p and SSD 300 AP
values.

TABLE 3. The influence of hype-parameter g on calculation cost and
memory loss.

)i 0 0.125 0.25 0.5 0.75 0.875 1
calculation cost 100% 84% 69% 48% 32% 26% 23%
memory loss 100% 93% 82% 65% 46% 37% 28%

TABLE 4. The influence of hype-parameter g on the performance of the
improved mode.

B APos % Time(ms) FLOPs(x10%)
0 79.4 126 4.3
0.125 79.8 117 3.7
0.25 79.2 102 3.1
0.5 76.3 79 2.6
0.75 74.5 65 2.1

resulting in more low-frequency feature components being
compressed, and the calculation cost and memory loss
are significantly reduced. With the continuous compression
of the low-frequency feature space, the relevant accuracy
changes of the improved SSD model are shown in Table 4.
When g is 0.125, the detection accuracy of the model is
improved by 0.4%, and the computational cost is significantly
reduced. Experimental data show that the compression of
related low-frequency features will not cause the loss of
important features in the image. Continuing to improve the
proportion of low-frequency feature components. Before 8
reaches 0.75, the detection accuracy of the improved model
is still improved compared with that of the original SSD
object detection model (Table 2: the test result of ap0.5 of
the original SSD model is 75.8%). When the proportion of
low-frequency feature component is 75%, the accuracy rate
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drops by only 1.3%, but other related performance is greatly
improved. The improved SSD model effectively reduces
the relevant spatial redundancy information, improves the
model efficiency, and shows the effectiveness of the improved
model. Figure 6 shows the effect of the hyper-parameter 8 on
various indicators of the improved model.
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the improved model.

VOLUME 8, 2020

Yu—r, YLy indicate two information communication
paths between high and low frequency feature components,
which have an important impact on the accuracy of the
improved SSD model. The deletion of any information com-
munication path will reduce the performance of the improved
model. When 8 is 0.25, the relevant experimental results are
shown in Table 5.

TABLE 5. The influence of information communication path on the
performance of the improved mode.

B Y Yin APos %
delete delete 76.0
retain delete 78.1
0.25 delete retain 77.9
retain retain 79.2

C. COMPARISON OF RELATED MODELS

Based on MS COCO and PASCAL VOC2012 data sets,
the improved SSD model and related comparison models
are trained and tested. In the training stage of the improved
model, in order to accelerate the convergence of the model,
the traditional SGD algorithm is no longer used, and the
relevant training process of the model is optimized using
the AdaMod optimizer. In addition, based on the exploration
results of relevant experiments, the correlation parameter p
of the IoU prediction loss branch is set to 0.3, and the related
hyper-parameter 8 in the multi-frequency convolution opera-
tion is set to 0.25. Set the relevant parameters of the AdaMod
optimizer, where the step size ¢ is 0.001, the moment esti-
mation exponential decay rates p1, p2 are 0.9 and 0.999, and
the smaller constant value § used for numerical stability is
set to 10-8, the measurement parameter p3 of the memory
length is set to 0.99. Perform sufficient iterative training on
all models involved in the experiments, and use the test sets of
the relevant data sets to test the trained model. The test results
and experimental analysis are as follows:

1) COMPARISON OF EXPERIMENTAL RESULTS BASED ON
MS COCO DATA SET

Based on the MS COCO data set, the improved model and
related comparison models are trained and tested. The com-
parison results are shown in Table 6.

Table 6 shows the test results of the improved SSD detec-
tion algorithm and related comparison algorithms on the MS
COCO data set. It can be seen from the data in the table that
the improved model has better real-time detection and higher
detection accuracy than Faster RCNN, YOLO v2, SSD, FSSD
and DSSD detector models. On the related test set of MS
COCO, the average accuracy of APys5 and APy75 on the
improved SSD 300 algorithm can reach 39.55%. Compared
with the FSSD model, the average accuracy of our algo-
rithm is improved by 1.8%. Compared with the traditional
SSD detection model, the accuracy of the improved model
is increased by 5.1%, and the original SSD model is signif-
icantly improved. In terms of real-time detection, the FPS
value of the improved SSD 300 model can reach 61, which is
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TABLE 6. Comparison of related algorithms based on MS COCO data set.

algorithm data set basic network FPS (APos5tAPg.75)/2 APys APy 75
Faster RCNNI®I MS COCO VGG16 7 30.45 42.7 18.3
Faster RCNNI®I MS COCO ResNet101 2.4 32.65 452 20.1

YOLOv2([32] MS COCO Darknet19 76 31.60 44.0 19.2

SSD3005! MS COCO VGGl6 49 34.45 43.1 25.8

SSD5120) MS COCO VGGl6 22 39.40 48.5 30.3

FSSD300!'4] MS COCO VGG16 45 37.75 47.7 27.8

FSSD513014 MS COCO VGGl6 19 43.15 52.8 335

DSSD32111 MS COCO ResNet101 12 37.65 46.1 29.2

DSSD513!12 MS COCO ResNet101 8 44.25 53.3 352

Our SSD300 MS COCO VGG16 61 39.55 49.8 29.3

Our SSD512 MS COCO VGG16 39 44.90 54.1 35.7
TABLE 7. Comparison of related algorithms based on PASCAL VOC 2012 data set.

algorithm data set basic network FPS (APos5+APg.75)/2 APys APy 75
Faster RCNNI® VOC 2012 VGG16 7 65.05 73.4 56.7
Faster RCNNI® VOC 2012 ResNet101 24 67.80 76.4 59.2

YOLOv2(2 VOC 2012 Darknet19 74 67.95 78.6 57.3
SSD3006! VOC 2012 VGG16 48 67.00 75.8 58.2
SSD5126 VOC 2012 VGG16 22 70.65 79.5 61.8

FSSD300!'4] VOC 2012 VGGl6 46 68.55 78.8 58.3

FSSD513014 VOC 2012 VGG16 18 71.70 80.9 62.5

DSSD321112 VOC 2012 ResNet101 12 68.35 78.6 58.1

DSSD513012 VOC 2012 ResNet101 8 71.80 81.5 62..1

Our SSD300 VOC 2012 VGGl6 60 70.45 79.2 61.7

Our SSD512 VOC 2012 VGG16 38 73.05 82.7 63.4

enough to meet the needs of real-time detection. It is believed
that the improvement of model performance can be described
from the following two aspects. On the one hand, the intro-
duction of the IoU prediction branch can more accurately
locate the objects in the input image, the positioning effect
of the objects are improved. The missed detection of small
and medium-sized objects has been improved. On the other
hand, the AdaMod optimizer makes the model convergence
faster. In addition, the improved algorithm performs con-
volution operation based on multi-frequency feature maps,
compresses the low-frequency feature components of the rel-
evant convolution layers output, reduces the spatial redundant
information of the improved SSD algorithm and reduces the
interference of irrelevant information. In the end, the accuracy
and the real-time detection of the improved model have been
well improved. The relevant experiments fully demonstrated
the advantages of the improved model and the effectiveness
of the algorithm improvement. The APy 5 iterative training
changes of the relevant models are shown in Figure 7.

2) COMPARISON OF EXPERIMENTAL RESULTS BASED ON
PASCAL VOC 2012 DATA SET
In order to verify the generality of the improved detection
algorithm, the improved model and related comparison mod-
els were trained and tested again based on the PASCAL VOC
2012 data set. The experimental results are shown in Table 7.
According to the experimental data in table 7, the APQ.5 of
the improved SSD 300 algorithm on the PASCAL VOC
2012 data set can reach 79.2%, which is 3.4% higher
than the detection accuracy of the original SSD 300 algo-
rithm. Compared with DSSD, FSSD and other algorithms,
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FIGURE 7. APy s iterative training changs of related models (based on
MS COCO data set).

the detection accuracy of the improved algorithm still has
obvious advantages on the Pascal VOC 2012 data set.
Analysis of the real-time detection of the improved model,
compared to Faster RCNN, SSD, FSSD and DSSD, the detec-
tion speed of our improved model is much faster. In this
paper, it is considered that convolution operation based on
multi-frequency feature maps and compression of correla-
tion low- frequency feature components play a key role in
improving the speed of model detection. The AP 5 iterative
training changes of the related models are shown in Figure 8.
Combining the experimental results of MS COCO and
PASCAL VOC data sets, it can be considered that the
improved model has good generality on different data sets.

D. DECTION EFFECT ANALYSIS
The advantages of the improved SSD algorithm are mainly
reflected in three aspects. Firstly, our algorithm improves
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the situation of repeatedly detecting multiple parts of the
same object and taking multiple objects as the same detection
object. For example, in Figure 9 (aj), the traditional SSD
detection model repeatedly detects the same object, which
is obviously incorrect. From the comparison figure(ay),
the improved algorithm can significantly improve this phe-
nomenon. In addition, in Figure 9 (c;), the traditional
SSD object detection algorithm detects multiple objects
as the same object, and the real situation should be two
objects. Secondly, compared with (d;) and (d2) in Figure 9,
the improved algorithm has better detection effect on small
and medium-sized objects than the traditional SSD object
detection algorithm. By introducing the IoU prediction loss
branch, the improved model can more accurately locate
the objects in the input image. Compared with the tradi-
tional SSD object detection algorithm, our algorithm can

successfully detect more small and medium-sized objects.
Finally, the traditional detection algorithm relies on the
regression of the bounding box to complete the positioning of
the objects, without considering the fuzzy situation of the real
bounding box. Generally speaking, the bounding box regres-
sion with higher classification score should be more accurate,
but the real situation is not the case. As shown in figure (dy),
the first person on the left outputs two prediction boxes, and
the positioning effect of the bounding box with higher score
(0.97) is not as good as that of the bounding box with lower
score (0.91). To this end, the improved algorithm effectively
improves this situation by exploring the optimal value of the
hyper-parameter p in the IoU detection branch.

V. CONCLUSION

The improved SSD multi-object detection model has been
improved in terms of detection rate and efficiency, and
reduced the calculation cost and related hardware cost of the
model. Its contributions are mainly reflected in the following
aspects:

(1) Aiming at the defect that the correlation between
the predicted object category score and the object
positioning accuracy of the traditional SSD model is
weak, the improved model enhances the correlation
between the object score and the positioning accuracy
by adding the IoU prediction loss branch, so as to
improve the detection accuracy of the model.

(2) In order to improve the real-time performance of the
algorithm and reduce the spatial redundancy of
the model, the convolution correlation module of
multi-frequency feature components is designed for the
traditional SSD object detection model, which reduces

(a2) (b2)
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(c2) (d2)

FIGURE 9. The detection results of the original SSD model (a; — d;) and the improved model (a, — d,).
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the calculation cost and related hardware cost of the
traditional model.

In order to improve the real-time performance of
SSD model and accelerate the convergence speed of
the model. By introducing the AdaMod optimizer,
the adaptive learning rate of the abnormal value of
the improved model was modified, and the generaliza-
tion and convergence of the traditional SSD model are
improved.

Through a large number of experiments, the opti-
mal settings of the hyper-parameter p in the IoU
detection branch and the hyper-parameter S in the
multi-frequency convolution operation are explored.
Based on MS COCO and PASCAL VOC2012 author-
itative data sets, it is verified that the improved model
has good performance in different data sets.
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