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ABSTRACT The perturbations are the unwanted and unknown inlets in nonlinear plants which can affect
the outlets. In this article, an estimator is studied for the variables and perturbations estimation in nonlinear
plants. The saturation map is used in our estimator instead of the signum map to decrease the chattering, and
we ensure the estimator convergence by the Lyapunov analysis. The conditions required by our estimator
gains are found to reach the variables error convergence, and these gains are used for the perturbations
estimation. An algorithm is proposed to choose the gains for achieving a satisfactory performance in our
estimator. The studied estimator is applied for the variables and perturbations estimation in the gas turbine
and gasification plants.

INDEX TERMS Variables, perturbations, estimation, gas turbine, gasification, convergence.

I. INTRODUCTION
The perturbations are the unwanted and unknown inlets in
nonlinear plants which can affect the outlets. This issue has
occurred in many nonlinear plants. Since perturbations can
affect the sensors, actuators, or plants yielding additional
costs, and since most nonlinear plants regulators require the
knowledge of perturbations; an approach for the perturbations
estimation is welcome.

There are some studies about regulators for perturbed
plants. In [1] and [2], the active strategy for the perturba-
tions attenuation is mentioned. In [3] and [4], the singular
perturbations approach for the perturbations attenuation is
considered. The variables and perturbations estimation in
plants is focused in [5]–[7], and [8]. In [9]–[12], and [13],
the robust analysis for the perturbed plants stabilization is
focused. The perturbations estimationwith fuzzy regulators is
mentioned in [14] and [15]. In [16]–[18], and [19], the authors
use the neuro-fuzzy approximations for the perturbed plants
regulation. The adaptive laws for the perturbed plants regu-
lation are focused in [20], [21], and [22]. In [23] and [24],
the structure theory for the perturbations attenuation is men-
tioned. From the above studies, in [1], [2], [5], [6], [7]–[11],
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[12], [13], [17], and [19], the authors use approaches for the
variables or perturbations estimation in nonlinear plants; then
it would be welcome to be focused on this issue. The novelty
of this article is that each nonlinear plant has a different
structure; consequently, a special estimator with the structure
of the gas plants must be discussed.

There are various estimators who use the plant outlets for
the variables estimation [1], [2], [5], [6], but there are not
many estimators who use the plant outlets for the perturba-
tions estimation. In [7], [8], [11], [13], [17], [19], previous
studies of estimators are focused for the perturbations esti-
mation, but with the two below differences: in the previous
studies estimators with adaptive or feedback outlets are used,
while in this article an estimator with sliding modes outlets is
used, in the plants of previous studies the noise is not used,
while in the plants of this article the noise is used.

In this article, the sliding mode approach is utilized in our
estimator for the variables and perturbations estimation in
nonlinear plants. Since the sliding mode approach uses the
signum map, it can yield the unwanted chattering [3], [12],
[14], [15].

The first contribution of this article is that an estimator
is designed, it is described by the following characteristics:
1) the saturation map is used in our estimator instead of the
signum map to decrease the chattering; and later, we ensure
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the estimator convergence by the Lyapunov analysis, 2) find
the conditions required by our estimator gains that allow it to
reach the variables error convergence; it yields an acceptable
performance in the variables and perturbations estimation.

The second contribution of this article is that an algorithm
is proposed to choose the gains for achieving a satisfactory
performance in our estimator, it is described as follows: 1) we
choose a value for the gain 1, 2) we obtain the estimator
matrix, 3) we obtain the eigenvalues of the estimator matrix,
if the real parts of all the eigenvalues of the estimator matrix
are negative, then the gain 1 is correctly chosen and we can
go to the step 4, otherwise, we must return to the step 1,
4) we choose the matrix 1 of the Lyapunov equation, 5) we
substitute matrix 1 and estimator matrix into the Lyapunov
equation, and we find the matrix 2 of the Lyapunov equation,
if matrix 1 and matrix 2 of the Lyapunov equation are positive
definite, then matrix 1 is correctly chosen and we can go to
the step 6, otherwise, we must return to step 1, 6) we choose
the gain 2, gain 3, and gain 4 to solve the estimator, if the
estimator reaches an acceptable exactness for the variables
and perturbations estimation in the nonlinear plant, then the
algorithm finishes, otherwise, we must return to step 6.

Our estimator is applied for the variables and perturbations
estimation in the gas turbine and gasification plants. The gas
turbine plant is used for the electrical energy generation from
the gas [25], while the gasification plant is used for the gas
generation from biomass [26].

The rest of the article is described below. Section II
presents the estimator design containing the variables error
convergence, and the perturbations estimation in nonlinear
plants, later, an algorithm is proposed to choose the gains
for achieving a satisfactory performance in our estimator.
Sections III and IV estimators are studied for the variables
and perturbations estimation in the gas turbine and gasifi-
cation plants. Section V express the conclusion and future
work.

II. THE ESTIMATOR FOR THE VARIABLES AND
PERTURBATIONS ESTIMATION
In this section, a variables estimator, and a perturbations
estimator, which are termed as estimator will be studied for
the variables and perturbations estimation in nonlinear plants.

In this article, a special nonlinear plant will be used in
which the outlets have a linear combination with the vari-
ables, the variables have a nonlinear combination with the
variables, and the perturbations are entered additively. The
nonlinear plant is [25], [26]:

·

h = Ah+ f (h, v)+ Bu+ B~

y = Ch (1)

h ∈ <n as plant variables, v ∈ <m as the plant inlets, y ∈ <
as the plant outlets, u ∈ < as the perturbations, f (h, v) ∈ <n

as a nonlinear map, ~ ∈ < as the noise, A ∈ <n×n, B ∈ <n×1,
C ∈ <p×n as matrices.

A. THE VARIABLES ESTIMATOR
The goal of the variables estimator is that using the inlets
and outlets, the variables of the variables estimator should
estimate the nonlinear plant variables.

The estimator error ỹ is:

ỹ = y− ŷ = Ch̃ (2)

ŷ as the variables estimator outlet, h̃ = h− ĥ as the variables
error, ĥ as the estimator variables. The variables estimator is:

·

ĥ = Âh+ f (̂h, v)+ Kỹ+ Esat(Mỹ)

ŷ = Cĥ

sat(Mỹ) =


[c]cc1 Mỹ > 1
Mỹ |Mỹ| ≤ 1
−1 Mỹ < −1,

(3)

ĥ as the estimator variables, ŷ as the estimator outlets, sat(·)
as the saturation map, M as a matrix where MC ∈ <n×n is a
positive semi-definite constant, K ∈ <n×1 and E ∈ <n×1.

B. THE CONVERGENCE ANALYSIS OF THE
VARIABLES ESTIMATOR
In this sub-section, the convergence of the variables estimator
applied to nonlinear plants is analyzed based on the Lyapunov
approach [3], [4].

The closed loop model of the variables estimator is the
subtraction of (3) to (1) and using the estimator error (2) as:
·

h̃ = Ãh+ f (h, v)+ Bu+ B~ − f (̂h, v)
−Kỹ− Esat(Mỹ)

H⇒

·

h̃ = Ãh+ f̃ + Bu+ B~ − KCh̃− Esat(MCh̃)

H⇒

·

h̃ = As̃h+ f̃ + Bu+ B~ − Esat(MCh̃) (4)

f̃ = f (h, v)− f (̂h, v), As = A− KC . The nonlinear map f̃ is
bounded as

∣∣̃f ∣∣ ≤ f , |·| as the absolute value.
The below theorem analyzes the variables estimator con-

vergence.
Theorem 1: The variables error of the variables estimator

(2)-(3) applied to estimate the nonlinear plant variables h (1)
is convergent, γ = λmin(QsP−1s ),

∣∣̃f + Bu+ B~∣∣ ≤ u, u ≤
E, ‖·‖ as the Euclidean norm in <n, |·| as the absolute value,
Ps ∈ <n×n and Qs ∈ <n×n are positive definite matrices
which meet:

ATs Ps + PsAs = −Qs (5)

As as is expressed in (4).
Proof: The Lyapunov candidate map is:

L = h̃TPs̃h (6)

The derivative of (4) is:

·

L =

·

h̃
T

Ps̃h+ h̃TPs
·

h̃

H⇒
·

L = h̃T
(
ATs Ps + PsAs

)
h̃

+2̃hTPs
[̃
f + Bu+ B~ − Esat(MCh̃)

]
(7)
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Using the second term of (7), sat(MCh̃) = sat (̃h), and∣∣̃f + Bu+ B~∣∣ ≤ u, is:
2̃hTPs

[̃
f + Bu− Esat(MCh̃)

]
= 2̃hTPs

[̃
f + Bu+ B~

]
− 2̃hTPsEsat (̃h) (8)

Using (8) in (7) is:

·

L = h̃T
(
ATs Ps + PsAs

)
h̃+ 2̃hTPs

[̃
f + Bu+ B~

]
−2̃hTPsEsat (̃h) (9)

Using ATs Ps + PsAs + µPs = −Qs of (5), is: The equation
of (9) can be expressed as:

·

L = −̃hTQs̃h+ 2̃hTPs
[̃
f + Bu+B~

]
−2̃hTPsEsat (̃h) (10)

Since (5),
∣∣̃f + Bu+ B~∣∣ ≤ u, u ≤ E , and since (3), (7),

sat (̃h) =


1 h̃ > 1
h̃
∣∣̃h∣∣ ≤ 1

−1 h̃ < −1
, we notice that there are three cases

of the saturation map. 1) If h̃ > 1, then sat (̃h) = 1 and
h̃ =

∣∣̃h∣∣, we replace in (10) as:
·

L = −̃hTQs̃h+ 2̃hTPs
[̃
f + Bu+ B~

]
− 2̃hTPsEsat (̃h)

⇒
·

L ≤ −̃hTQs̃h+ 2̃hTPsu− 2
∣∣̃h∣∣T PsE

⇒
·

L ≤ −̃hTQs̃h (11)

2) If
∣∣̃h∣∣ ≤ 1, then sat (̃h) = h̃ and h̃T h̃ =

∣∣̃h∣∣T ∣∣̃h∣∣, we replace
in (10) as:

·

L = −̃hTQs̃h+ 2̃hTPs
[̃
f + Bu+ B~

]
− 2̃hTPsEsat (̃h)

⇒
·

L = −̃hTQs̃h+ 2̃hTPsu− 2̃hT h̃PsE

⇒
·

L = −̃hTQs̃h+ 2̃hTPsu− 2
∣∣̃h∣∣T ∣∣̃h∣∣PsE

⇒
·

L = −̃hTQs̃h− 2
∣∣̃h∣∣T [∣∣̃h∣∣PsE − Psu]

⇒
·

L = −̃hTQs̃h (12)

since in this case
∣∣̃h∣∣ ≤ 1,

∣∣̃h∣∣PsE − Psu ≥ 0 ⇒ Psu ≤∣∣̃h∣∣PsE ≤ PsE . 3) If h̃ < −1, then sat (̃h) = −1 and h̃ =
−
∣∣̃h∣∣, we replace in (10) as:
·

L = −̃hTQs̃h+ 2̃hTPs
[̃
f + Bu+ B~

]
− 2̃hTPsEsat (̃h)

⇒
·

L = −̃hTQs̃h− 2
(
−
∣∣̃h∣∣T)Ps [− (̃f + Bu+ B~)]

−2
(
−
∣∣̃h∣∣T)PsE (−1)

⇒
·

L ≤ −̃hTQs̃h+ 2
∣∣̃h∣∣T Psu− 2

∣∣̃h∣∣T PsE
⇒
·

L ≤ −̃hTQs̃h (13)

since (11), (12), (13), the three cases we have the same
inequality expressed as:

·

L ≤ −̃hTQs̃h (14)

Using γ = λmin(QsP−1s ) (14) becomes to:
·

L ≤ −γL (15)

Since (15), it concludes that the variables error of the vari-
ables estimator applied to estimate the nonlinear plants vari-
ables is convergent. �

C. THE PERTURBATIONS ESTIMATOR
The goal of the perturbations estimator is that using the out-
lets, the perturbations of the perturbations estimator should
estimate the nonlinear plant perturbations.

Since the Theorem 1, it is:

lim
T→∞

∣∣̃h∣∣ ∼= 0 (16)

Using, lim
T→∞

·

h̃ − lim
T→∞

B~ ≤ lim
T→∞

h, lim
T→∞̃

f ∼= 0, h as the

upper bound of
·

h̃, in the first equality of (4) is:

lim
T→∞

Ãh+ lim
T→∞̃

f + lim
T→∞

Bu− lim
T→∞

Kỹ

− lim
T→∞

Esat(Mỹ) = lim
T→∞

·

h̃− lim
T→∞

B~ ≤ lim
T→∞

h

H⇒ lim
T→∞

Bu− lim
T→∞

Kỹ− lim
T→∞

Esat(Mỹ) ≤ lim
T→∞

h

H⇒ lim
T→∞

u ≤ lim
T→∞

B−1
[
Kỹ+ Esat(Mỹ)+ h

]
(17)

B−1 as the pseudo-inverse of B. Since all the terms of (17) are
bounded independently of T , it becomes to:

û ∼= B−1
[
Kỹ+ Esat(Mỹ)+ h

]
(18)

û as the perturbations of the perturbations estimator, u as the

nonlinear plant perturbations, h as the upper bound of
·

h̃−B~.
Remark 1: Note that the usage of the map sat(·) yields that

the derivative
·

h̃ does not tend to zero even the map h̃ tends to

zero, but it could be said that
·

h̃ is bounded, this fact is used
to express û as the estimated perturbations of u.
Remark 2: Note that in (2), (18), û only allows to estimate

perturbations u, and since in this article the map sat(·) is
used, it can reduce the unwanted chattering. The possibility
of changing the non-continuous map sat(·) for a softer one
also could reduce the chattering.

The Figure 1 shows the variables estimator and perturba-
tions estimator for the variables and perturbations estimation.
The variables estimator of (2), (3) and perturbations estimator
of (2), (18) are termed as the estimator of (2), (3), (18).
Remark 3: Note it is not required that the nonlinear plant

(1) must be convergent to achieve a satisfactory performance
in our estimator.
Remark 4: For the satisfactory operation of the estimator

(2), (3), (18), the theory and application conditions men-
tioned below must be met: a) propose a gain K that meets
the theory condition (5) such that the variables ĥ of the
variables estimator (2), (3) must reach as soon as possible
the nonlinear plant variables h of (1), b) propose the gain
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FIGURE 1. The estimator for the perturbations estimation.

FIGURE 2. The proposed algorithm of our estimator.

E of the perturbations estimator (2), (18) that meets the
application condition such that the estimated perturbations
û of (2), (18) should reach as soon as possible the nonlinear
plant perturbations u of (1). In case that the proposed gains
K, E do not work, you have to start over.

The Figure 2 shows the proposed algorithm to choose the
gains K , E , M , h for achieving a satisfactory performance
in our estimator, the request Re (eigen (Ass)) < 0 represents
if the real part in the eigenvalues of Ass are negative, the
request Qs > 0 represents if Qs is positive definite, and the
request ĥ ∼= h, û ∼= u represents of ĥ, û achieve a satisfactory
performance in the estimation of h, u. The proposed algorithm
of Figure 2 detailed as follows: 1) we choose a value for K ,
2) we obtain As = A − KC , 3) we obtain the eigenvalues
of Ass = sI − As, if the real parts af all the eigenvalues
of Ass are negative, then the gain K is correctly chosen and
we can go to the step 4, otherwise, we must return to the
step 1, 4) we choose Ps, 5) we substitute Ps and As into the
Lyapunov equation ATs Ps + PsAs = −Qs, and we find Qs,
if Ps and Qs are positive definite, then Ps is correctly chosen,
the Theorem 1 is met, and we can go to the step 6, otherwise,

we must return to step 1, 6) we choose the gains E ,M , and h

to solve the proposed estimator as
·

ĥ = Âh+ f (̂h, v)+ Kỹ+
Esat(Mỹ), ŷ = Cĥ, û ∼= B−1

[
Kỹ+ Esat(Mỹ)+ h

]
, if the

proposed estimator reaches an acceptable exactness for the
variables and perturbations estimation in the nonlinear plant
·

h = Ah + f (h, v) + Bu + B~, y = Ch, then the algorithm
finishes, otherwise, we must return to step 6.

In the below sections, the root mean squared error (MSE)
is used for comparisons, it is:

J =

 1
T

T∫
0

h2uτ


1
2

(19)

J = Jh, h2 = h̃2 for variables, J = Jy, h2 = ỹ2 for outlets,
J = Ju, h2 = ũ2 = (u− û)2 for perturbations.

III. THE GAS TURBINE PLANT
The Figure 3 shows the gas turbine plant.

FIGURE 3. The gas turbine plant.

The gas turbine plant consists of a compressor, a combus-
tion chamber, a turbine, and a power turbine. T3, T4, T5, T6
as the temperatures in the different stages, M3, M4, M5, M6
as the amounts of mass. mf as the flow rate of the fuel. The
inlets are v1 = mf , v2 = T2, v3 = P2, the variables are
h1 = m3, h2 = m4, h3 = m5, h4 = m6, h5 = T3, h6 = T4,
h7 = T5, h8 = T6, h9 = P3, h10 = P4, h11 = P5, h12 = P6,
and the outlet is y = P6. Table 1 shows the gas turbine plant
constants.

The gas turbine plant is represented in the form (1) with
A = diag[a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12], a1 =
−1, a2 = −1, a3 = −1, a4 = −1, a5 = − R

Cv
, a6 = − R

Cvg
,

a7 = − R
Cv
, a8 = − R

Cv
, a9 = − R

V , a10 = −DP, a11 = −
R
V ,
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TABLE 1. The gas turbine plant constants.

a12 = − R
V , f (h, v) = [f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11,

f12]T , C = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], h = [h1, h2,
h3, h4, h5, h6, h7, h8, h9, h10, h11, h12]T , v = [v1, v2, v3]T ,
B = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]T , u as the perturbation,
the terms of f (h, v) are [25]:

f1 = MFDPm3cor

(
v3/P2ref(
v2/T2ref

)0.5
)

f2 = (h1 + v1)

f3 = MFDPm5cor

(
h10/P4ref(
h6/T4ref

)0.5
)

f4 = MFDPm6cor

(
h11/P5ref(
h7/T5ref

)0.5
)

f5 =
1

h1Cv

{
MFDPm3cor

(
v3/P2ref(
v2/T2ref

)0.5
)

∗

Cpv2
1+ 1

ηc

(h9
v3

) γ−1
γ

− 1

− Cvh5


f6 =
(Cph6−Cvgh6)ma+(LHVηb−Cvgh6)v1−mgRh6+Rh2h6

h2Cvg

f7 =
1

h3Cv

{
MFDPm5cor

(
h10/P4ref(
h6/T4ref

)0.5
)

∗

Cph6
1+ ηt

1− (h11
h10

) γg−1
γg

− Cvh7


f8 =
1

h4Cv

{
MFDPm6cor

(
h11/P5ref(
h7/T5ref

)0.5
)

∗

Cph7
1+ ηpt

1− (h12
h11

) γg−1
γg

− Cvh8


f9 =
R
V

(
h9 + h1

·

h5 + h5
·

h1

)

f10 = DP
(
h10 +

·

h9

)
f11 =

R
V

(
h11 + h3

·

h7 + h7
·

h3

)
f12 =

R
V

(
h12 + h4

·

h8 + h8
·

h4

)
A. RESULTS
In this sub-section, the estimator of this research called Esti-
mator 1 is compared against the estimator of [7], [8], called
Estimator 2. The initial conditions of the plant are h0 = [75.9,
75.9, 75.9, 75.9, 691.7694, 1.6164 × 103, 1.2708 × 103,
932.4205, 2.0561×106, 2.0355×106, 5.7420×105, 1.2679×
105]T . The goal of the estimators is that the variables ĥ of
the variables estimator have to reach the plant variables h
and that the perturbations û of the perturbations estimator
have to reach the plant perturbations u. The plant inlets are
v1 = 1.6 + 0.1 sin(2T ) kg/s, v2 = 288 + 1 sin(2T ) K, and
v3 = 1.013 × 105 + 1 sin(2T ) Pa from 0 s to 20 s. The
perturbation is u = 7.6923 × 10−3 sin(2T ) from 0 s to 20 s.
The noise is ~ = 0.1 rand from 0 s to 20 s. rand are random
values between 0 and 1.

Estimator 2 is expressed as [7], [8] with initial conditions
as ĥ0 = [76, 76, 76, 76, 691, 1.616 × 103, 1.27 × 103, 932,
2.05× 106, 2.03× 106, 5.74× 105, 1.24× 105]T and gains
as L = [4× 10−8, 4× 10−8, 2× 10−8, 2× 10−8, 2× 10−8,
4×10−8, 4×10−8, 4×10−8, 6×10−6, 6×10−6, 6×10−6,
6× 10−6]T .

Estimator 1 is expressed as (2), (3), (18) with ĥ = [̂h1, ĥ2,
ĥ3, ĥ4, ĥ5, ĥ6, ĥ7, ĥ8, ĥ9, ĥ10, ĥ11, ĥ12]T , f (̂h, v) = [̂f1, f̂2, f̂3,
f̂4, f̂5, f̂6, f̂7, f̂8, f̂9, f̂10, f̂11, f̂12]T , the terms of f (̂h, v) are:

f̂1 = MFDPm3cor

(
v3/P2ref(
v2/T2ref

)0.5
)

f̂2 =
(̂
h1 + v1

)
f̂3 = MFDPm5cor

(
ĥ10/P4ref(̂
h6/T4ref

)0.5
)

f̂4 = MFDPm6cor

(
ĥ11/P5ref(̂
h7/T5ref

)0.5
)

f̂5 =
1

ĥ1Cv

{
MFDPm3cor

(
v3/P2ref(
v2/T2ref

)0.5
)

∗

Cpv2
1+ 1

ηc

( ĥ9
v3

) γ−1
γ

− 1

− Cv̂h5


f̂6 =
(Cp̂h6−Cvĝh6)ma+(LHVηb−Cvĝh6)v1−mgR̂h6+R̂h2̂h6

ĥ2Cvg

f̂7 =
1

ĥ3Cv

{
MFDPm5cor

(
ĥ10/P4ref(̂
h6/T4ref

)0.5
)

∗

Cp̂h6
1+ ηt

1− ( ĥ11
ĥ10

) γg−1
γg

− Cv̂h7

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f̂8 =
1

ĥ4Cv

{
MFDPm6cor

(
ĥ11/P5ref(̂
h7/T5ref

)0.5
)

∗

Cp̂h7
1+ ηpt

1− ( ĥ12
ĥ11

) γg−1
γg

− Cv̂h8


f̂9 =
R
V

(̂
h9 + ĥ1

·

ĥ5 + ĥ5
·

ĥ1

)
f̂10 = DP

(̂
h10 +

·

ĥ9

)
f̂11 =

R
V

(̂
h11 + ĥ3

·

ĥ7 + ĥ7
·

ĥ3

)
f̂12 =

R
V

(̂
h12 + ĥ4

·

ĥ8 + ĥ8
·

ĥ4

)
the initial conditions are ĥ0 = [76, 76, 76, 76, 691, 1.616 ×
103, 1.27 × 103, 932, 2.05 × 106, 2.03 × 106, 5.74 × 105,
1.24× 105]T .

The gains K ∈ <12, E ∈ <12, M ∈ <12, and h ∈ <
for the Estimator 1 are chosen using the proposed algorithm
of Figure 2 detailed as follows: 1) we choose a value for
K = [4 × 10−9, 4 × 10−9, 2 × 10−9, 2 × 10−9, 2 × 10−9,
4×10−9, 4×10−9, 4×10−9, 6×10−7, 6×10−7, 6×10−7,
6 × 10−7]T , 2) we obtain As = A − KC = [asij] ∈ <12×12,
as11 = −1, as22 = −1, as33 = −1, as44 = −1, as55 = − 287

718 ,
as66 = − 287

863 , as77 = −
287
718 , as88 = −

287
718 , as99 = −358.75,

as1010 = −0.99, as1111 = −358.75, as1212 = −358.75,
as112 =− 1

500000000 , as212 =−
1

500000000 , as312 =−
1

500000000 ,
as412 =− 1

500000000 , as512 =−
1

500000000 , as612 =−
1

500000000 ,
as712 =− 1

500000000 , as812 =−
1

500000000 , as912 =−
3

500000000 ,
as1012 = − 3

500000000 , as1112 = −
3

500000000 , the other terms
of As have a value of 0, 3) we obtain the eigenvalues of
Ass = sI−As as−0.42028+0.11615i,−0.42028−0.11615i,
−347.89,−1.3013,−18.240,−364.18−9.7741i,−364.18+
9.7741i,−0.31231− 4.1895× 10−2i,−0.31231+ 4.1895×
10−2i,−0.75333+0.25701i,−0.75333−0.25701i,−1.124,
if the real parts of all the eigenvalues of Ass are negative,
then the gain K ∈ <12 is correctly chosen and we can go
to the step 4, otherwise, we must return to the step 1, 4)
we choose Ps = [pij] ∈ <12×12, p11 = 0.5, p22 = 0.5,
p33 = 0.5, p44 = 0.5, p55 = 1.2509, p66 = 1.5035,
p77 = 1.2509, p88 = 1.2509, p99 = 1.3937× 10−3, p1010 =
0.50505, p1111 = 1.3937 × 10−3, p1212 = 1.3937 × 10−3,
the other terms of Ps have a value of 0, 5) we substitute
Ps = [pij] ∈ <12×12 and As = A − KC into the Lyapunov
equation ATs Ps + PsAs = −Qs, and we find Qs = [qij] ∈
<
12×12, q11 = 1.0, q22 = 1.0, q33 = 1.0, q44 = 1.0,

q55 = 1.0, q66 = 1.0, q77 = 1.0, q88 = 1.0, q99 = 0.99998,
q1010 = 1.0, q1111 = 0.99998, q1212 = 0.99998, the other
terms of Qs have a value of 0, if Ps = [pij] ∈ <12×12 and
Qs = [qij] ∈ <12×12 are positive definite, then Ps = [pij] ∈
<
12×12 is correctly chosen, the Theorem 1 is met, and we can

go to the step 6, otherwise, we must return to step 1, 6) we
choose the gains E = [1 × 10−10, 1 × 10−10, 1 × 10−10,
1 × 10−10, 1 × 10−10, 1 × 10−10, 1 × 10−10, 1 × 10−10,

FIGURE 4. The variables estimation in the gas turbine plant.

FIGURE 5. The perturbations estimation in the gas turbine plant.

1 × 10−10, 1 × 10−10, 1 × 10−10, 1 × 10−10]T , M = [1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]T , and h = 2.14 to solve the

Estimator 1 as
·

ĥ = Âh+ f (̂h, v)+ Kỹ+ Esat(Mỹ), ŷ = Cĥ,
û ∼= B−1

[
Kỹ+ Esat(Mỹ)+ h

]
, if the Estimator 1 reaches

an acceptable exactness for the variables and perturbations

estimation in the nonlinear plant
·

h = Ah+ f (h, v)+Bu+B~,
y = Ch, then the algorithm finishes, otherwise, we must
return to step 6.

The Figures 4 and 5 show the variables and perturbations
estimation of the Estimator 1 and Estimator 2 applied to the
gas turbine plant. The Table 2 shows the MSE of (19).

In the Figures 4 and 5, since the Estimator 1 reaches better
variables and perturbations estimation of the plant than the
Estimator 2, it is seen that the Estimator 1 reaches better
performance. In addition, the Figures 4 and 5 show that in
the variables and perturbations estimation of Estimator 1,
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TABLE 2. The gas turbine plant results.

the unwanted chattering is not presented. In the Table 2,
since the MSE is smaller for the Estimator 1 than for the
Estimator 2, it is seen that the Estimator 1 reaches better
exactness for the variables and perturbations estimation.

IV. THE GASIFICATION PLANT
The Figure 6 shows the gasification plant.

FIGURE 6. The gasification plant.

The gasification plant model consists of drying, pyrolysis,
oxidation or combustion, and reduction. CCO, CCO2 , CH2 ,
CH4 , CTar , CH2O, CO2 , CN2 as concentrations of gases CO,
CO2, H2, H4, Tar , H2O, O2, N2 in mol/cm3, ρcoal , ρchar
as the coal solids densities, char in g/cm3, T as the gases
temperature in K, Ts as the solids temperature in K, u as
the injected gases flow in mols/cm2/s, δ as the steam flow in
mols/cm2/s, R1, R2, R3 as the chemical reactions, mO2 , mH2O
as the internal molar fractions of O2 and H2O. The variables
are h1 = ρcoal , h2 = ρchar , h3 = Ts, h4 = CCO, h5 = CCO2 ,
h6 = CH2 , h7 = CH4 , h8 = CTar , h9 = CH2O, h10 = CO2 ,
h11 = CN2 , the inlet is v = u, the perturbation is δ, and
the outlet is y = CH2O. Table 3 shows the gasification plant
constants.

TABLE 3. The gasification plant constants.

The gasification plant has the form of (1) with h = [h1, h2,
h3, h4, h5, h6, h7, h8, h9, h10, h11]T , v = u, A = −βdiag(1) ∈
<
11×11, diag(1) as a diagonal matrix with a number 1 in the

main diagonal, C = [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], B = [0, 0,
0, 0, 0, 0, 0, 0, 1

L , 0, 0]
T , f (h, v) = [f1, f2, f3, f4, f5, f6, f7, f8,

f9, f10, f11]T , the terms of f (h, v) are [26]:

f1 = −M1R1
f2 = M2

[
pR1charR1 − R2 − R3

]
f3 =

1
Cs

[ht (T − h3)−1q2R2 −1q3R3]

f4 = pR1COR1 + R3
f5 = pR1CO2R1 + R2
f6 = = pR1H2R1 + R3
f7 = pR1CH4R1
f8 = pR1TarR1

f9 = pR1H2OR1 + pR2H2OR2 − pR3H2OR3 +
5

L
v

f10 = −pR2O2R2 +
4

L
v

f11 =
9

L
v

R1 = 5
h1
M1

exp
(
−6039
h3

)
Rm2 =

1
10
htmO2

Rc2 =
1
M2

[
9.55× 108h2mO2P exp

(
−22142
h3

)
h−0.53

]
R2 =

1
1
Rc2
+

1
Rm2

Rm3 =
1
10
htmH2O

Rc3 =
h2m2

H2O
P2 exp

(
5.052− 12908

h3

)
M2

[
mH2OP+ exp

(
−22.216+ 24880

h3

)]2
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R3 =
1

1
Rc3
+

1
Rm3

mO2 =
h5

CT + h9

mH2O =
h9

CT + h9
CT = h4 + h5 + h6 + h7 + h8 + h10 + h11

A. RESULTS
In this sub-section, the estimator of this research called Esti-
mator 1 is compared against the estimator of [7], [8], called
Estimator 2. The plant initial conditions are h0 = [0.48,
0, 480, 0, 0, 0, 0, 0, 0, 4.2 × 10−4, 1.6 × 10−6]T . The
goal of the estimators is that the variables ĥ of the variables
estimator have to reach the plant variables h and that the
perturbations û of the perturbations estimator have to reach
the plant perturbations u. The plant inlet is v = 0.2 ×
10−3 sin(2T ) moles/cm2/s from 0 s to 20 s. The perturbation
is u = 1.5× 10−5 sin(2T ) moles/cm2/s from 0 s to 20 s. The
noise is ~ = 1× 10−5 rand from 0 s to 20 s. rand are random
values between 0 and 1.

Estimator 2 is expressed as [7], [8] with initial conditions
as ĥ0 = [0.48, 6× 100, 480, 1× 10−9, 1× 10−8, 1× 10−8,
1× 10−8, 1× 10−9, 1× 10−7, 4.2× 104, 1.6× 10−6]T and
gains as L = [1×10−1, 1×101, 1×10−1, 2×10−3, 1×10−2,
2×10−2, 1×10−2, 4×10−3, 1×10−2, 1×10−3, 1×10−1]T .
Estimator 1 is expressed as (2), (3), (18) with ĥ = [̂h1, ĥ2,

ĥ3, ĥ4, ĥ5, ĥ6, ĥ7, ĥ8, ĥ9, ĥ10, ĥ11]T , f (̂h, v) = [̂f1, f̂2, f̂3, f̂4, f̂5,
f̂6, f̂7, f̂8, f̂9, f̂10, f̂11]T , the terms of f (̂h, v) are:

f̂1 = −M1R̂1
f̂2 = M2

[
pR1char R̂1 − R̂2 − R̂3

]
f̂3 =

1
Cs

[
ht
(
T − ĥ3

)
−1q2R̂2 −1q3R̂3

]
f̂4 = pR1COR̂1 + R̂3
f̂5 = pR1CO2 R̂1 + R̂2
f̂6 = pR1H2 R̂1 + R̂3
f̂7 = pR1CH4 R̂1
f̂8 = pR1Tar R̂1

f̂9 = pR1H2OR̂1 + pR2H2OR̂2 − pR3H2OR̂3 +
5

L
v

f̂10 = −pR2O2 R̂2 +
4

L
v

f̂11 =
9

L
v

R̂1 = 5
ĥ1
M1

exp
(
−6039

ĥ3

)
R̂m2 =

1
10
ht m̂O2

R̂c2 =
1
M2

[
9.55× 108̂h2mO2P exp

(
−22142

ĥ3

)
ĥ−0.53

]
R̂2 =

1
1
R̂c2
+

1
R̂m2

R̂m3 =
1
10
ht m̂H2O

R̂c3 =
ĥ2m̂2

H2O
P2 exp

(
5.052− 12908

ĥ3

)
M2

[
m̂H2OP+ exp

(
−22.216+ 24880

ĥ3

)]2
R̂3 =

1
1
R̂c3
+

1
R̂m3

m̂O2 =
ĥ5

ĈT + ĥ9

m̂H2O =
ĥ9

ĈT + ĥ9

ĈT = ĥ4 + ĥ5 + ĥ6 + ĥ7 + ĥ8 + ĥ10 + ĥ11

the initial conditions as ĥ0 = [0.48, 1× 10−5, 480, 1× 10−9,
1×10−8, 1×10−8, 1×10−8, 1×10−9, 1×10−7, 4.2×104,
1.6× 10−6]T .
The gains K ∈ <11, E ∈ <11, M ∈ <11, and h ∈ <

for the Estimator 1 are chosen using the proposed algorithm
of Figure 2 detailed as follows: 1) we choose a value for
K = [1×10−1, 1×100, 1×10−1, 1×10−4, 1×10−4, 1×10−4,
1× 10−4, 1× 10−4, 6× 10−1, 1× 10−2, 1× 10−1]T , 2) we
obtain As = A − KC = [asij] ∈ <11×11, as11 = − 7

1000000 ,
as22 = − 7

1000000 , as33 = −
7

1000000 , as44 = −
7

1000000 , as55 =
−

7
1000000 , as66 = −

7
1000000 , as77 = −

7
1000000 , as88 =

−
7

1000000 , as99 = −
600007
1000000 , as1010 = −

7
1000000 , as1111 =

−
7

1000000 , as19 = −
1
10 , as29 = −1, as39 = −

1
10 , as49 =

−
1

10000 , as59 = −
1

10000 , as69 = −
1

10000 , as79 = −
1

10000 ,
as89 = − 1

10000 , as109 = −
1

100 , as119 = −
1
10 , the other terms

of As have a value of 0, 3) we obtain the eigenvalues of
Ass = sI − As as −7.0× 10−6, −7.0× 10−6, −7.0× 10−6,
−7.0 × 10−6, −7.0 × 10−6, −7.0 × 10−6, −7.0 × 10−6,
−7.0 × 10−6, −7.0 × 10−6, −7.0 × 10−6, −0.60001, if the
real parts of all the eigenvalues of Ass are negative, then the
gain K ∈ <12 is correctly chosen and we can go to the step
4, otherwise, we must return to the step 1, 4) we choose Ps =
[pij] ∈ <11×11, p11 = 1, p22 = 71429, p33 = 1, p44 = 1,
p55 = 1, p66 = 1, p77 = 1, p88 = 1, p99 = 1×108, p1010 = 1,
p1111 = 1, p19 = p91 = −0.125, p29 = p92 = −375,
p39 = p93 = −0.125, p49 = p94 = −8.7499 × 10−2,
p59 = p95 = −0.62499, p69 = p96 = −8.7499×10−2, p79 =
p97 = −0.5, p89 = p98 = −0.125, p109 = p910 = −0.125,
p119 = p911 = −0.125, the other terms of Ps have a value of
0, 5) we substitute Ps = [pij] ∈ <11×11 and As = A − KC
into the Lyapunov equation ATs Ps+PsAs = −Qs, and we find
Qs = [qij] ∈ <11×11, q11 = 1.4 × 10−5, q22 = 1.4 × 10−5,
q33 = 1.4 × 10−5, q44 = 1.4 × 10−5, q55 = 1.4 × 10−5,
q66 = 1.4 × 10−5, q77 = 1.4 × 10−5, q88 = 1.4 × 10−5,
q99 = 1.5978×108, q1010 = 1.4×10−5, q1111 = 1.4×10−5,
q19 = q91 = −8.7499×10−7, q29 = q92 = −2.6250×10−3,
q39 = q93 = −8.7499×10−7, q49 = q94 = −6.1249×10−7,
q59 = q95 = −4.3750 × 10−6, q69 = q96 = 0.63,
q79 = q97 = −3.5000×10−6, q89 = q98 = −8.7499×10−7,
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FIGURE 7. The variables estimation in the gasification plant.

TABLE 4. The gasification plant results.

q109 = q910 = −8.7499× 10−7, q119 = q911 = −8.7499×
10−7, the other terms of Qs have a value of 0, if Ps = [pij] ∈
<
11×11 and Qs = [qij] ∈ <11×11 are positive definite, then

Ps = [pij] ∈ <11×11 is correctly chosen, the Theorem 1 is
met, and we can go to the step 6, otherwise, we must return
to step 1, 6) we choose the gains E = [1× 10−10, 1× 10−10,
1 × 10−10, 1 × 10−10, 1 × 10−10, 1 × 10−10, 1 × 10−10,
1 × 10−10, 1 × 10−10, 1 × 10−10, 1 × 10−10]T , M = [1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1]T , and h = 1.73 × 10−5 to solve the

Estimator 1 as
·

ĥ = Âh+ f (̂h, v)+ Kỹ+ Esat(Mỹ), ŷ = Cĥ,
û ∼= B−1

[
Kỹ+ Esat(Mỹ)+ h

]
, if the Estimator 1 reaches

an acceptable exactness for the variables and perturbations

estimation in the nonlinear plant
·

h = Ah+ f (h, v)+Bu+B~,
y = Ch, then the algorithm finishes, otherwise, we must
return to step 6.

The Figures 7 and 8 show the variables and perturbations
estimation of the Estimator 1 and Estimator 2 applied to the
gasification plant. The Table 4 shows the MSE of (19).

From Figures 7 and 8, since the Estimator 1 reaches better
variables and perturbations estimation of the plant than the
Estimator 2, it is seen that the Estimator 1 reaches better
performance. In addition, the Figures 7 and 8 show that in
the variables and perturbations estimation of Estimator 1,
the unwanted chattering is not presented. In the Table 4, since
the MSE is smaller for the Estimator 1 than for the Estimator
2, it is seen that the Estimator 1 reaches better exactness for
the variables and perturbations estimation.
Remark 5: In the past two sections, it would be very

tedious and expensive to have the sensors to measure all
plant variables. Consequently, it highlights one of the major

FIGURE 8. The perturbations estimation in the gasification plant.

contributions of this article, it is that with the outlets mea-
surement, our estimator can roughly estimate the variables
and perturbations.

V. CONCLUSION
In this article, an estimator was studied for the variables
and perturbations estimation in nonlinear plants. The vari-
ables error convergence was analyzed with the Lyapunov
approach. Our estimator was compared to a previous estima-
tor in the gas turbine and gasification plants concluding that
our estimator reached a better performance than the previ-
ous estimator for the variables and perturbations estimation.
In addition, in our estimator, the unwanted chattering is not
presented. Our estimator can be applied tomany types of non-
linear plants such as electric, mechanical, hydraulic or ther-
mal. In the future work, wewill seek to use another alternative
map that allows us to reduce the unwanted chattering for this
type of estimators, we will explore other types of strategies
for the perturbations estimation, for the perturbations attenu-
ation, or for trajectories reaching in perturbed plants.
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