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ABSTRACT Considering the problems of motion blur, partial occlusion and fast motion in target tracking,
a target tracking method based on adaptive structured sparse representation with attention is proposed.
Under the framework of particle filtering, the performance of high-quality templates is enhanced through
an attention mechanism. Structure sparseness is used to build candidate target sets and sparse models
between candidate samples and local patches of target templates. Combined with the sparse residual method,
reconstruction error is reduced. After optimally solving the model, the particle with the highest similarity
is selected as the prediction target. The most appropriate scale is selected according to the multiscale factor
method. Experiments show that the proposed algorithm has a strong performance when dealing with motion
blur, fast motion, partial occlusion.

INDEX TERMS Attention mechanism, sparse representation, structure sparse, target tracking.

I. INTRODUCTION
Target tracking automatically locates a target in subse-
quent frames according to the state of a known target in
the initial image frame. Target tracking, as one of the
research hotspots in the field of computer vision, plays
an important role in the fields of intelligent transportation,
medical, military, and intelligent surveillance. According to
the methods established by the target observation model,
the target tracking methods [1]–[5] can be divided into
two categories: discriminative methods and generative meth-
ods. The discriminative method establishes an observation
model for the foreground and background of the initial frame
image and determines the background and target informa-
tion in subsequent video frames to achieve target tracking.
Discriminative methods mainly include correlation filtering
methods [6], [7], [26]–[29] and deep learning methods [8],
[9], [30]–[37]. The generative method represents the target
through the learned appearance model and selects the candi-
date patch with the smallest reconstruction error as the target
area of the next frame. Generative methods mainly include
sparse representations [10], [11], [44], mean shift [12], [13],
and particle filtering [14]. Although these methods have been
proven to achieve good results, they still face challenges from
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occlusion, deformation, scale change, fast motion, motion
blur, lighting change, and background change.

The sparse representation of the image is based on the
over-complete dictionary theory proposed by Mallat and
Zhang [15] in 1993. Since sparse representation was applied
in the field of target tracking by Mei and Ling [16] in 2009,
the method of sparse representation has been proven to
apply to target tracking. References [17]–[22], [43]–[48] used
local, global, or joint sparse models to classify trackers.
In [17], [22], the template T represents each target candidate
area xi by means of sparse linear combination and uses a
dynamic update method to describe the appearance model of
the target. Although this type of method has achieved good
results, when it encounters occlusion situations, the tracking
efficiency decreases sharply because of the global sparse
model. In [11], the target candidate region was divided into
k patches of the same size xki , which are represented by
sparse templates. Reference [16] represented local patches in
candidate regions as linear combinations of dictionaries by
solving the l1 minimization problem. Most of these methods
are based on static local sparseness. Once similar objects
appear in the scene or the target is occluded, the tracking
target is easily lost. Zhang et al. [24] proposed a tracking
algorithm based on a structural sparse appearance model and
a particle filtering framework to represent particles and the
corresponding local patches jointly.
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In this paper, there are two main contributions. (1) We
propose a novel sparse representation model by combining
the structured sparse representation and sparse residuals and
add an attention mechanism into the model. The model can
significantly improve the performance and reliability of the
algorithm. (2) The kernel density characteristics method is
used to deal with the problem of target scale change during
target tracking. The experiment proves that the strategy is
effective.

II. RELATED WORKS
For the convenience of subsequent descriptions, a brief
review of the work related to this article is given in this
section.

A. STRUCTURAL SPARSE REPRESENTATION TARGET
TRACKING MODEL
Mei and Ling [16] proposed robust tracking based on the l1
norm minimization. The tracking problem was solved as a
sparse approximation problem in the particle filtering frame-
work. Each candidate target is represented by the sparseness
in the target template set and trivial template set. In addition,
l1 regularized least squares is often used to solve the sparse
problem of candidate targets, and then selecting the tracking
target with the smallest reconstruction error as the location
of the target in the next frame. On this basis, Xu et al. [23]
proposed a tracking method based on a structured sparse
appearance model, which divided the image into n patches
of equal size, each local patch represented a fixed part of
the target object, and all local patches represented the overall
structure of the target.

However, this sparse model has the following disadvan-
tages: (i) Though the l1 norm can make the coefficients
sufficiently sparse, under the interference of complex back-
grounds and lighting changes, the sparse assumption is often
not true, and the l1 norm requires higher computational com-
plexity. (ii) Its inability to explore the correlation between
different particles is another deficiency, which will have a
considerable impact on the robustness of the model.

B. ROBUST TARGET TRACKING BASED
ON SPARSE REPRESENTATION
Zhang et al. [24] proposed a novel object tracking method
of structural sparse representation, which not only makes full
use of the inherent relationship between candidate targets and
their local patches and learns their joint sparse representation
but also preserves the spatial layout in local patches within
each candidate target structure, and improves tracking perfor-
mance by using the internal relationship between particles.

However, when this algorithm encounters the problem of
target deformation, the gray features are extremely sensitive
to these scenes, the correlation between column vectors will
be affected, and it is doubtful whether the coefficients are
still sparse. Moreover, this algorithm also lacks effective
strategies for dealing with fast movements. Because it cannot

FIGURE 1. Algorithm main structure.

FIGURE 2. n × n sized subpatches.

adaptively adjust the window size, it learns from the noise as
a target when the target changes in scale.

III. OUR APPROACH
The sparse structured target tracking method utilizes the rela-
tionship between the local patches of candidate targets and
retains the spatial layout between the local patches of each
candidate target to improve the robustness of the algorithm.
In the prototype-based tracking algorithm [25], the base vec-
tors are orthogonal, so the coefficients Z corresponding to the
orthogonal base vectors are dense. The above model can be
solved by iterative optimization.

Based on the advantages and disadvantages of the above
two methods, this paper combines structural sparse represen-
tation and prototype-based sparse representation and adds an
attention mechanism to optimize the objective function to
improve the robustness of the algorithm. Finally, the multi-
scale factormethod is used to solve the problem of target scale
change. The algorithm main structure is shown in Fig. 1.

A. STRUCTURAL SPARSE REPRESENTATION MODEL
COMBINING AN ATTENTION MECHANISM
In this paper, the target template is selected according to the
method in [24]. The target object image in the specified frame
is divided into n× n sized subpatches (Fig.2). All subpatches
are vectorized and combined to the target template D. The
model in [24] can be described as (1). Z is obtained by
solving (1) with the help of the Lagrange multiplier method.

min
Z
‖X − DZ‖2F + λ1 ‖P‖2,1 + λ2

∥∥∥QT∥∥∥
2,1

s.t.Z = P+ Q, Z = [Z1,Z2, . . . ,ZK ] (1)

The sparse residuals used in [25] effectively reduce the
reconstruction errors in the tracking process. On this basis,
to improve the performance of high-quality templates on
targets, an attention mechanism [41], [42] is added to (2), and
formula (3) is obtained.

X = DZ + e (2)
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Z is a sparse representation coefficient, and e is a recon-
struction error.

X = WDZ + e (3)

whereW represents the weight of the template. For the output
y at a certain moment, W represents its attention on each
part of the input x, that is, the weight of the contribution of
each part of the input x to the output at a certain moment.
The template Dk with stronger performance ability for the
target in the current frame is given a higher weight Whigh,
which improves the performance of the target template in
subsequent frames and enhances the robustness of the algo-
rithm. Finally, considering the sparseness constraint problem
of global images and local image patches, this paper consid-
ers using a combination of structural sparseness methods to
enhance the sparseness of coefficient Z and make full use
of the inherent relationship between candidate targets. Thus,
combining (1) and (3), we propose a new target tracking
model, as shown in (4).

min
Z ,P,Q,W ,e

1
2

K∑
k=1

(
∥∥∥X k −W kDkZ k − ek

∥∥∥2
F
+ λ1 ‖P‖p,q

+λ2

∥∥∥QT∥∥∥
p,q
+ λ3 ‖W‖2 + λ4 ‖e‖1)

s.t.Z = P+ Q (4)

X k consists of the k-th patch of all n candidate targets,
Dk represents the target template of the k-th patch, Z is
the local observation representation of the k-th patch of the
target template, W k represents the weight coefficient of Dk ,
and ek represents the k-th reconstruction error of the patch.
λ1, λ2, λ3, λ4 represents a nonnegative parameter of the reg-
ular term. The lp, q hybrid constraints are defined as:
‖Z‖p,q = ((

∑
i

∑
j

∣∣Zij∣∣p) qp ) 1q , Zij denotes the element in the

i-th row and the j-th column, the l2,1 mixed norm is used for
the row group of P so that the relevant local color patches
have similar representations; the group lasso penalty is used
on the column group of Q to identify outliers at the same
time. We divide the solution of (4) into two steps. The first
step uses the APG (accelerate proximal gradient) algorithm
to solve P,Q.
Set:

t(P,Q) =
K∑
k=1

∥∥∥X k −W kDkZ k − ek
∥∥∥2
F

(5)

g(P,Q) = λ1 ‖P‖2,1 + λ2
∥∥∥QT∥∥∥

2,1
(6)

Now we apply the method of composite gradient mapping
to (4), and we obtain the following function:

8(P,Q;R, S)

= t(R, S)+ 〈∇Rt(R, S),P− R〉 + 〈∇St(R, S),Q− S〉

+
α

2
‖P− R‖2F +

α

2
‖Q− S‖2F + g(P,Q) (7)

In the m-th APG iteration:

Rm+1 = Pm + εm(
1− εm−1
εm−1

)(Pm − Pm−1)

Sm+1 = Qm + εm(
1− εm−1
εm−1

)(Qm − Qm−1) (8)

(Rm+1, Sm+1) is linearly represented byW and (Rm−1, Sm−1),
εm =

2
m+3

The solution of the m-th iteration is obtained by solving
equation (9)

(Rm, Sm) = min
P,Q

8(P,Q;Pm,Qm) (9)

The solution of equation (9) can be divided into two parts:
P and Q.

Pm = min
P

1
2

∥∥P− Vm∥∥2
F +

λ1

α
‖P‖2,1 (10)

Qm = min
Q

1
2

∥∥Q− Um∥∥2
F +

λ2

α

∥∥∥QT∥∥∥
2,1

(11)

Vm
= Rm −

1
α
∇Rt(Rm, Sm)

Um
= Sm −

1
α
∇St(Rm, Sm) (12)

After finding P,Q,Z , in the second step, we fix P,Q,Z
to solve W and e. W can be obtained by using the ridge
regression constraint term, so it can be derived directly.

W = ((DZ )TDZ + λ3I )−1(DZ )T (x − e) (13)

Then, after fixing W ,P,Q,Z , e can be acquired by mini-
mizing f (e) = ‖X −WDZ − e‖2F+‖e‖1, which is essentially
a convex optimization problem, and can be solved by the
contraction operator [25], and the global minimum can be
solved by the contraction operator[25], and e can be obtained
from (14)

e = βτ (X −WDZ ) (14)

βτ is the contraction operator and defined as

βτ (x) = sgn(x) · (|x| − τ ).

B. HANDLING OF SCALE CHANGES
The scale change in the target is always a key issue in target
tracking. The existing methods for dealing with the scale
change mainly use the scale pyramid method (SAMF) [39]
and multiscale factor (DSST) [40], and obtain the best per-
formance with templates scale. In this paper, the predicted
target is multiplied by the scale factor of different sizes to
extract the corresponding kernel density characteristics. The
optimal value obtained by solving formula (17) and template
matching is the optimal scale of the predicted target.

The reference target model is represented by the density
estimation feature q̂ in the feature space [26], as shown
in (15). The target candidate is defined at position y and is
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characterized by the density estimation feature p̂(y), as shown
in formula (16):

q̂ = {q̂u}u = 1 . . .m,
m∑
u=1

q̂u = 1 (15)

p̂(y) = {p̂u(y)}u = 1 . . .m,
m∑
u=1

p̂u = 1 (16)

The k-th block feature dictionaryDk is obtained by collect-
ing the k-th block target model density estimation feature q̂.
According to the collected density estimation feature p̂(y)
of the i-th target candidate at y, the k-th block of the i-th
candidate test sample xki is formed. Then, we add feature dic-
tionary Dk and test sample xki to (17) to obtain the similarity
value between the target candidate and the target model, and
the scale with the largest similarity value is selected as the
prediction target scale.

p(yt|st) =
1
α
exp(−β(

K∑
k=1

∥∥∥xki − Dkzki ∥∥∥2)) (17)

yt represents the observed value, and st denotes system
status; α, β are constant coefficients.

The main process of the proposed adaptive structured
sparse representation is as follows:

IV. EXPERIMENT
In this section, we show the performance of the proposed
algorithm on mainstream video datasets and compare it with
other algorithms, as well as some technical details in the
implementation process.

A. EXPERIMENTAL SETUP
In the experiment, the video image was converted into a
grayscale image. The image was initially divided into 2 × 2
local patches of the same size. The template was selected
from the video frame image. The template size was consistent
with the candidate target local patch size. The search radius of
the candidate target is 1.5 times, and the number of candidate
targets is 200. After tracking the target in each frame, update
the template by comparing the error between the predicted
target and the template patch; replace the patch with the
largest error in the template with the target patch in the current
frame, and use the learning rate η to update the remaining
templates. The experimental environment is Matlab2018a,
the host frequency is 3.60GHZ, and the memory is 8GB.

B. EXPERIMENTAL EVALUATION INDICATORS
There are three kinds of evaluation indexes in this exper-
iment: average overlap rate, center position accuracy, and
accuracy rate. Compare the predicted target frame obtained
from the experimental real frame Rboundary and Pboundary of
a given frame. Assume their center positions are Rcenteral
and Pcenteral , the center position error is Ecenteral =

‖Rcenteral − Pcenteral‖2, and the average overlap ratio is

Algorithm 1 Algorithm Process
1. Initial tracking target position pos(1), obtain template
dictionaryD. After multiple experiments, the experimental
results are best when the parameters are set as follows:
attentionmechanism parameterW is set to value 1, thewin-
dow size padding is 1.5 times the target size, the recon-
struction error e is initialized to 0, and the constants’ values
are λ1 = 0.001, λ2 = 0.001, λ3 = 5, λ4 = 1
For I = 2: imgnum(video frames)
2. Good point set sampling is used to obtain candidate
target sets X
Solving (4) is performed in two steps:
a. First step: fixW , e, solve Z using the APG algorithm
While t < T(T: the maximum number of iterations, t:

number of iterations)
m-th iteration:

Rm+1 = Pm + εm(
1− εm−1
εm−1

)(Pm − Pm−1)

Sm+1 = Qm + εm(
1− εm−1
εm−1

)(Qm − Qm−1)

To solve Z , first solve (11) in two parts P,Q

Pm = min
P

1
2

∥∥P− Vm∥∥2
F +

λ1

α
‖P‖2,1

Qm = min
Q

1
2

∥∥Q− Um∥∥2
F +

λ2

α

∥∥∥QT∥∥∥
2,1

(U ,V obtained from (12)). Z = P+ Q
b. Second step: fix Z ,P,Q, solve W , e in sequence

according to (13) and (14)
3. According to (17), the candidate with the highest simi-
larity is selected as the tracking target to obtain the target
central position loc
4. Based on the loc, the candidates obtained by scaling the
target selection box with different proportions are added
to (17) to obtain the final predicted target size of the current
frame. In addition, we save the target position and size in
pos(i)
5. Update template, learning rate η = 0.7
6. Return to step 2, save pos(i)
7. Output pos

defined as:

AO =
area(Rboundary ∩ Pboundary)
area(Rboundary ∪ Pboundary)

(18)

The accuracy rate is based on whether the distance Dist
between the real coordinate Rcenteral and the predicted coor-
dinate Pcenteral is less than 20 to determine the accuracy of
the prediction.

Dist =

{
true, Ecenteral ≤ 20
false, Ecenteral > 20

(19)
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TABLE 1. Comparison of the average center location error of different algorithms.

TABLE 2. Comparison of the average overlap ratio of different algorithms.

In this paper, some challenging videos with low res-
olution, plane rotation, scale change, deformation, back-
ground change, light change, motion blur, and fast motion
are selected as experimental videos. STC, UDT, SRDCF,
DSST, TADT, Struck, BACF, CN, CSK, L1APG, SCT4 and
STRCF are selected as the comparison benchmark algorithm
in this paper. The comparison results of 17 videos are shown
in Tables 1, 2, and 3. In the same video, the results of the three
best-performing algorithms are labeled superscript 1, 2 and 3
respectively.

Table 1 shows the comparison of the average center
location error of different algorithms. Lower average center
location error indicates that the algorithm’s tracking results
are better. Table 2 shows the comparison of the average
overlap ratio of different algorithms on the video dataset. The
higher the average overlap ratio is, the higher the accuracy of
the tracking results. Table 3 shows the average tracking accu-
racy of different algorithmswithin 20 pixels error. The greater
algorithms have better accuracy than other algorithms.

Table 1 shows the average center location error of different
algorithms. On most of the videos, our method is the best.

In all of the videos, ourmethod’s center location error is lower
than 10 pixels, only TADT and UDT’s results are similar to
ours.

Comparing the results of videos Car4, Crossing, and Man,
the center location error of our method is lower than 2 pixels.
This proves that our method is effective and robust in the test
videos.

According to the data in Table 2, the proposed algo-
rithm has the highest average overlap rate on Car4, David2,
Faceocc1, Jumping, Mountain Bike and other video sets.
On shaking video, the overlap rate of our method reaches
0.911, which is much higher than the 0.862 of the second
TADT. On the Crossing video set, the overlap rate of our
method reaches 0.991, which is significantly higher than the
rate of 0.937 of the second STRCFmethod. Before modeling,
our algorithm segments the template and tracking target into
local blocks, which enhances the local information of the
target and mitigates the impact of target changes on the
tracking result. The introduction of an attention mechanism
further improves the accuracy and robustness of the proposed
algorithm.
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TABLE 3. Comparison of the average tracking accuracy of different algorithms (within 20 pixels error).

As seen in Table 3, the proposed algorithm has the highest
center accuracy on the BlurCar2, Boy, and Faceocc1 video
sets, and the tracking accuracy is the highest.

Within the range of 20 pixels, the tracking accuracy of the
proposed algorithm on most of the videos, such as Crossing,
Deer and Jumping, reached 1; even on Faceocc1 video, our
accuracy reached 0.98 and ranked first. The accuracy of most
of the other algorithms, such as UDT, is less than 0.9. When
the above video shows fast motion, motion blur and partial
occlusion, the proposed algorithm can still track the target
accurately. This is mainly due to the sparse model used in
the proposed algorithm, which makes full use of the local
and global information of the target, greatly reduces the error
caused by the change in target appearance, and improves the
robustness of the algorithm.

As can be seen from the tables above, In Boy, Car4,
Football, Jumping, Deer and other videos, our method
achieves better and more robust performance compared with
that of the other methods. Our method also worked well
for some of the fast-moving videos, such as Boy, and the
partial occlusion videos. The structured sparse representation
method not only considers the spatial layout structure of the
image blocks inside each target candidate region but also
considers the internal relations between the target candidate
regions and between the local blocks. On this basis, this paper
proposes to add an attention mechanism to strengthen the
online learning of the target in the template, and continuously
weaken the influence of the background on the tracking
results. The attention mechanism can help us to obtain more
discriminant information from sparse coding coefficients.
With the continuous updating of the template and attention
parameters, the reconstruction error of the moving target is
continuously reduced, so the proposed method has a stronger
performance on moving targets with motion blur, such as
Deer, and partial occlusion. The feature of relatively uniform
sampling of good point sets helps to collect more evenly dis-
tributed samples during the sampling process. It can quickly
determine the approximate location of the target, decrease
the algorithm’s running time, and improve the efficiency of

the algorithm. In the process of video processing such as
the Car4 video, a reasonable scaling strategy is helpful for
reasonably predicting the change in the target scale based
on the size of the previous frame and the information of
the current frame. The kernel density feature is not easily
affected by the change in illumination and scale, which helps
the system to obtain higher reliability.

From Figs. 3, 4, and 5, it can be seen that the proposed
algorithm has excellent performance in terms of overlap
and center accuracy, and it is different from other compar-
ison algorithms. The proposed algorithm benefits from the
attention mechanism and therefore has stronger robustness.
In the case of motion blur, the proposed algorithm can accu-
rately track the target. At the same time, because the good
point set sampling is used in this paper, the sampling point
with a larger sampling range is more evenly distributed so
it can better handle some challenges such as fast movement.
When dealing with partial occlusion and partial deformation,
structured sparse representation considers the common-
ness between particles and the spatial structure of local
blocks, so it has strong robustness when dealing with partial
occlusion.

As seen in Fig. 4, when the threshold of this article is
approximately 0.1, the overlap ratio of the proposed algo-
rithm is close to 98%, while TADT, UDT, and STRCF can
only reach approximately 90%∼95%. When the threshold
is 1, our method shows a greater advantage than other algo-
rithms. According to Fig. 5, in the face of multiple chal-
lenges, the proposed algorithm makes full use of effective
scaling strategies to ensure tracking accuracy. Because of the
effective adjustment of target size, the center error is greatly
reduced. It can be seen in Fig. 5 that when the threshold
is low, the gap between the proposed algorithm and other
comparison algorithms is small; when the threshold is larger
than 15, the average center accuracy of this paper is beyond
0.9 which is higher than the 0.8 accuracy of the rest of the
comparison algorithms.

Table 1, Table 2, Table 3, Fig. 4, and Fig. 5 show that the
proposed algorithm, which combines the structured sparse
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FIGURE 3. Comparison of the actual effects of 13 methods on video sets (the solid red line is ours).

representation and the tracking method based on the sparse
prototype, shows excellent processing capability compared
to that of the other algorithms when dealing with partial
occlusion, fast movement, light change and motion blur, and
has better performance in terms of accuracy, center error and
overlap. The attention mechanism improves the robustness of
the algorithm. Fig. 3 specifically shows the comparison of the
actual effect of this paper and other algorithms on multiple
video sets.

We can see from Fig. 4 that ourmethod shows an advantage
from the beginning compared with the other methods, but as
the threshold increases, this advantage decreases. This indi-
cates that our strategy is effective for dealing with size, but
there is room for improvement, and the larger the threshold

is, the smaller the gap between methods. The slowly chang-
ing smooth curves in FIG. 4 and FIG. 5 also prove that
our method is robust, which effectively demonstrates that
adding an attention mechanism to the sparse structure is a
correct choice. A reasonable weightingmechanismmakes the
attention mechanism more robust, which makes the template
perform better and have more weight in previous frames.
Some trackers use an intensive sampling method to override
the state of the target object, but this can cause some other
problems. First, it is hard for them to sample all possible
particle filters which may include object states. However,
the more uniform sampling method of good point sets greatly
reduces the possibility of incomplete collection of target
samples. Second, comparingwith somemethods that only use
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FIGURE 4. Comparison of the overlap ratio on OTB100.

FIGURE 5. Comparison of accuracy ratio on OTB100.

simple template updates in tracing, our method can reduce the
possibility of replacing or updating valid target templates due
to the added attention mechanism and online update strategy.
Third, simple features such as gray features are disturbed by
external information, while feature extraction methods based
on kernel density are less susceptible to other information.

The experiments show that the proposed algorithm
achieves good results. It achieves excellent results in dealing
with fast motion of targets, changes in lighting, and motion
blur. It has certain effects when dealing with partial occlusion
and deformation problems. It is found that the algorithm still
lacks effective coping strategies when facing the problem of
targets that are out of view, completely occluded, and when
the shape of the target changes drastically.

V. CONCLUSION
In this paper, we proposed a new moving target tracking
method by combining structural sparse representation and
prototype-based sparse tracking and introducing an attention
mechanism. The proposed method can effectively improve
the accuracy rate of tracking and the overlap rate of tracking,
and the adopted scale change strategy can ensure that the
algorithm can perform well in the target scale change without
reducing the tracking accuracy, thus greatly enhancing the
robustness of the algorithm. In the algorithm solving process,
we used the APG algorithm to solve the target model step
by step, and then solved the optimal scale of the predicted
target through the similarity between the template and the

core density characteristics of the predicted target at different
scales. The algorithm realized robust tracking of the target
and updated the target template according to the tracking
results. Experimental results show that this method achieves
the goal of stable target tracking. In future work, we will
extend our idea and methodology to other multimedia appli-
cations such as segmentation [49], detection [50], recom-
menders [51] and dehazing [52].
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