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ABSTRACT To improve the visual quality of noisy medical images acquired by low radiation dose imaging,
medical image denoising is highly desirable for clinical disease diagnosis. In this paper, a geometric
regularization method is proposed for medical image denoising. To the best of our knowledge, this is the
first work aiming at reconstructing surface by minimizing the gradient error and approximation error of the
surface to suppress the noise in medical images. The proposed denoising method consists of two stages: one
is to output a basic estimate and the other is for the residual noise reduction. Specifically, the method first
exploits a biquadratic polynomial surface to generate an initial estimate of the noise-free image. The surface
is constructed by dividing its coefficients into two groups. With the reconstruction error constraint, one group
is used to minimize the gradient of the surface, and the other is to minimize the approximation accuracy of the
surface. Then the residual noise in the initial result is further reduced by using the singular value thresholding
mechanism, which exploits the self-similarity of medical images and the intrinsic low-rank property. Unlike
the traditional truncated singular value thresholding scheme, the proposed singular value thresholding is
derived by optimizing an objective function with a constraint. Experimental results on a real clinical data set
demonstrate the effectiveness of the proposed denoising method, especially in detail-preserving. Compared
with several widely used denoising methods, our method can achieve a better performance in terms of both
quantitative metrics and subjective visual quality.

INDEX TERMS Error minimization, geometric regularization, low-rank approximation, medical image

denoising, polynomial.

I. INTRODUCTION

Medical imaging has been widely applied in clinical disease
diagnosis with the advent of digital imaging technologies.
However, due to the requirement of low exposure to radiation
and some existing technique limitations, all the acquired
images with low radiation dose are more or less contami-
nated by noise [1]. The noise decreases the visual quality
of medical images and leads to a negative effect on the
accuracy of clinical diagnosis. Generally, noise will increase
with the amount of radiation being decreased. Therefore,
as an important preprocessing step to improve the quality
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of medical images, denoising is highly desirable for proper
medical image analysis.

Formally, the acquired noisy image X € R"™" can be
modeled as follows

X=Y+N, ey

where Y denotes the noise-free image and N is the addi-
tive noise with the standard deviation t. The aim of image
denoising is to restore the noise-free image Y from its noisy
version X as accurately as possible. In the past decades, the
problem of noise reduction has been extensively studied and
numerous denoising algorithms have been proposed in the
literature. Most of existing algorithms can be formulated as
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the following minimization problem

arg min |X — Y13 + AR(Y), )

where the first term || X — Y ||% is the data-fidelity term that
constrains Y to be consistent with X as accurately as possible,
the second term R(Y) is a regularization term that constrains
Y subject to some a prior, and A is a balance parameter. Earlier
efforts mainly focused on least square based priors, such as
total variation (TV) prior [2], [3], local autoregressive prior
[4], and others. By penalizing local discontinuity or dissimi-
larity, these regularization priors can lead to smooth denoised
images. As a result, some subtle details are partly lost, while
they are crucial information for clinical disease diagnosis. To
overcome the limitation of these local priors, Buades et al.
[5] proposed the well-known non-local mean (NLM) prior,
which assumes each pixel can be represented by a weighted
averaging of its non-local similar pixels in the image. In fact,
NLM is a nonlocal generalization of local autoregressive
prior, which is modeled as

2jea WisYi
R(i) = S, 3)
ZjEQ[ Wi’j
where y; is the ith pixel of an image Y, w;; =
—IPyi—PylI3\ . . . T
exp (%) is the weight, o is a similarity control

parameter, and P and €2 denote an patch extraction operator
and a search window centered at the i the pixel, respectively.
To improve NLM’s shape-adaptivity, a variant is developed
in [6]. In essence, both local and non-local priors attempt to
model the spatial relationship of pixels [7], and apply this
relationship to estimate each pixel.

Unlike the spatial domain denoising methods described
above, noise reduction can also be conducted in the transform
domain. A basic assumption is that an image can be sparsely
represented by a set of basis functions, such as wavelets
[8], curvelets [9], and learned representation dictionary [1],
[10]. The power of transform based methods stems from the
sparsity of transformation coefficients, i.e., sparse represen-
tation prior, which makes noise be more easily distinguished.
A widely used sparse representation prior is defined as

R(a) = llelly, s.t., Da =Y, “

where o is a sparse representation vector, and D denotes a
representation dictionary that can be constructed by using the
fixed wavelet/curvelet basis or adaptively learned by a greedy
algorithm from the noisy images or given noise-free images
[11]. One disadvantage of sparse representation prior based
methods is high computational complexity, while they have
more effective denoising performance than traditional spatial
methods.

Recent works have shown that low-rank priors are pow-
erful models to reduce noise [12]-[14], in which an image
is represented by a low-rank matrix. A simple and effective

representation model for the low-rank prior is written as
rank(Y)=r, s.t.r < min{m, n}, (@)
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where rank(-) represents a rank function and r is the rank of
matrix Y. When the rank r is unknown, finding the lowest
rank matrix with rank constraint is NP-hard. In [15], the
authors model the low-rank prior by using the nuclear norm
that is defined by the sum of singular values of a matrix.
In theory, the nuclear norm is the best convex approximation
of the rank function. Under the low-rank assumption, the
problem Eq. (2) can be translated as

argmin [IX = Y13+ A]1¥ [, ©)

where ||Y ||« is the nuclear norm of Y. This model has been
widely used to deal with various image restoration problems.
Many variants, such as weighted nuclear norm and low-rank
and sparse combination priors, have also been proposed to
further improve its performance [16]-[18]. The minimization
problem (6) is tractable by iterative singular value threshold-
ing algorithm. However, the iterative algorithm is computa-
tionally expensive. In order to address this issue, the fixed
rank strategy can be adopted to avoid the iterative process
and leads to lower running time. The goal of the fixed rank
strategy is to solve the following problem

arg myin X — Y||% s.t.rank(Y) =r. @)

This problem has a close-form solution when the rank r is
given [19]. Several feasible rank estimate schemes have been
developed to determine the value of r [20], [21], which result
in an efficient algorithm for low-rank image denoising.

More recently, there exists a growing interest in using
deep learning to handle medical image denoising problem
[22]-[24]. The reason is that deep learning based denoising
methods have shown a great promise. However, this type
of denoising methods is limited by large training test data
and high training time complexity. Therefore, in this paper,
we still focus on the traditional prior-based denoising method.
Inspired by the combined image denoisers [25], we present a
two-stage image denoising method. Specifically, the method
first applies a biquadratic polynomial surface reconstruction
algorithm to derive an initial denoised image, and then the
residual noise in the initial result is further reduced by a
singular value shrinkage strategy.

Il. OVERVIEW OF THE PROPOSED METHOD

In general, the noise in medical images is relatively small,
which means that most of the important features in the images
are preserved. Therefore, it is possible to reduce the noise in
medical images by surface fitting techniques. The biquadratic
polynomial surface representation of image patches is an
effective tool for dealing with image restoration problems
[26], [27]. The key issue is how to define the constraint
conditions that are used to construct a fitted surface with more
textural details and little noise. In addition, medical images
always focus on a specific tissue. They exhibit a high self-
similarity, which results in the low-rank representation of
image patches. Thus it is very suitable to apply singular value
decomposition theory to reduce noise.
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FIGURE 1. Flowchart of the proposed denoising method.

The proposed denoising method consists of two stages
that depend on different regularization priors. The first stage
exploits a biquadratic polynomial surface to derive an initial
estimate of the noise-free image, in which the surface is con-
structed by dividing its coefficients into two groups. With the
reconstruction error constraint, one group is used to minimize
the gradient of the surface, and the other is to minimize
the approximation accuracy of the surface. Based on the
self-similarity of medical images and the intrinsic low-rank
property, the second stage of the method is to optimize the
singular value to further reduce the residual noise in the initial
estimate. Figure 1 illustrates the denoising process of the
proposed method.

IIl. DENOISING USING BIQUADRATIC POLYNOMIAL
WITH MINIMUM ERROR CONSTRAINT

By using the gradient error as a regularization term, the
minimization problem (2) can be formulated as

argmin [[X — Y[)3 + 4| VY], (®)

where | VY| denotes the gradient term that enforces the image
Y to be smooth. Numerical optimization algorithms have
been developed to solve the Eq. (8). Unlike the traditional
aforementioned methods, we propose a new method to solve
it by decomposing it into two simple linear sub-problems.
More specifically, the data-fidelity is approximated by a
biquadratic polynomial, and the gradient regularization term
is treated as a constraint term to mine the pixels with low
noise. Therefore, the Eq. (8) can be represented as a con-
strained least square problem.

A. BIQUADRATIC POLYNOMIAL CONSTRUCTION

For simplicity of presentation, we assume X be an n X n noisy
image, i.e., x;j (i,j = 1,2, ---, n). y;;j is the corresponding
noise-free pixel of x; ;. In fact, from the perspective of geom-
etry, x; ; is viewed as the function value of a point (7, j) in
the ouv plane. Namely, the corresponding 3-D point of x; ;
denoted by (u, v, x) is (i, j, x; ;). With the geometrical symme-
try, y; j can be approximated by x; j and its neighbors (here we
use twenty-five pixels), i.e., xjy; j1x (I, k = —-2,-1,0,1,2).
Figure 2 illustrates the neighbor relationship of the pixels
used to calculate y; ;. In this paper, we assume that each 5 x 5
patch centered on y; ; can be approximated by a biquadratic
polynomial surface. Upon this assumption, image denoising
problem is alternative to a biquadratic polynomial surface
reconstruction. In other words, we exploit twenty-five pixels
Xivijrk Lk = =2,-1,0,1,2) to construct a biquadratic
polynomial surface f; j(u, v), and then uses f; j(u, v) to esti-
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FIGURE 2. Neighbor pixels that are used to approximate the noisy-free
pixel y; ;.

mate the noisy-free pixel y; ;. Formally, the biquadratic poly-
nomial is defined as

Jiju,v) = aps*t* + ars*t + apst* + azs’
+agst + ast® + ags + azt +ag.  (9)

wheres =u—1i, t =v—j.

In theory, we can use nine points to construct a unique
surface. Thus it is possible to construct a high precision
surface f; j(u, v) using the known twenty-five pixels. A key
issue is how to find the available pixels with low noise from
these twenty-five pixels. Obviously, the significance of pixels
in surface construction is inversely proportional to the noise
level of these pixels. We adopt the following method to
calculate the polynomial coefficients in Eq. (9).

B. COEFFICIENT CALCULATION

Ideally, the pixels yj; jyx (I, k = =2, 1,0, 1, 2) located in
each image patch should be points in the surface f; j(u, v). This
implies that we can define a gradient term in Eq. (8) using
the gradient information of the surface f; j(u, v). By minimiz-
ing the gradient of f; j(u, v), the parameters used in Eq. (9)
will be adaptively determined. Specifically, we first calculate
parameters aj, az, ag and ay. For ease of presentation, let
Jivsjrt = fij@ + s,j + t). We have the following eight
differences that are defined by eight directions (arrows in
Fig. 2):

e1 = (fir1j — fi-1,)/2 = as,

e = (fir1j+1 —fic1,j-1)/2
= a1 +a+as +ay,

e3 = (fijr1 — fij-1)/2 = ar,

eq = (fir1j-1 — fi-1,j+1)/2
= —a1+ax+ae—ay,

es = (fix1,j+2 — fi-1,-2)/2
= 2a; +4az + ae + 2a7,
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e6 = (fir2,jr1 —fi—2,j-1)/2
= 4a; + 2ay + 2ag + a7,
e7 = (fivaj—1 — fi2,j+1)/2
—4ay + 2ar + 2a¢ — a7,
eg = (fir1j—2 —fi—1,j+2)/2
= —2a; + 4ay + ag — 2a7, (10)

where

el = (Xip1,j — Xi—1,))/2,
€2 = (Xit1,j+1 — Xi=1,j—1)/2,
e3 = (Xij+1 — Xij—1)/2,
e4 = (Xip1,j—1 — Xi—1,j+1)/2,
es = (Xit1,j+2 — Xi—1,j-2)/2,
e6 = (Xit2,j+1 — Xi-2,j—1)/2,
e7 = (Xit2,j—1 — Xi—2,j+1)/2,
eg = (Xit1,-2 — Xi—1,+2)/2. (11)
Based on the weighted least square theory, we define an
objective function as follows
G(ai, az, ag, ar)
= wi(er — ag)* + walex — ay — az — ag — a7)*
+wiles — a7)® + wales + a1 — ar — ag + a7)?
+ws(es — 2a; — 4ar — ag — 2617)2 + wg(eg
—4day — 2ay — 2a¢ — a7)2 + wy(e7 + 4a; — 2ap
—2a6 + a7)* + ws(es + 2a1 — 4ar — ag + 2a7)*,

(12)
where w;, (i = 1,2, -- -, 8) are the weights defined as
wr =w3=1/1+0a),
wy =wq = 1/(1+4a),
ws = we = w7 =wg = 1/(1 + 8c). (13)

2 < a < 3 is a control parameter that adjust the influ-

ence of eight differences defined in Eq. (10) on the objec-

tive function G(ay, az, as, a7). By setting the derivatives of

G(ay, ap, ag, a7) to zero, i.e.,
Wolanmae.a) _ 567, (14)

ai

the optimal values of parameters a;, (i = 1,2,6,7) can be

obtained.

If only x;; of twenty-five pixels xjt;jyk, (Lk =
—2,—1,0, 1, 2) has noise, the optimal values of parameters
ai, i = 1,2,6,7) derived from Eq. (14) are accurate. Oth-
erwise, we need to find the pixels with low noise that have
significant influences on the determination a;, (i = 1,2, 6, 7)
of these parameters. It is necessary to point out that the
weights defined in Eq. (13) do not reflect the influence of
noise level in each pixel. In the following, we discuss how
to define new weights w;, (i = 1,2,---,8), of which the
influences on parameters are inversely proportional to noise
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level. Since the noise causes inaccurate estimation values of
parameters a;, (i = 1, 2, 6, 7), we can define their estimation
erTors as

w1 = (e1 — ag)?,

wy = (e2—ay —a — ag — a7)*,

w3 = (e3 — a7)?,

w4 = (e4 +ar — ay — ag + a7)?,

ws = (es — 2a1 — 4ar — ag — 2a7)2,

we = (eq — 4a; — 2ar — 2a¢ — a7)2,

w7 = (e7 +4ay — 2ay — 2a6 + a7)2,

wg = (eg + 2a1 — 4ay — ag + 2a7)*. (15)

For the first difference e; defined in Eq. (10), if the pixels
xi+1,; and x;_1; are accurate, the error w; should be very
small. Otherwise, w; should be with a large value. It is
easy to know that w; is inversely proportional to w;. Like-

wise, w;, (i = 2,3, .-, 8) are also inversely proportional to
wi, (i =12,3,---,8). Therefore, we update the weights w; as
follows.

wi =1/(1+ @)@ +98), i=13;

wi = 1/((1 +4a) (@i +9)), i=2,4

wi = 1/( +8a)(w; +8)), i=5,6,78, (16)

where § is a very small constant for avoiding division by zero.
By combining Eqgs. (12) and (16), we can obtain the updated
parameters a;, (i = 1, 2, 6, 7). These parameters can be used
to update the errors w; in Eq. (15), which further leads to new
weights w; by Eq. (16). This is an iterative updating process.
In this paper, we empirically found that it is sufficient to set
the iteration number to three. By the weights determination
algorithm described above, we can indirectly mine the pixels
with low noise.

To determine other unknown parameters ao, a3, a4, as and
ag, we reformulate Eq. (9) as follows

Jij(u,v) =ags’ > +azs® +asst+ast>+ag+d(s, 1), (17)

where d(s, 1) = a5t + apst? + ags + agt. Foreach 5 x 5
image patch that consists of twenty-five pixels, the proposed
method applies a biquadratic polynomial surface f; j(u, v) to
approximate it in the sense of least squares. Let

H(ao, a3, as, as, ag)

2 2
= Z Z ws,,(aos2t2 + a3s2

s=—21t=-2
+ayst + ast® + ag + d(s, 1) — xi+s,j+t)2, (18)

where wg; = 1/(1 + B(s® + t2)) are the weights, g
is a control coefficient. Minimizing this objective func-
tion H(ao, as, aa, as, ag) can obtain the values of param-
eters ag, az, a4, as, ag. However, H(ay, a3, a4, as, ag) only
depends on the distances, which does not reflect the effect
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of noise level in each pixel. Similar to Egs. (15) and (16),
we redefine the weight wy ; as

wsr = 1/((1 + B> + ) w5, +8)),
s,t=-2,—-1,0,1, 2, (19)

where w; ; = (f; j(s, 1) —x,-+s,j+t)2 = (aos*t* +azs®> +asst +
ast> + ag + d(s, 1) — Xitsj41) . Note that f; ;(s, 1) denotes
the value of the point (i + s,j + ) of a surface f; j(u, v).
ws,, essentially is the error between f; j(s, t) and the pixel
Xits j+e- As discussed above, if x4 j1, has a small amount
of noise, the error w;; is also small and the weight w; ; is
large. By combining Egs. (18) and (19), we can obtain the
parameters a;, (i = 0, 3, 4, 5, 8). Similarly, we can use these
parameters to further update the weight w; ;. After running
this iterative updating process three times, we can achieve the
final values of the parameters a;, (i = 0, 3, 4, 5, 8). From Eq.
(9), we know that ag is the estimate of y; ;, namely, ; ; = ag.
The whole calculation procedure can be summarized as.

S1. Construct a biquadratic polynomial by Eq. (9) for anoisy
pixel x; j;

S2. Calculate its eight differences using Eq. (10);

S3. Calculate the parameters a;, (i = 1, 2, 6, 7) by perform-
ing the following steps:

S3-1. Define an objective function G(ai, a2, ag, a7)
according to Eq. (12);
S3-2. Obtain the values of parameters a;, i = 1,2, 6,7)
by solving the Eq. (14);
S3-3. Calculate the estimation errors w;, (i = 1,2,---,
8) by Eq. (15);
S3-4. Apply these errors to update the weights w;, (i =
1,2,---,8) by Eq. (16);
S3-5. Repeat steps S3-1 ~ S3-4 three times to output the
parameters a;, i = 1,2, 6, 7).
S4. Calculate the parameters a;, (i = 0, 3,4, 5, 8) by per-
forming the following steps:

S4-1. Define an objective function H(ay, a3, a4, as, ag)
according to Eq. (18);
S4-2. Obtain the values of parameters a;, (i =
0, 3,4, 5, 8) by minimizing this objective function;
S4-3. Calculate the weights w;, i = 1,2, --- , 8) by Eq.
(19);
S4-4. Repeat steps S4-1 ~ S4-3 three times to output the
parameters a;, (i = 0, 3, 4, 5, 8).
S5. Repeatthe steps S1. ~ S.4 described above for each pixel
to output an initial denoised image Yo.

IV. RESIDUAL NOISE REDUCTION USING SVD-BASED
LOW-RANK APPROXIMATION

The biquadratic polynomial based denoising method is a local
adaptive smooth technique. It can remove most of noise in
a noisy image. But there are still a small amount of resid-
ual noise in the denoised result. To handle this problem,
an alternative way is to exploit the non-local self-similarity of
medical images and its intrinsic low-rank property to further
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FIGURE 3. Distributions of singular values of images. From left to right:
original figure and zoomed one.

reduce the residual noise. For each noisy image patch, we can
search its similar patches and reshape them to form a similar
patch matrix (denoted as P € R"™" for ease of discussion).
Then this patch matrix is factorized by singular value decom-
position (SVD) and approximated by truncating the singular
values and corresponding singular vectors. This process can
be simply formulated as

,
Pigva =) o] , (20)
i=1

where o; is the singular values of P, u; and v; denote the
corresponding left singular vector and right singular vector,
and the rank r of P is a key parameter that needs to be
preseted. In [20], an estimate of the rank r is derived by
using the Eckart-Young-Mirsky theorem. The self-similarity
of medical images leads to the similar patch matrix P be low-
rank. Owing to the energy compact property of SVD, most
of singular values of P are approximately zero. Therefore,
only a few largest singular values preserve most of important
information. In essence, this truncated SVD can be con-
sidered as an adaptive group sparse representation method,
in which singular values o; are representation coefficients and
the products of left singular vector and right singular vector,
i.e., u,-viT, are basis functions. The truncation operator is
equivalent to the well-known hard thresholding operator [28].

Even though this residual noise reduction method based on
truncated SVD is simple and efficient, the truncated operation
leads to some important details loss, especially for medical
images. The main reason is that the patch matrix P is not an
exact low-rank matrix. Figure 3 illustrates the distribution of
singular values of a patch matrix P. It can be observed that the
singular values o;(i = 10, - - - , n) are very small but not equal
to zeros. These small singular values contain the noises and
a part of important detail information. Therefore, to address
this issue, we apply the classical soft shrinkage strategy to
estimate these small singular values instead of setting them
to zeros. Upon this shrinkage strategy, the noise-free estimate
of a patch matrix P can be formulated as

P=>"T(onu,, 21)

i=1
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where the shrinkage operator 7(-) with the thresholds u; >
O0@=r+1,---,n)is defined by

Ton=1" = (22)
g — Wi, 1>T.
Note that we empirically set r = 9 due to the high
self-similarity of medical images. Although this strategy is
very simply, we found that it is effective for denoising the
test images used in experiments. Next, we discuss how to
determine the thresholds p;. According to the Eckart-Young-
Mirsky theorem, the error E between the patch matrix P and
its estimate P derived by truncated SVD is

n
E= Y ouy]. (23)
i=r+1
It is easy to know that the sum S of all elements of E can
be represented by

S = Crp1lr41 + Cra2lbr42 + -0+ Cnphn- (24)

Ideally, the error should be the white gaussian noise, which
means the sum of all elements of E is equal to zero. Without
loss generality, let ¢,41 # 0. Thus, Eq. (24) is written as

Wrt1 = dryopry2 +dri3plr3 + - - + dppin, (25)

where d; = —cj/cy41 (i = r + 2, --- , n). The method aims
at minimizing the following constrained objective function

n
> (i — )
i=r+1

St flri1 = drp2fbr42 + dr3pry3 + -+ dnpn. (26)

Due to the fact that the singular values meet the condition
o; > 0it1, the thresholds w; should progressively decrease.
Upon this condition, the objective function (26) is changed as

G(lr+2, Wr+3, 0+ 5 Un)
n 2
= ( > dipi— 0r+1>
i=r+2
n n 2 n
+ Z (i — 0)* + 0i< Z diMi) + Z oiud,
i=r+2 i=r+2 i=r+2
(27)
Ifdi(i=r+2,---,n)are known, because of the convexity

of G(tr42, Ur43, -, Un), the threshold p; can be calculated

by
8G(Mr+2, Mr43, Mﬂ)
i

=0. (28)
In our experiments, we empirically set d; = 72 — ‘7’

Due to the overlapping regions among ne1ghbor patches
multiple estimates of a pixel can be achieved. Therefore, after
obtaining the estimate of each patch matrix P, we need to
aggregate all the denoised patches to output the final denoised
image. The widely-used aggregation method is the weighted
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averaging. Although many complicated strategies have been
presented to adaptively select the weights [6], here we adopt
the uniform weights in the averaging scheme due to the
computational simplicity, which can be expressed as

Nij

Zy,,, (29)

where yi.‘ ; is the kth estimate of y; j and &V; ; is the number of its
estimates. Based on the above discussions, the residual noise
can be reduced by the following steps:

Yij =

S1. Divide the initial denoised image Yo into a lot of over-
lapping patches, and reshaping each patch into a vector;

S2. For each patch, search its similar patches to construct a
patch matrix P;

S3. Apply SVD on each patch matrix P to obtain the singu-
lar values o; and corresponding left and right singular
vectors;

S4. Shrink the singular values using the thresholding func-
tion Eq. (22);

S5. Calculate the denoised version of patch matrix P by Eq.
2L

S6. Aggregate all denoised patches to output the final
denoised image Y by Eq. (29).

V. EXPERIMENTAL RESULTS

A. DATASETS

In our experiments, we use a real clinical data set that includes
one anonymous patient’s 30 brain images. The noisy images
with different noise levels (o = 3,5,7) are produced by
adjusting the radiation dose. The information of these medical
images are provided in Tables 1-3, and several images are
shown in Figures 2-4.

B. EVALUATION CRITERIA

To provide a quantitative performance of the proposed
method, three commonly-used objective metrics, peak signal-
to-noise ratio (PSNR) [29], structural similarity (SSIM) index
[30], and feature similarity (FSIM) index [31], are used to
evaluate. The mathematical representations of these metrics
are as follows.

o The PSNR is defined as

255
PSNR = 10log;, <MSE> (30)

where MSE = ;LS S (¥, — ¥i;)°. PSNR

represents the ratio between the maximum value of an

image and its distort that affects the quality. The higher

the PSNR, the better the quality of the denoised image.
o The form of SSIM index is

(Zﬂxﬂy + Cl)(zo'xy + ()
(12 +u3 + C)0f +0f +Co)

SSIM = 31)

where w,, o, and oy, denote the mean, standard devia-
tion and cross-correlation of a signal, respectively, and
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FIGURE 4. Visual comparisons on test brain_02 and brain_09 (noise level 3). From left column to right: Ground truth; Noisy; Gaussian; NLM; Hybrid;

TABLE 1. PSNR/SSIM/FSIM results of different methods on test images with noise level 3.

Images Noisy Guassian Filtering NLM Filtering Hybrid Thresholding | Proposed

brain_01 37.51/0.944/0.936 38.77/0.978/0.975 39.26/0.978/0.975 42.16/0.985/0.984 39.53/0.984/0.984
brain_02 38.26/0.944/0.936 38.80/0.978/0.975 39.21/0.978/0.976 42.20/0.985/0.984 41.03/0.984/0.984
brain_03 36.57/0.947/0.938 38.63/0.978/0.974 39.20/0.978/0.977 42.11.0.985/0.985 38.10/0.984/0.984
brain_04 37.41/0.947/0.938 38.47/0.978/0.974 39.15/0.979/0.978 41.25/0.985/0.985 39.46/0.984/0.985
brain_05 37.30/0.948/0.941 38.56/0.978/0.973 39.10/0.979/0.978 42.25/0.985/0.985 39.16/0.984/0.985
brain_06 37.73/0.947/0.939 38.55/0.978/0.974 38.88/0.978/0.977 42.21/0.985/0.985 39.89/0.984/0.984
brain_07 38.08/0.947/0.939 38.65/0.978/0.974 38.93/0.978/0.977 42.17/0.985/0.985 40.71/0.984/0.984
brain_08 38.06/0.946/0.939 38.83/0.978/0.974 39.01/0.978/0.977 42.16/0.985/0.985 40.73/0.984/0.984
brain_09 38.32/0.945/0.937 39.00/0.979/0.975 39.10/0.977/0.980 42.19/0.985/0.985 41.53/0.984/0.984
brain_10 36.31/0.946/0.939 38.83/0.979/0.975 39.21/0.978/0.977 41.91/0.985/0.985 39.82/0.984/0.984
brain_11 36.67/0.945/0.938 38.75/0.979/0.975 39.14/0.978/0.978 41.75/0.985/0.985 39.38/0.984/0.985
brain_12 38.31/0.945/0.937 38.81/0.979/0.976 39.25/0.979/0.979 41.70/0.985/0.985 41.26/0.984/0.984
brain_13 38.33/0.944/0.932 39.02/0.979/0.976 39.48/0.980/0.981 41.31/0.985/0.985 41.58/0.985/0.984
brain_14 36.04/0.946/0.932 38.91/0.979/0.977 39.65/0.981/0.982 42.63/0.986/0.986 39.33/0.985/0.984
brain_15 36.35/0.945/0.926 39.00/0.980/0.978 39.76/0.982/0.983 41.06/0.985/0.985 39.93/0.985/0.983
brain_16 37.78/0.944/0.927 38.94/0.980/0.978 40.06/0.983/0.983 42.21/0.986/0.985 40.44/0.985/0.984
brain_17 37.99/0.943/0.918 39.03/0.980/0.979 40.37/0.985/0.986 41.59/0.985/0.986 40.96/0.985/0.980
brain_18 37.17/0.943/0.925 39.26/0.981/0.980 40.37/0.984/0.984 42.90/0.986/0.986 39.27/0.985/0.983
brain_19 36.64/0.945/0.923 39.39/0.982/0.980 40.42/0.985/0.986 41.59/0.984/0.985 38.26/0.986/0.982
brain_20 36.02/0.947/0.923 39.61/0.982/0.980 40.50/0.985/0.985 40.56/0.984/0.985 39.35/0.986/0.980
brain_21 35.15/0.947/0.933 39.87/0.982/0.980 40.42/0.985/0.984 43.08/0.986/0.986 39.18/0.986/0.983
brain_22 38.86/0.947/0.933 40.09/0.983/0.980 40.33/0.985/0.983 43.08/0.987/0.985 42.41/0.987/0.984
brain_23 38.97/0.949/0.923 40.13/0.983/0.982 40.49/0.985/0.986 35.89/0.979/0.980 42.23/0.987/0.976
brain_24 38.34/0.949/0.923 40.02/0.983/0.982 40.64/0.985/0.986 38.09/0.982/0.983 40.87/0.987/0.975
brain_25 36.85/0.949/0.937 40.16/0.983/0.981 40.68/0.985/0.985 42.54/0.985/0.985 38.39/0.986/0.982
brain_26 36.48/0.950/0.926 40.39/0.983/0.983 40.55/0.985/0.986 35.08/0.977/0.979 38.83/0.987/0.979
brain_27 37.68/0.949/0.928 40.46/0.984/0.983 40.46/0.985/0.986 37.13/0.980/0.982 39.52/0.986/0.976
brain_28 38.92/0.950/0.941 40.52/0.984/0.983 40.48/0.985/0.984 42.79/0.985/0.985 41.82/0.987/0.981
brain_29 35.67/0.952/0.926 40.63/0.984/0.984 40.56/0.985/0.987 35.34/0.978/0.978 39.71/0.987/0.983
brain_30 38.81/0.951/0.926 40.77/0.984/0.985 40.68/0.985/0.987 35.63/0.978/0.978 41.56/0.987/0.967
Average 37.42/0.947/0.932 39.36/0.981/0.978 39.84/0.982/0.982 40.89/0.984/0.984 40.13/0.985/0.981

C; and C, are small constants to characterize the sat-
uration effects of the visual system at low luminance
and contrast regions. Comparison with PSNR, SSIM
is closer to the quality perception of the human visual

system.

o The FSIM index is formed as

84956

FSIM =

2 e SL(X) - PCpu(x)

2 veq PCn(x)

’

(32)

where PC,,(-) and €2 denote the phase congruency value
and the whole image domain, respectively, and Sz.(-) is
the similarity metric that combines the phase congru-
ency similarity and the gradient similarity.

C. DENOISING RESULTS
In order to evaluate the performance of noise reduction of our
method, we compare the proposed method with two classical

VOLUME 8, 2020



L. Ji et al.: Medical Image Denoising Based on Biquadratic Polynomial

IEEE Access

FIGURE 5. Visual comparisons on test brain_13 and brain_16 (noise level 5). From left column to right: Ground truth; Noisy; Gaussian; NLM; Hybrid;

Proposed.

TABLE 2. PSNR/SSIM/FSIM results of different methods on test images with noise level 5.

Images Noisy Guassian Filtering NLM Filtering Hybrid Thresholding | Proposed

brain_01 33.01/0.879/0.874 38.17/0.975/0.971 38.71/0.976/0.973 40.40/0.980/0.979 38.84/0.981/0.980
brain_02 32.67/0.885/0.878 38.20/0.975/0.971 38.64/0.976/0.974 40.34/0.981/0.979 40.09/0.981/0.980
brain_03 30.46/0.888/0.881 38.03/0.975/0.970 38.63/0.976/0.975 40.31/0.981/0.980 37.53/0.981/0.980
brain_04 33.47/0.887/0.879 37.87/0.975/0.970 38.58/0.977/0.976 38.50/0.979/0.978 38.78/0.982/0.981
brain_05 32.72/0.887/0.881 37.95/0.975/0.970 38.53/0.977/0.976 40.45/0.981/0.980 38.46/0.982/0.981
brain_06 33.88/0.884/0.877 37.95/0.975/0.970 38.30/0.976/0.975 40.38/0.981/0.980 39.07/0.981/0.980
brain_07 32.91/0.889/0.884 38.04/0.975/0.971 38.36/0.975/0.975 40.39/0.981/0.980 39.84/0.981/0.980
brain_08 33.49/0.886/0.880 38.23/0.975/0.971 38.44/0.976/0.975 40.42/0.981/0.980 39.76/0.981/0.980
brain_09 32.33/0.886/0.880 38.39/0.976/0.972 38.55/0.975/0.975 40.46/0.981/0.980 40.53/0.981/0.981
brain_10 33.60/0.882/0.876 38.23/0.976/0.972 38.68/0.976/0.975 39.40/0.980/0.979 39.28/0.981/0.981
brain_11 31.70/0.887/0.882 38.15/0.975/0.972 38.61/0.976/0.976 39.29/0.979/0.978 38.97/0.981/0.981
brain_12 33.35/0.884/0.876 38.21/0.976/0.972 38.71/0.977/0.977 39.04/0.978/0.977 40.34/0.982/0.982
brain_13 32.91/0.883/0.872 38.42/0.976/0.973 38.94/0.978/0.979 39.82/0.980/0.980 40.66/0.982/0.982
brain_14 31.92/0.885/0.871 38.30/0.976/0.974 39.09/0.980/0.980 40.80/0.982/0.982 38.84/0.982/0.981
brain_15 31.89/0.884/0.865 38.38/0.977/0.975 39.21/0.980/0.981 39.06/0.978/0.977 39.42/0.982/0.981
brain_16 33.65/0.882/0.865 38.32/0.977/0.975 39.51/0.982/0.982 40.32/0.982/0.982 39.63/0.983/0.981
brain_17 32.20/0.884/0.857 38.41/0.978/0.977 39.81/0.983/0.985 39.80/0.980/0.980 40.14/0.983/0.978
brain_18 33.15/0.883/0.864 38.65/0.978/0.977 39.81/0.983/0.983 41.11/0.983/0.982 38.62/0.983/0.981
brain_19 33.35/0.881/0.859 38.78/0.979/0.978 39.83/0.984/0.985 40.68/0.980/0.981 37.73/0.984/0.980
brain_20 32.79/0.885/0.862 39.01/0.980/0.978 39.91/0.984/0.984 39.83/0.980/0.980 38.91/0.984/0.978
brain_21 32.75/0.888/0.876 39.27/0.980/0.977 39.83/0.984/0.983 41.31/0.983/0.982 38.84/0.983/0.980
brain_22 32.63/0.892/0.881 39.49/0.980/0.977 39.73/0.983/0.982 41.28/0.983/0.981 41.32/0.984/0.981
brain_23 33.81/0.892/0.869 39.52/0.980/0.979 39.88/0.984/0.984 35.77/0.977/0.978 41.13/0.984/0.974
brain_24 33.75/0.892/0.870 39.41/0.980/0.979 40.04/0.984/0.985 37.68/0.978/0.978 40.04/0.985/0.974
brain_25 32.13/0.894/0.888 39.55/0.981/0.979 40.11/0.984/0.984 41.38/0.981/0.981 37.85/0.984/0.980
brain_26 32.24/0.893/0.878 39.78/0.981/0.981 39.98/0.984/0.985 35.04/0.976/0.978 38.37/0.984/0.972
brain_27 31.76/0.894/0.882 39.86/0.981/0.981 39.90/0.983/0.984 36.89/0.978/0.979 38.87/0.984/0.972
brain_28 33.82/0.897/0.897 39.92/0.981/0.980 39.89/0.983/0.983 41.11/0.982/0.981 40.85/0.984/0.979
brain_29 32.34/0.897/0.884 40.02/0.982/0.982 39.97/0.984/0.985 35.28/0.977/0.977 39.31/0.984/0.966
brain_30 33.50/0.897/0.886 40.16/0.982/0.983 40.10/0.984/0.986 35.54/0.978/0.978 40.63/0.985/0.965
Average 32.78/0.888/0.876 38.76/0.978/0.975 39.28/0.9801/0.980 39.40/0.981/0.979 39.42/0.983/0.978

noise reduction methods: Gaussian filtering [32], non-local
mean (NLM) filtering [5], an hybrid singular value thresh-
olding [33]. All methods are coded in Matlab programming
language. In our experiments, we perform these three meth-
ods on 30 test images with different noise levels (o = 3,5, 7),
and evaluate the results in terms of both objective quantitative
metrics and subjective visual quality.
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To compare the denoising performance objectively,
Tables 1-3 list the quantitative results of four denosing
methods in terms of PSNR, SSIM and FSIM. It is seen
that the proposed method outperforms Gaussian filtering
and NLM filtering, which achieves the best quantitative
performance, especially in term of PSNR. The proposed
method is capable of obtaining gains in PSNR of up to
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FIGURE 6. Visual comparisons on test brain_22 and brain_28 (noise level 7). From left column to right: Ground truth; Noisy; Gaussian; NLM; Hybrid;

TABLE 3. PSNR/SSIM/FSIM results of different methods on test images with noise level 7.

Images Noisy Guassian Filtering NLM Filtering Hybrid Thresholding | Proposed

brain_01 29.15/0.820/0.823 37.45/0.971/0.967 38.18/0.974/0.971 38.08/0.976/0.974 38.22/0.978/0.977
brain_02 27.75/0.828/0.830 37.46/0.971/0.967 38.09/0.974/0.972 38.99/0.976/0.974 39.27/0.978/0.977
brain_03 29.68/0.828/0.826 37.28/0.970/0.966 38.08/0.974/0.973 38.98/0.976/0.974 37.18/0.978/0.977
brain_04 27.97/0.834/0.833 37.12/0.970/0.966 38.03/0.975/0.974 37.10/0.975/0.973 38.10/0.979/0.978
brain_05 28.79/0.832/0.833 37.20/0.970/0.966 37.99/0.975/0.973 39.09/0.977/0.975 37.90/0.978/0.977
brain_06 29.76/0.830/0.832 37.22/0.970/0.966 37.75/0.974/0.973 38.98/0.976/0.975 38.57/0.978/0.977
brain_07 29.68/0.828/0.830 37.30/0.970/0.966 37.82/0.973/0.973 38.96/0.976/0.974 38.96/0.978/0.977
brain_08 29.50/0.830/0.832 37.47/0.971/0.967 37.91/0.973/0.973 39.00/0.976/0.974 38.88/0.978/0.977
brain_09 30.17/0.825/0.825 37.63/0.971/0.968 38.02/0.973/0.972 39.11/0.976/0.975 39.58/0.978/0.977
brain_10 29.02/0.825/0.828 37.47/0.971/0.968 38.18/0.974/0.973 38.47/0.976/0.974 38.74/0.978/0.977
brain_11 29.48/0.828/0.831 37.41/0.971/0.968 38.09/0.974/0.974 38.38/0.976/0.974 38.14/0.978/0.978
brain_12 28.93/0.830/0.828 37.47/0.971/0.969 38.20/0.975/0.975 38.55/0.976/0.975 39.40/0.979/0.979
brain_13 29.75/0.827/0.823 37.67/0.972/0.970 38.43/0.976/0.978 38.46/0.976/0.975 39.77/0.980/0.979
brain_14 30.10/0.823/0.816 37.55/0.972/0.971 38.56/0.978/0.979 39.38/0.978/0.977 38.21/0.979/0.978
brain_15 29.94/0.823/0.812 37.61/0.972/0.972 38.69/0.978/0.980 38.41/0.976/0.975 38.94/0.980/0.978
brain_16 30.34/0.824/0.814 37.55/0.973/0.972 38.98/0.980/0.980 39.19/0.978/0.977 38.89/0.980/0.979
brain_17 29.57/0.827/0.807 37.65/0.974/0.973 39.27/0.982/0.983 38.31/0.976/0.976 39.33/0.980/0.976
brain_18 30.95/0.822/0.811 37.89/0.974/0.974 39.26/0.981/0.982 39.76/0.979/0.978 38.04/0.980/0.978
brain_19 30.76/0.826/0.809 38.05/0.975/0.975 39.27/0.982/0.983 39.76/0.978/0.978 37.35/0.981/0.977
brain_20 29.19/0.833/0.816 38.25/0.976/0.975 39.35/0.982/0.983 39.06/0.977/0.977 38.52/0.981/0.976
brain_21 30.06/0.833/0.828 38.51/0.976/0.974 39.27/0.982/0.981 39.90/0.980/0.978 38.23/0.980/0.978
brain_22 30.72/0.837/0.834 38.74/0.977/0.974 39.15/0.981/0.980 39.92/0.979/0.978 40.40/0.982/0.978
brain_23 28.77/0.842/0.829 38.77/0.977/0.976 39.28/0.982/0.983 36.47/0.971/0.970 40.21/0.982/0.972
brain_24 28.42/0.843/0.831 38.67/0.977/0.977 39.47/0.982/0.983 37.24/0.973/0.972 39.36/0.982/0.971
brain_25 28.80/0.844/0.847 38.81/0.977/0.976 39.55/0.982/0.982 39.34/0.977/0.977 37.51/0.981/0.977
brain_26 30.08/0.842/0.840 39.03/0.978/0.978 39.43/0.982/0.983 35.78/0.969/0.969 37.96/0.982/0.970
brain_27 29.80/0.840/0.841 39.11/0.978/0.978 39.36/0.982/0.983 36.54/0.972/0.972 38.46/0.981/0.970
brain_28 29.60/0.844/0.858 39.18/0.978/0.978 39.32/0.982/0.982 39.60/0.978/0.978 40.00/0.981/0.976
brain_29 30.38/0.842/0.849 39.29/0.978/0.980 39.40/0.982/0.984 35.21/0.966/0.966 38.97/0.981/0.964
brain_30 29.41/0.848/0.853 39.41/0.979/0.980 39.54/0.982/0.985 35.26/0.969/0.967 39.93/0.982/0.963
Average 29.55/0.832/0.829 38.01/0.974/0.972 38.73/0.978/0.978 38.37/0.976/0.976 38.77/0.980/0.976

0.20dB than NLM filtering, and is superior to Gaussian in FSIM, but is significantly superior to Gaussian

filtering by 0.73dB on average. We also observed that the
performance of the hybrid singular value thresholding is not
stable. Compared with other methods, the SSIM results also
show that our method achieves performance gains up to 3.4%
and 6.3%, respectively. In addition, the proposed method is
slightly inferior to NLM filtering and hybrid thresholding
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filtering.

For visual comparisons, Figures 4-6 show the denoised
images of six different images with different noise levels,
in which zoomed local regions are also given. As can be
observed from them, the results by our method and Gaus-
sian filtering are significantly better than NLM filtering and
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hybrid thresholding, especially in detail-preserving. The rea-
son is that the non-local averaging behavior of NLM leads
to oversmoothed results and the minimum variance estimate
used in hybrid thresholding also smooths detail information.
Note that Gaussian filtering obviously outperforms NLM in
visual quality, while NLM obtains higher quantitative per-
formance than Gaussian filtering. This observation is signifi-
cantly different from the case in dealing with natural images.
One possible reason is that medical images can be effectively
modeled by local prior used in Gaussian filtering. Addition-
ally, it also indicates that quantitative metrics (PSNR, SSIM,
and FSIM) widely used in medical image denoising may not
be sufficient for evaluating the image quality.

We have also observed an interesting phenomenon as fol-
lows. Intuitively, the output of a denoising method should
depend on the input. In other words, the denoised result from
an input image with a higher noise level generally should
has a lower quality. From Tables 1-3, we can observe that
the performance of NLM and Gaussian filterings is relatively
stable, while the PSNR values of the inputs (noisy images)
are highly fluctuated. A possible reason for this phenomenon
is that there exists a high self-similarity in medical images,
which makes NLM and Gaussian filterings more stable. How-
ever, despite its stability, NLM results in a detail loss.

VI. CONCLUSIONS

This paper presents a new method for medical image denois-
ing that combines biquadratic polynomial surface construc-
tion and low-rank approximation techniques. To the best of
our knowledge, the biquadratic polynomial with minimum
error constraints is first used to reduce noises in medical
images. With the reconstruction error constraint, the con-
struction coefficients are determined by minimizing the gra-
dient and the approximation accuracy of the surface. To
improve the performance of biquadratic polynomial based
denoising, a new singular value thresholding strategy is
applied to further suppress the residual noise. The threshold-
ing is achieved by optimizing an objective function with a
constraint. The feasibility and effectiveness of our method
have been demonstrated by experimental results on a real
clinical data set. In our future work, we will focus on further
improving the real-time performance of the method.
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