
Received March 18, 2020, accepted April 14, 2020, date of publication April 27, 2020, date of current version May 11, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2990418

When Parallel Speedups Hit the Memory Wall
ALEX F. A. FURTUNATO 1, KYRIAKOS GEORGIOU2, KERSTIN EDER2,
AND SAMUEL XAVIER-DE-SOUZA 3, (Senior Member, IEEE)
1Diretoria Acadêmica de Informática, Instituto Federal do RN, Natal 59015-000, Brazil
2Department of Computer Science, University of Bristol, Bristol BS8 1TH, U.K.
3Department of Computer Engineering and Automation, Universidade Federal do Rio Grande do Norte, Natal 59000-000, Brazil

Corresponding author: Alex F. A. Furtunato (alex.furtunato@ifrn.edu.br)

This work was supported in part by the High-Performance Computing Center at UFRN (NPAD/UFRN), in part by the Coordenação de
Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES) under Finance Code 001, in part by the Royal Society-Newton Advanced
Fellowship under Award NA160108, and in part by the European-Union’s Horizon 2020 Research and Innovation Programme through the
Time, Energy and security Analysis for Multi/Many-core heterogeneous platforms (TeamPlay) under Grant 779882.

ABSTRACT After Amdahl’s trailblazing work, many other authors proposed analytical speedup models
but none have considered the limiting effect of the memory wall. These models exploited aspects such as
problem-size variation, memory size, communication overhead, and synchronization overhead, but data-
access delays are assumed to be constant. Nevertheless, such delays can vary, for example, according to the
number of cores used and the ratio between processor and memory frequencies. Given the large number of
possible configurations of operating frequency and number of cores that current architectures can offer,
suitable speedup models to describe such variations among these configurations are quite desirable for
off-line or on-line scheduling decisions. This work proposes a new parallel speedup model that accounts
for the variations on the average data-access delay to describe the limiting effect of the memory wall
on parallel speedups in homogeneous shared-memory architectures. Analytical results indicate that the
proposedmodeling can capture the desired behavior while experimental hardware results validate the former.
Additionally, we show that when accounting for parameters that reflect the intrinsic characteristics of
the applications, such as the degree of parallelism and susceptibility to the memory wall, our proposal
has significant advantages over machine-learning-based modeling. Moreover, our experiments show that
conventional machine-learning modeling, besides being black-boxed, needs about one order of magnitude
more measurements to reach the same level of accuracy achieved by the proposed model.

INDEX TERMS Parallel systems, data access delay, performance modeling, speedup, memory wall.

I. INTRODUCTION
Amdahl’s Law [1] has driven the chase for single-proces-
sor performance improvements for decades, but the end of
frequency-upscaling and the stagnation of instruction level
parallelism altogether led to the dawn of a new computational
era: the multi-core and many-core era.

In this new era, parallel computing has become the con-
ventional approach to achieve ever-increasing computational
performance. Although parallelism is not new in computa-
tional systems, its real potential has been obfuscated for many
decades by two main factors: Amdahl’s skepticism on the
ability of parallel systems to scale performance, and the expo-
nential speed growth of single processor systems. It is now a
consensus that Amdahl had a limited view on parallelism, and

The associate editor coordinating the review of this manuscript and

approving it for publication was Shadi Alawneh .

thus numerous works have been emerging towards expressing
and exploiting the advantages that parallel computing can
offer [2]–[6]. Continuing to broaden and explore different
views on parallelism remains of vital importance in maximiz-
ing the potentials that parallel computing can offer.

This paper widens the views on parallelism by explor-
ing the effects of the number of cores and their operating
frequency on the data-access delay for parallel applications
that make extensive use of the main memory. Memory-bound
programs are hard to model because their behavior is volatile
across runs with different inputs and system configurations
due to the variability of how such applications exploit the
memory hierarchy. We dedicate the following paragraphs to
describe the existing views on parallelism, which we argue
do not consider these aspects.

Amdahl showed that even a tiny not parallelized code
fraction of an application could compromise the applicability

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 79225

https://orcid.org/0000-0002-4201-0827
https://orcid.org/0000-0001-8747-4580
https://orcid.org/0000-0002-3360-9440


A. F. A. Furtunato et al.: When Parallel Speedups Hit the Memory Wall

of multiple processors to scale the application’s perfor-
mance [1]. Long after Amdahl’s work on the inability of
using multiple processors to scale performance, Gustafson’s
‘‘fixed-time speedup’’ approach to parallelism has shown
that larger programs can benefit from more processors [2].
Amdahl’s ‘‘fixed-size speedup’’ had a limited view on the
potential of parallelism. Gustafson’s scaling model, known as
Gustafson’s Law, opened the path to themulti-core andmany-
core era. In [4], the author unifies Amdahl and Gustafson’s
works and concludes that using the execution times instead of
the serial and parallel fractions of the code could have avoided
decades of unconstructive criticism against the advantages
of using parallel processing. Sun and Ni [3] coined another
prevalent model shortly after Gustafson’s seminal work.
The authors present a memory-bounded speedup model,
known as Sun and Ni’s Law. Their modeling demon-
strates that the memory size is a limiting factor for parallel
scalability.

More recently, othermodels extend these analyses tomulti-
core architectures, showing that they scale better for asym-
metric and dynamic multi-core chips [5]. In [6], the authors
summarize the contributions of three main speedup models
(fixed-size, fixed-time, and memory-bounded speedups mod-
els) to the multi-core era, presenting a very optimistic view.
However, their view assumes that the data-access delay is
fixed and independent of the number of cores and problem
sizes. This assumption is often unrealistic because of the
memory wall [7], caused by the increasing data-access delay
as the number of cores increases. In the following, we discuss
three of the significant factors that can affect the data-access
delay of an application running in a homogeneous shared-
memory architecture: the application’s problem/input size,
the number of cores utilized, and the ratio of the processor’s
and memory’s frequencies.

While the scaling of the problem size may affect the data-
access delay, whether this effect is negative or positive for per-
formance depends on the application’s nature and on how the
application is utilizing the targeted architecture. In general,
increasing the input size can trigger a higher activity in the
memory hierarchy, causing more cache misses, which sub-
sequently generates more main memory accesses per cycle.
Often, cache-blocking techniques can be applied to avoid or
reduce this effect. The modeling presented in this paper does
not consider variations in the problem/input size.

Increasing the number of cores can have an even more
significant effect on the data-access delay depending on the
architecture’s characteristics. For instance, even with the
problem size kept constant, using more processing cores can
cause an increasing data-access delay because the rate of
access-requests per cycle can increase due to more cores
making simultaneous requests to the same memory. When
the demand for accesses reaches the memory’s nominal rate
of attended requests per cycle, the average data-access delay
starts to increase, stagnating the performance scaling in the
number of cores, even for codes that are entirely parallel
or that have a tiny serial fraction. Hence, for these cases,

increasing the number of cores can indeed increase the data-
access delay, which will undesirably generate an adverse
effect on speedup in a form that resembles an increase in the
serial fraction of the application. On the other hand, in the
case of private-caches, increasing the number of cores can
lead to more available caches, and thus, to fewer memory
accesses that, up to a degree, will have a positive effect on
the data-access delay and thus will possibly allow further
performance gains through parallelization.

A third factor to consider is the ratio of the processor’s
and memory’s frequencies. If the processor is running sig-
nificantly faster than the memory, the data-access delay rela-
tive to the processor speed may also increase. Considering
all these factors and their interactions is crucial both for
developing parallel programs that do not become bounded by
the memory and for finding the optimal configuration of the
number of cores and the processor’s frequency that achieves
maximum speedup for an application. Currently, there is no
analytical model to capture these effects altogether. Some
authors have used hardware performance counters to build
models [8]–[10]. However, since those are processor-specific
and not standardised, their use limits the portability of the
models.

In this paper, we present a new analytical speedup-model
for multi-core architectures that captures the adverse and
the favorable effects on performance due to variations in
the data-access delay caused by increasing the number of
cores (see II). The proposed model does not use performance
counters and therefore is arguably more portable and less
complex than those that do.

The proposed model has many practical uses, includ-
ing finding suitable configurations [11]–[13] that, coupled
to a power model, could achieve better energy efficiency
while meeting the application’s performance constraint. It
could also be used by operating systems to estimate rel-
ative performance of multiple applications and to imple-
ment resource-optimal scheduling. Estimating wall time for
high performance computing jobs in unseen configurations is
another possible practical use for the proposed model.

We initially investigate the potential abilities of the pro-
posed model to capture the above effects analytically (III).
The analytical results indicated that the speedup is dependent
on the ratio between the frequencies of the processor and the
main memory, both for memory-bound applications and for
processor-bound applications that became memory-bounded
after an increase in the number of cores. The analysis indi-
cated that the larger this ratio, the higher its limiting effect
can be on the speedup and that this limitation grows with the
degree of parallelism of the code.

The proposed modeling was then fitted with actual hard-
ware measurements to validate our analytical findings (IV).
Furthermore, we demonstrate that our approach has higher
accuracy and lower variance than Amdahl’s model (IV-B).
Comparisons to other analytical speedup models would not
be more relevant since the other models differ from Amdahl’s
model by aspects that were not considered in our experiments,

79226 VOLUME 8, 2020



A. F. A. Furtunato et al.: When Parallel Speedups Hit the Memory Wall

such as the problem size and architectural features like
memory hierarchy and the amount of memory available. V
presents more details. Therefore, to the best of our knowl-
edge, the features modeled by other models are orthogonal
to the memory-wall effect modeled in this work. Thus, those
models, and their features, are complementary to the pro-
posed model.

We compare the proposed model to non-linear machine
learning approaches (IV-C), which are considered more flex-
ible than any analytical model. In this comparison, the pro-
posed model is demonstrated to exhibit a higher accuracy
while using fewer hardware measurements.

Finally, based on the presented modeling and experimental
results, we then discuss the implications that the contribu-
tions of this paper can have in application-specific multi-core
design and towards more energy-efficient parallel software.

The paper is organized as follows. In Section II we present
our modeling for speedup as a function of the ratio between
processor and memory frequencies. In Section III we analyze
the model behavior. In Section IV, we detail the methodology
used to validate the proposed models and provide results
of experiments in real hardware. In Section V we put our
contributions in perspective with the existing literature and,
finally, in Section VI, we draw conclusions and suggest future
work.

II. VARIABLE-DELAY SPEEDUP MODEL
In this section, we devise a new parallel speedup model that
accounts for the effect of the variation in the number of cores
on the data-access delay. Furthermore, the model allows us
to describe the effect that variations of the ratio between
processor and memory frequencies have on the speedup.

Let us first restate the equation for the speedup of an
application running in parallel with p cores as follows:

Sp = Ts/Tp, (1)

where Ts is the sequential time, measured when running the
application on a single core processor, and Tp is the time for
running the same application in parallel with p cores.
We now make some simplifying assumptions, desirable

and necessary to achieve a good trade-off between accuracy
and complexity of the proposedmodel. These are later proved
to be satisfactorily sustained by the model validation pre-
sented in IV:

Assumption 1: The computations of a given appli-
cation can be divided into two types of instructions:
memory instructions and processor instructions.
The former representing the loads and stores that
generate accesses to the main memory and the latter
representing those instructions that are carried out
without data transfer and those loads and stores
that are captured by the cache hierarchy. This is an
abstraction similar to Amdahl’s assumption that the
parallel and sequential parts of the code never over-
lap, which is often and generally not the case, but

allows for model simplification. The total number
of instructions is then given by

W = C +M , (2)

where C is the number of processor instructions,
and M is the number of memory instructions.
Assumption 2: The main memory can only attend
requests at a given maximum rate. And, for a given
parallel application, the access time is approxi-
mated by an average access time.
Assumption 3: For a specific processor frequency,
the execution time of processor instructions can
be approximated by an average value tc, which is
inversely proportional to the processor operating
frequency.
Assumption 4: For a specific processor frequency
and memory frequency, the time necessary to exe-
cute a memory instruction, as defined in Assump-
tion 1, can be approximated by an average value tm.

Then, the sequential execution time for the computation of all
W instructions can be given by

Ts = tcC + tmM . (3)

Accordingly, the formulation of an equation for the parallel
execution time for the computation of the same W instruc-
tions depends on how these instructions are distributed and
carried out by multiple processing elements. We use a sim-
plistic model first coined by Amdahl in [1] to model parallel
software. The computation is modeled by a parallel fraction
f , representing the instructions that have no dependencies
among them and that could be executed in parallel with no
performance penalty, and its complement (1−f ), which corre-
spond to the serial fraction or the fraction of code that cannot
be parallelized. The parallel execution time for p processing
cores would then be given by

Tp = (1− f )Ts + f
Ts
p
. (4)

Amdahl’s model arises from combining (1) and (4), such that

Sp =
1

(1− f )+
f
p

. (5)

However, with Assumption 2, we must consider that the
memory system can only attend requests at a given maximum
rate. Therefore, the term that is divided by p in (4) cannot
decrease indefinitely. In fact, the execution time of the whole
parallel computation cannot be accelerated beyond tmM by
increasing p, which leads us to the following equation for
the parallel execution time of the W instructions with p
processing cores.

Tp = max
(
(1− f )Ts + f

Ts
p
, tmM

)
. (6)

Next, we devise a model that accounts for the variation in
the number of memory accesses, dependent on the number

VOLUME 8, 2020 79227



A. F. A. Furtunato et al.: When Parallel Speedups Hit the Memory Wall

of cores used, and the variation in the average duration of a
memory instruction, dependent on the processor and memory
frequencies ratio.

By combining (1), (3) and (6), we derive the first form of
our speedup model:

Sp =
tcC + tmM

max
(
(tcC + tmM )

(
(1− f )+

f
p

)
, tmM

) (7)

In terms of the ratio between the time to complete a
memory instruction and the time to complete a processor
instruction, by dividing everything by tc, we can rewrite
(7) as

Sp =
C + ρM

max
(
(C + ρM )

(
(1− f )+

f
p

)
, ρM

) , (8)

where ρ denotes the ratio between tm and tc.
The average duration of a memory instruction should

depend on the processor instruction execution time and mem-
ory access frequency according to Assumption 4, which we
model as follows.

tm = tc +
k

FMem
, (9)

where k is an application model parameter that models how
the computation of memory instructions is affected by the
frequency of the main memory. The effect of k is stronger
for memory-bound applications and weaker for those that are
CPU-bound.

So, considering (9) and Assumption 3, the ratio ρ can be
expressed as

ρ =
tm
tc
= 1+ kφ, (10)

where φ is the ratio between processor and memory
frequencies,

φ =
FCPU
FMem

. (11)

with FCPU and FMem denoting the processor and memory
frequencies, respectively.

Finally, to remove the absolute values ofM andC from (8),
we can rewrite it in terms of the fraction of memory instruc-
tions over the total number of instructions, µ, as follows.

Sp =
(1− µ)+ ρµ

max
(
((1− µ)+ ρµ)

(
(1− f )+

f
p

)
, ρµ

) , (12)

where

µ =
M
W
. (13)

Consequently,

1− µ =
W −M
W

=
C
W

(14)

is the fraction of processor instructions over the total number
of instructions involved in the computation. The ratio µ,

however, is not fixed due to Assumption 1. When we vary the
number of cores, the value of µ may also change due to the
addition of more private caches, as discussed in I. To account
for variations in the number ofmemory instructions caused by
variations in the number of cores, we rewrite (12) to express
the final form of our proposed variable-delay speedup model
as follows.

Sp=
(1− µ1)+ ρµ1

max
(
((1− µp)+ ρµp)

(
(1− f )+

f
p

)
, ρµp

) , (15)

for µp being the fraction of memory instructions observed
when using p cores, defined by

µp = min
(
m1 +

m2

p
, 1

)
, (16)

with m1 and m2 denoting application model parameters and
µ1 representing the serial case of µp, with p = 1. The
minimum function min(·, 1) limits the upper value of µp to
1, which represents an application that is 100% dependent on
memory instructions. The term m1 accounts for the portion
of accesses that are not affected by changes in the number of
cores. The term m2 accounts for the portion of accesses that
vary with changes in the number of cores, which for example
would varyµ due to the addition of more private caches.With
more caches, the main memory receives fewer accesses, and
µ should decrease.

III. MODEL ANALYSIS
In this section, we perform two parametric analyses with the
model proposed in (15) to investigate the model’s behavior.
What we intend is to present the model’s ability to capture
the performance-limiting behavior caused by a change in the
data-access delay. Then, in IV, this ability is validated by
fitting the model in (15) to hardware measurements.

Firstly, we investigate the dependency between the number
of cores and the data-access delay which causes the memory
performance to decrease with an increase in the number
of active cores. Secondly, we investigate the performance
predictions for variations on the ratio between processor fre-
quency and memory frequency.

Because exhaustive analyzes with seven parameters (f , k ,
m1, m2, f , φ, and p) would be impractical, we propose a set
of parameter-value combinations whose variations can better
expose the behavior expected to be modeled.

A. NUMBER OF CORES VERSUS DATA-ACCESS DELAY
We analyzed the behavior of the proposed speedup model
for systems with 2, 4, 8, 16, 32 and 64 processing cores. We
assumed a parallel fraction f = 0.99, representing a highly
parallel code, and a processor and memory frequencies ratio
φ = 3.0, which would denote, e.g. the memory functioning
at 1.0 Ghz and the processor at 3.0 GHz. Fig. 1 presents the
speedup plots of these configurations for different values of
k , m1, and m2.

79228 VOLUME 8, 2020



A. F. A. Furtunato et al.: When Parallel Speedups Hit the Memory Wall

FIGURE 1. Speedup plots for a computational task with parallel fraction f = 0.99, frequencies ratio φ = 3.0 and a varying number of cores
p = {2, 4, 8, 12, 16, 32, 64}. Each plot and curves refers to combinations of k and m parameters. For k plots, the curves represent different m
parameters, and vice versa.

As 1 shows, the model indicates that the ratio ρ, affected
by k , has a significant effect on the speedups. The higher the
k , the higher the limiting effect on speedups as the number
of cores increases, which resembles the effect of a reduction
of the parallel fraction of the code. So, the k parameter
controls the memory access behavior of applications that
depend on the variations of CPU andmemory frequency ratio.
For lower values of k and m2, the speedups saturate faster
with the increase in the number of cores, indicating that the
application transitions from a processor-bound mode to a
memory-bound one.

Fig. 1 also indicates the positive effects on the speedups
caused by varying the number of cores with private caches.
For larger values of m2, which drives the number of memory
instructions down with the use of more cores, the speedups
are considerably larger. Higher values of m2 allow the transi-
tion to a memory-bound mode behavior to happen at a larger
number of cores with higher speedups whereas lower values
force this to happen at smaller numbers of cores with lower
speedups.

Considering that the frequencies of processor and memory
are constant, larger values of the k parameter may repre-
sent applications with larger average memory-access time.
So, in this case, a larger number of cores trend to saturate
the speedup more quickly. On the other hand, the m1 and
m2 parameters model the percentage of memory instruc-
tions of a particular application. The larger m2 compared
to m1, the more susceptible the application behavior is to
larger memory delay caused by an increase in the number of
cores.

B. FREQUENCY RATIO VERSUS DATA-ACCESS DELAY
The analytical results of the previous subsection indicate that
memory-bounded applications lose the apparent advantages

of using more cores to achieve more considerable speedups
at some point. The capacity of the memory to hold down the
average data-access delay limits the speedup. Nonetheless,
the effects of varying the ratio between the processor and
memory frequencies remain to be analyzed.

With the following analysis, we intend to show that,
according to the proposed model, a memory-bounded appli-
cation can become processor bounded with a suitable adjust-
ment of the ratio φ in order to make the processor work
more symbiotically with the memory and, thus, could avoid
processor idling, increase efficiency and decrease energy con-
sumption.

We analyzed the behavior of our speedup model for com-
putational tasks with parallel fractions f = 0.99 running with
32 processing cores. Processor and memory frequency ratios
varied according to φ = {1.0, 1.5, 2.0, 2.5, 3.0}, for which
the plots are depicted in Fig. 2.

As expected, the proposed model reproduces the effect
caused by varying the ratio of memory and processor
frequencies. When the φ parameter increases—caused by
an increase in the processor frequency, for example—the
speedup decreases. However, this effect is more or less
intense depending on the parameters that model the appli-
cation. Thus, for the same number of cores, an increase
in k makes this negative effect more evident. On the other
hand, the parameters m1 and m2 are related to the number of
memory instructions and, therefore, an increase in these also
increases the sensitivity of the application to variations in the
processor frequency.

Note, in Fig. 2, that larger speedups can be achieved by
reducing the ratio φ in almost all analyzed configurations.
This shows that the decay in memory performance could be
avoided by a suitable reduction of the processor’s operating
frequency.

VOLUME 8, 2020 79229



A. F. A. Furtunato et al.: When Parallel Speedups Hit the Memory Wall

FIGURE 2. Speedup plots for computational tasks varying the ratio between the processor and memory frequencies φ = [1.0, 1.4, 1.8, 2.2, 2.4, 3.0],
with number of cores p = 32 and parallel fraction f = 0.99. Each plot and curves refers to combinations of k and m parameters. For plots by k parameter,
the curves represent different m parameters, or vice versa.

IV. MODEL VALIDATION
In this section, we present the results of several modeling
experiments in order to validate the proposed model with real
applications running on multi-core processors in a shared-
memory architecture.

A. EXPERIMENTAL SETUP
We have measured the execution times for a set of appli-
cations varying the number of cores and their operating
frequency in order to calculate their speedups for each fre-
quency value. We validate the proposed model using the
PARSEC [14] and SPLASH-2 [15] parallel benchmark suites.
They comprise a large and diverse set of applications, cover-
ing several different application domains, such as computa-
tional finance, computer vision, real-time animation or media
processing. In total there were 25 programs, 11 from the
PARSEC suite and another 14 from the SPLASH-2 suite. We
used the number of threads to control the number of cores
active during the execution of each benchmark application.
This way, besides effectively controlling the number of cores
available, we also isolate from themeasurements the effect on
speedup arising from using multiple threads per core, which
is not the target of our validation.

The measured execution times were used to fit the pro-
posed model and Amdahl’s model for each application. All
model variables were fitted using the Coupled Simulated
Annealing (CSA) [16] global optimization method to mini-
mize the Mean Squared Error (MSE) between the measured
application speedups and their models. TheCSAmethod used
was the CSA modified (CSA-M).

The ratio between memory and processor instructions is
modeled by the m1 and m2 parameters that make up the µp
instruction ratio. These parameters are fitted, using the CSA

optimizer, based on the execution time measurements of the
whole application.

To vary the ratio between processor frequency and mem-
ory frequency, we changed the processor’s frequency for
each execution round using the ’user-mode’ governor from
the ‘‘Advanced Configuration and Power Interface’’ (ACPI)
driver. In contrast, the frequency of the memory system was
fixed and known.

The measurements were taken on a dual-socket shared
memory platform with 2× Intel(R) Xeon(R) CPU E5-2680
v3, 12 cores at 2.50 GHz, and 30 MB shared L3 cache.
The L1 and L2 private caches have 64 KB and 256 KB,
respectively. The operating processor core frequencies ranged
from 1.2 GHz to 2.5 GHz, with steps of 100Mhz. The number
of cores ranged from 1 to 24, with unity steps, except for some
applications that have the number of cores limited to a power
of two. Hardware multi-threading was disabled to simplify
modeling and to emphasize the effect of the memory wall.
This way, cores were always running a single thread.

A Python version 3 library was developed1 to implement
the CSA algorithm and the utility methods to fit the models,
to store the collected data, and to plot the graphs of the
experiments performed in this paper. The repository also con-
tains text files with information on measurements, execution
metadata, the model parameters and the respective modeling
errors for all experiments.

In IV-B, wewill assess Amdahl’s and the proposedmodel’s
accuracy by fitting them to each application using all mea-
surements available to compute the MSE values.

In Section IV-C, we will investigate how the accuracy of
these models and the accuracy of an unstructured machine

1https://gitlab.com/lappsufrn/parsecpy.git

79230 VOLUME 8, 2020



A. F. A. Furtunato et al.: When Parallel Speedups Hit the Memory Wall

TABLE 1. Models parameters and MSE for Amdahl’s model and for the proposed model for the PARSEC and the SPLASH2 benchmarks applications using
all available execution time measurements.

learning model vary according to the amount of information
used to construct them.

B. MODEL ACCURACY
The accuracy for Amdahl’s model and the proposed model is
summarized in Table 1 for all applications in terms of MSE.
The table also shows the number of measurement points
available for each application. Each measurement point rep-
resents a configuration of frequency and number of cores.
These points are relative to the median of 10 runs of an
application.

The MSE columns in Table 1 show that the results of
the proposed model are considerably better than Amdahl’s
model, with the proposed model scoring always better or the
same. The application with the most similar MSE value is
‘‘splash2x-lu-cb’’, whose accuracy was only 0.53% better
than with Amdahl’s model. On the other hand, ‘‘splash2x-
water-spatial’’ was the application whose difference in MSE
value was 90.24% better for the proposed model. On aver-
age, the proposed model was 41.92% more accurate than
Amdahl’s model considering all modeled applications.

To better present the ability of the proposed model to
describe the speedup features of parallel applications cor-
rectly, we have selected a few applications for a more detailed

analysis. For example, the PARSEC Dedup, a workload that
uses ‘‘deduplication’’ to compress a data stream [17], presents
small differences in the MSE values of the two models.
This application is hard to model because of abrupt speedup
variation due to workload imbalance among threads [18].
Nevertheless, the proposed model improves Amdahl’s accu-
racy and accomplishes its task of modeling access-delay
limitations by tilting speedups down for more substan-
tial amounts of cores and larger φ ratios, as shown in
Fig. 3b. The model manages to capture the angle of the
speedups along the frequency axis which represents the φ
ratio. The proposed model also presents a better fit for a
smaller number of cores with a steeper slope enabled by
the variable number of memory instructions in (16) that
allows the modeling of the effect of overcoming cache size
limitations.

For the PARSEC x264 application, an H.264/AVC video
encoder, the proposed model reduces the MSE error by one
order of magnitude. Fig. 4b shows how the proposed model
surface is very close to the scatter plot of the measurements.
It captures the super-linear speedup that occurs with this
application because of the m2 term in (16) that allows the
number of memory instructions µp to decay with increase of
the number of cores.

VOLUME 8, 2020 79231



A. F. A. Furtunato et al.: When Parallel Speedups Hit the Memory Wall

FIGURE 3. Amdahl’s and proposed models for the PARSEC Dedup application. Dedup was developed by Princeton
University. It compresses a data stream with a combination of global and local compression that is called
’deduplication’.

FIGURE 4. Amdahl’s and proposed model for the PARSEC X264 application. X264 is an H.264/AVC (Advanced
Video Coding) video encoder. H.264 describes the lossy compression of a video stream.

FIGURE 5. Amdahl’s and proposed model for the SPLASH-2 Radiosity application. Radiosity computes the equilibrium distribution of
light in a scene using the hierarchical diffuse radiosity method.

Fig. 5 presents the models for the SPLASH-2 Radiosity
application. It computes the equilibrium distribution of light
in a scene [15]. One of the computational characteristics
of this algorithm is a large number of memory instructions

and, therefore, it is an appropriate case study to prove the
proposed model’s ability to capture the memory-wall effect
on speedups. As in the previous applications, the proposed
model presents a much better fit than the fit of Amdahl’s

79232 VOLUME 8, 2020



A. F. A. Furtunato et al.: When Parallel Speedups Hit the Memory Wall

FIGURE 6. Amdahl’s and proposed model for the SPLASH-2 Water Spatial application. This application evaluates forces and potentials
that occur over time in a system of water molecules.

model. Fig. 5b shows how the proposed model captures
the speedup’s slope that increases as processor frequency
decreases. The model also captures the abrupt saturation that
occurs when speedups hit the memory wall.

For SPLASH-2Water Spatial application, which computes
the forces that occur over time on a system with water
molecules, Amdahl’s model failed to capture the super-linear
speedup behavior, achieving the worst MSE errors among the
other applications, as Fig. 6 illustrates. The proposed model
presents a better fit, despite it underestimating speedups at
lower frequencies. Nevertheless, its accuracy is more than
90% better.

C. ACCURACY VERSUS THE NUMBER OF MEASUREMENTS
The results of the previous section were obtained using all
available measurements for all configurations of processor
frequency and the number of cores. In most cases, each
applicationwas executed on 336 different configurations—14
different frequencies and 24 different numbers of cores. For
practical scenarios, using as few measurements as possible is
desirable to reduce the modeling overhead in terms of the use
of computational resources and energy consumption.

In this section we study how the use of fewer sampling
points affects model accuracy. With that we intend to support
two claims:

• the proposed model can achieve reasonable accuracy
even for a small number of measurements; and

• the number of measurements required for reasonable
accuracy is much smaller than that required for unstruc-
tured models, such as those based on machine learning.

To support the former claim, we observed the accuracy of
the models when fitted using various different numbers of
measurements, starting from only 4 measurements and then
doubling this number several times until reaching the closest
power of two below the total number of available measure-
ments for each application. To support the latter claim, we
used machine learning techniques to model the applications
using the same inputs as were used to fit the analytical

FIGURE 7. Flow chart of procedure used to compute the median and the
standard deviation of the MSE for each model using different sizes of the
training or fitting data.

models. The machine learning algorithms used for these
experiments were: Kernel Ridge Regression (KRR), Deci-
sion Tree Regression (TREE) and Support Vector Machine
Regression (SVR). Full details of the experiments can be

VOLUME 8, 2020 79233



A. F. A. Furtunato et al.: When Parallel Speedups Hit the Memory Wall

FIGURE 8. Median of the MSE, of the first 15 applications listed in Tab. 1, for 100 different model fittings using different sets of random measurements.
KRR - Kernel Ridge Regression, SVR - Support Vector Machine Regression, TREE - Decision Tree Regression.

found in the open-source repository mentioned earlier. In
the following, we describe the methodology used to eval-
uate accuracy and variance for the models under analysis:
Amdahl’s model (1) fitted with CSA; the proposed variable-
delay model as given in (15) fitted with CSA; and the
Machine Learning (ML) models. For Amdahl’s model we
fitted the parallel fraction f and for the proposed model we
fitted f as well as the other new parameters k , m1, and m2.
For each number of samples, all measurement data were

divided into a training or fitting set and a test set. The test
set was always the remaining set of samples after removing
the samples used to train or fit the models. The training
or fitting for a given number of samples was repeated 100
times using each time a different set of random samples.
All reported Mean Square Errors (MSEs) are the average of
the MSE values of all 100 repetitions calculated using only
the corresponding test sets. Fig. 7 illustrates the procedure
used to compute the median of the MSE values for each
set of 100 repetitions. The CSA method used 10 anneal-
ers limited to 30.000 iterations to fit the analytical models.
The minimum and maximum limits of the model parameters
were set to be between 0.0 and 1.0, for f , m1 and m2, and
between 0.0 and 10.0 for k . For the KRR and SVR mod-
els we used the implementation of the Scikit-learn Python
module [19]. The hyper-parameters of the Radial Base Func-
tion (RBF) kernel used in the KRR and SVR were tuned

using a 3-fold cross-validation with a grid search that was
repeated for each new set of random measurements. The
search range for the error penalty parameters: C (SVR) and
α (KRR), and the kernel coefficient γ (SVR and KRR) were
C = {100, 1000}, α = {100, 10−01, 10−02, 10−03} and
γ = {10−05, 10−04, 10−03, 10−02, 10−01, 100}.

Fig. 8 and Fig. 9 resumes all MSE results for each applica-
tion using different numbers ofmeasurements. The horizontal
axis is in logarithmic scale and holds the number of sample
measurements used to fit or to train the models: 4, 8, 16,
32, 64, 128, and 256 samples. Some applications restrict the
number of cores that can be used, and thus, have fewer data
points in the plots. For example, PARSEC Fluidanimate is
limited to run only with numbers of cores that are a power of
two. The last data point in the plot is always the power-of-
two number immediately below the total number of measure-
ments available for each application.

The main behavior observed in Fig. 8 and Fig. 9 is that
the analytical models obtain lower mean squared errors as
they use more measurements for modeling until they reach a
plateau. Another important observation is that the analytical
models have higher accuracy for smaller training sizes than
the Machine Learning models. Although the Decision Tree
model is generally more accurate for sets of measurements
with more than 128 samples, the proposed model was over-
all more accurate for the smaller number of measurements,

79234 VOLUME 8, 2020



A. F. A. Furtunato et al.: When Parallel Speedups Hit the Memory Wall

FIGURE 9. Median of the MSE, of the last 10 applications listed in Tab. 1, for 100 different model fittings using different sets of random measurements.
KRR - Kernel Ridge Regression, SVR - Support Vector Machine Regression, TREE - Decision Tree Regression.

FIGURE 10. Average of all MSE values across all applications as function
of the training set size. KRR - Kernel Ridge Regression, SVR - Support
Vector Machine Regression, TREE - Decision Tree Regression.

except for size 4 and 8, for which Amdahl’s models scored
best in many cases. The reason for Amdahl’s model scoring
better than the proposed model for very small number of
measurements is the same for the proposed model scoring
better than Machine Learning models for midsize number of
measurements: the more flexible the model is, i.e. the more
parameters it has, the more information it requires to fit these
parameters to the measured data while being sufficiently
general.

The overall mean of the median MSE and standard devia-
tion values of the five models across all applications accord-
ing to the size of the sample set used in the modeling is
depicted in Fig. 10 and Fig. 11.

Table 2 shows the time spent to model the speedups of each
application using the proposed and using the Decision Tree
model, which achieved the best results among the machine
learning models analysed. The values reported for the pro-
posed model refer to the number of points at which the
accuracy of the proposed model surpasses the accuracy of

FIGURE 11. Standard deviation of all MSE values across all applications
as function of the training set size. KRR - Kernel Ridge Regression, SVR -
Support Vector Machine Regression, TREE - Decision Tree Regression.

Amdahl’s model. For example, for the Blackscholes appli-
cation, the proposed model shows better results when the
training set size was at least 8 points. On the other hand, the
values reported for the Decision Tree model refer to the num-
ber of points at which this Machine Learning model achieves
higher accuracy than the proposed model. In this case, for
Blackscholes, Decision Tree performs better only when 256
points or more are used for training. The table shows that the
difference in time and, proportionally, in energy consumption
between both models can often be around one order of mag-
nitude. On average, considering all applications, the Decision
Tree needed about three times longer to obtain more accurate
results than the proposed model.

In contrast to the machine learning model, the architec-
turally-inspired models require only a few executions of the
application to provide sufficiently good predictions of their
speedups in configurations that were not previously assessed.
This demonstrates an important advantage of these models,
which allow an estimation of application performance for

VOLUME 8, 2020 79235



A. F. A. Furtunato et al.: When Parallel Speedups Hit the Memory Wall

TABLE 2. Time spend to collect applications measurements on specific
number of points for each model. The column 1% represents the
percentage difference of times between the proposed model and
decision tree model related to the proposed model.

unseen configurations of a given architecture with reduced
overheads of time and energy. On the other hand, if more sam-
pling points are available, machine learning models provide
better accuracy at the cost of a higher overhead.

The results demonstrate that there is space for the use
of analytical models as opposed to the use of traditional
Machine Learning-based models. Machine learning models
do achieve higher accuracy when using a more representa-
tive data set for training. However, they fail to explain the
behavior and features of the applications and their relation
to hardware characteristics. In turn, analytical models require
fewer data points to achieve accuracy similar towhatMachine
Learning can only achieve when using far more data points
for training. Moreover, analytical models facilitate the under-
standing of the interplay between the hardware properties and
the application behavior, which makes their use important for
software and hardware development.

V. RELATED WORK
Inspired by earlier analytical models, such as [1]–[3], many
more recent models attempt to capture better the behavior

of application and architecture features that describe parallel
speedups more precisely. None of them, however, consider
the effect of the memory wall [7] on parallel speedups as
considered in this work.

Analytical speedup models for multi-core processors were
devised to describe communication [20] and synchroniza-
tion [21] overhead separately. Communication and synchro-
nization overheads were modeled together in [22] providing
a more general description of both behaviors. Apart from not
considering the effect of the memory wall on the modeled
speedups, no hardware or simulation validationwas presented
to confirm their results.

Other analytical models for multi-core architectures con-
sider the variations in parallel speedups caused by variations
in the problem or input size, including the modeling of the
parallel overhead [23] or not [24]. The parallel overhead
was also modeled together with the parallel speedup for
distributed parallelism in [25]. Similar to our work, these
studies also validated the models using execution time mea-
surements, but no feature was associated with the effect of the
memory wall.

The work of Liu and Sun [26] combines the limitations
related to the finite size of the memory [3] with memory
access concurrency [27] to provide a speedup model that can
be used for multi-core design space exploration. Although
this model contains elements that relate to our data-access
delay speedup model, the authors focus on chip design and
perhaps, for this reason, do not explore the effects of fre-
quency variations on speedups.

The roofline model [28] introduced a simple model
for visualization of actual and attainable performance in
the compute- and memory-bounded regions. The model
uses the number of operations per byte of DRAM traf-
fic as a metric. It considers only the bandwidth between
main memory and Last Level Cache (LLC). More recently,
the cache-aware roofline model [29] extended the roofline
model to include byte traffic between the cores, the var-
ious cache levels, and the main memory, which in fact
is a generalization of the original roofline model. Both
models are very useful to help finding architectural bottle-
necks and which code optimizations should be applied to
achieve better performance on specific hardware architec-
ture. However, these models did not analyze the relation-
ships between the operating frequency and the speedup of
applications.

Therefore, to the best of our knowledge, this work is the
first to explore the effect of operating frequency on the the
speedup of parallel applications running on shared memory
platforms. For this reason, the only model mentioned in
this section that we used for comparison was the original
Amdahl’s model, as many of the other works did. Moreover,
since those models differ from Amdahl’s by aspects that
were kept fixed in our experiments, such as the problem
size and architectural features like memory hierarchy and the
amount of available memory, other comparisons would not
be relevant to this study.

79236 VOLUME 8, 2020



A. F. A. Furtunato et al.: When Parallel Speedups Hit the Memory Wall

VI. CONCLUSION
We have presented a new modeling approach for estimating
speedups of parallel applications that are subject to the limita-
tions of the memory wall. The proposed modeling considers
variations in the data-access delay of the main memory when
the number of cores increases and when the processor’s or
memory’s operating frequency change; capturing the effect of
changing the ratio between the processor’s and the memory’s
frequencies. To the best of our knowledge, this behavior was
not described by previous analytical speedup models.

Several hardware experiments presented in this paper vali-
date the ability of the proposed models to describe the mem-
ory wall behavior for many different applications.

Our analysis shows that reducing processor frequency
reduces the adverse effect of the memory wall on parallel
speedups, suggesting that there could be an optimal pro-
cessor frequency for each number of cores used to run a
given application. Therefore, we argue that this work is
not a pessimistic view of multi-core scalability. Instead, it
shows that the race toward single-core performance under
the influence of Amdahl’s Law has perhaps obfuscated a
more efficient way to match processor and memory fre-
quencies for parallel applications. That is undoubtedly true
if the focus is energy efficiency; as such models could
be applied, for example, to devise better Dynamic Voltage
and Frequency Scaling (DVFS) schemes for the Internet
of Things [30], data centers [31], and high-performance
computing [32].

Ideally, these new DVFS schemes may also consider the
number of cores used by the application, such as in [33], [34].
To be practical for this, the speedup models need to be able
to predict performance at non-visited configurations with the
smallest possible number of measurements. In this sense, we
showed that, based on only about a dozen measurements, the
proposed model can produce predictions that are as accurate
as those obtained from three Machine Learning regression
algorithms after training with at least a hundred measure-
ments. On average, our model achieved higher accuracy
than Amdahl’s model when using more than eight random
measurements and also achieved higher accuracy than Deci-
sion Tree regression when using 64 random measurements
or less. The standard deviation of our modeling was lower
than Amdahl’s model for all measurements, and was lower
than Decision Tree regression for 32 random measurements
or less.

In contrast with Machine Learning speedup models, the
proposed model holds an inherent mapping of the application
features, such as rate of memory versus processor instructions
and the value of the parallel and serial fractions of the code,
which is often relevant to software and hardware develop-
ment. In its turn, machine learning schemes, such as Decision
Tree Regression, work as black boxes with relations between
model parameters and applications behavior that are hard to
infer. Additionally, evaluating analytical models is also faster,
which makes it suitable for use in on-line performance and/or
energy optimization schemes.

Despite the many different existing models for parallel
speedups, the practical use of these models requires both
better generalization and a lower fitting overhead. In this
work, we havemade contributions to both aspects, but there is
still room for further improvements. For example, to make the
model more general, the modeling of problem size could be
included. For reducing fitting overhead, devising a heuristic
to choose the initial measurements might work better than
random sampling, as it has been observed in [35]. For on-
line fitting, increasing the complexity of the models as the
number of measurements increases might also reduce fitting
overhead. Extending this approach to speedup models for
heterogeneous systems [11] is also promising, as the use of
these systems has grown substantially in recent years.

ACKNOWLEDGMENT
The authors would like to thank the Center for Information
Services and High Performance Computing (ZIH) at TU
Dresden for generous allocations of computer time.

REFERENCES
[1] G. M. Amdahl, ‘‘Validity of the single processor approach to achieving

large scale computing capabilities,’’ in Proc. Spring Joint Comput. Conf.,
Atlantic City, NJ, USA, 1967, pp. 483–485.

[2] J. L. Gustafson, ‘‘Reevaluating Amdahl’s law,’’ Commun. ACM, vol. 31,
no. 5, pp. 532–533, May 1988.

[3] X. H. Sun and L. M. Ni, ‘‘Scalable problems and memory-bounded
speedup,’’ J. Parallel Distrib. Comput., vol. 19, no. 1, pp. 27–37,
Sep. 1993. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/
S0743731583710877

[4] Y. Shi. (1996).Reevaluating Amdahl’s Law andGustafson’s Law. [Online].
Available: https://www.researchgate.net/profile/Yuan_Shi12/publication/
228367369_Reevaluating_Amdahl’s_law_and_Gustafson’s_law/links/562
f9dd408ae8e1256876a0a.pdf

[5] M. D. Hill and M. R. Marty, ‘‘Amdahl’s law in the multicore era,’’ Com-
puter, vol. 41, no. 7, pp. 33–38, Jul. 2008.

[6] X.-H. Sun and Y. Chen, ‘‘Reevaluating Amdahl’s law in the multicore
era,’’ J. Parallel Distrib. Comput., vol. 70, no. 2, pp. 183–188, Feb. 2010.
[Online]. Available: http://www.mendeley.com/catalog/reevaluating-
amdahls-law-multicore-era/

[7] W. A. Wulf and S. A. McKee, ‘‘Hitting the memory wall: Implications
of the obvious,’’ ACM SIGARCH Comput. Archit. News, vol. 23, no. 1,
pp. 20–24, Mar. 1995, doi: 10.1145/216585.216588.

[8] X. Wu and V. Taylor, ‘‘Utilizing hardware performance counters to
model and optimize the energy and performance of large scale sci-
entific applications on power-aware supercomputers,’’ in Proc. IEEE
Int. Parallel Distrib. Process. Symp. Workshops (IPDPSW), May 2016,
pp. 1180–1189.

[9] M. A. N. Al-hayanni, R. Shafik, A. Rafiev, F. Xia, and A. Yakovlev,
‘‘Speedup and parallelization models for energy-efficient many-core sys-
tems using performance counters,’’ in Proc. Int. Conf. High Perform.
Comput. Simul. (HPCS), Jul. 2017, pp. 410–417.

[10] X. Zheng, P. Ravikumar, L. K. John, and A. Gerstlauer, ‘‘Learning-based
analytical cross-platform performance prediction,’’ in Proc. Int. Conf.
Embedded Comput. Systems: Architectures, Model., Simul. (SAMOS),
Jul. 2015, pp. 52–59.

[11] C. A. Barros, L. F. Q. Silveira, C. A. Valderrama, and S. Xavier-
de-Souza, ‘‘Optimal processor dynamic-energy reduction for parallel
workloads on heterogeneous multi-core architectures,’’ Microprocessors
Microsyst., vol. 39, no. 6, pp. 418–425, Aug. 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0141933115000617

[12] S. Xavier-de-Souza, C. A. Barros, M. O. Jales, and L. F. Q. Sil-
veira, ‘‘Not faster nor slower tasks, but less energy hungry and par-
allel: Simulation results,’’ in Proc. 4th Berkeley Symp. Energy Effi-
cient Electron. Syst. (E3S), Oct. 2015, pp. 1–3. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7336814

VOLUME 8, 2020 79237

http://dx.doi.org/10.1145/216585.216588


A. F. A. Furtunato et al.: When Parallel Speedups Hit the Memory Wall

[13] S. Xavier-de Souza, C. A. Barros, L. F. Q. Silveira, C. A. Valderrama,
and R. A. Petta, ‘‘Estimating the effects of application speedup on energy
saving for lower-voltage and lower-frequencymulti-core devices,’’ inProc.
3rd Berkeley Symp. Energy Efficient Electron. Syst. (E3S), Oct. 2013,
pp. 1–8.

[14] C. Bienia, ‘‘Benchmarking modern multiprocessors,’’ Ph.D. dissertation,
Dept. Comput. Sci., Princeton Univ., Princeton, NJ, USA, 2011.

[15] S. C.Woo,M. Ohara, E. Torrie, J. P. Singh, A. Gupta, S. C.Woo,M. Ohara,
E. Torrie, J. P. Singh, and A. Gupta, ‘‘The SPLASH-2 programs,’’ in Proc.
22nd Annu. Int. Symp. Comput. Archit., vol. 23, New York, New York,
USA, 1995, pp. 24–36. [Online]. Available: http://portal.acm.org/citation.
cfm?doid=223982.223990

[16] S. Xavier-de-Souza, J. A. K. Suykens, J. Vandewalle, and D. Bolle, ‘‘Cou-
pled simulated annealing,’’ IEEE Trans. Syst., Man, Cybern. B. Cybern.,
vol. 40, no. 2, pp. 320–335, Apr. 2010.

[17] C. Bienia, S. Kumar, J. P. Singh, and K. Li, ‘‘The PARSEC bench-
mark suite: Characterization and architectural implications,’’ in Proc. 17th
Int. Conf. Parallel Archit. Techn. (PACT), New York, NY, USA, 2008,
pp. 72–81, doi: 10.1145/1454115.1454128.

[18] G. Southern and J. Renau, ‘‘Analysis of PARSEC workload scalability,’’
in Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw. (ISPASS), Apr. 2016,
pp. 133–142.

[19] F. Pedregosa et al., ‘‘Scikit-learn: Machine learning in Python,’’ J. Mach.
Learn. Res., vol. 12, pp. 2825–2830, Oct. 2011.

[20] T. Huang, Y. Zhu, M. Qiu, X. Yin, and X. Wang, ‘‘Extending Amdahl’s
law and Gustafson’s law by evaluating interconnections on multi-core
processors,’’ J. Supercomput., vol. 66, no. 1, pp. 305–319, Oct. 2013,
doi: 10.1007/s11227-013-0908-9.

[21] S. Eyerman and L. Eeckhout, ‘‘Modeling critical sections in Amdahl’s
law and its implications for multicore design,’’ ACM SIGARCH Com-
put. Archit. News, vol. 38, no. 3, pp. 362–370, Jun. 2010, doi: 10.1145/
1816038.1816011.

[22] L. Yavits, A. Morad, and R. Ginosar, ‘‘The effect of communication and
synchronization onAmdahl’s law inmulticore systems,’’Parallel Comput.,
vol. 40, no. 1, pp. 1–16, Jan. 2014, doi: 10.1016/j.parco.2013.11.001.

[23] V. H. F. Oliveira, A. F. A. Furtunato, L. F. Silveira, K. Georgiou, K. Eder,
and S. Xavier-de-Souza, ‘‘Application speedup characterization: Modeling
parallelization overhead and variations of problem size and number of
Cores.,’’ in Proc. Companion ACM/SPEC Int. Conf. Perform. Eng.,
New York, NY, USA, Apr. 2018, pp. 43–44, doi: 10.1145/
3185768.3185770.

[24] S. Narayanan, B. N. Swamy, and A. Seznec, ‘‘An empirical high level
performance model for future many-cores,’’ in Proc. 12th ACM Int. Conf.
Comput. Frontiers, New York, NY, USA, 2015, pp. 1–8, doi: 10.1145/
2742854.2742867.

[25] S. Höfinger and E. Haunschmid, ‘‘Modelling parallel overhead from sim-
ple run-time records,’’ J. Supercomput., vol. 73, no. 10, pp. 4390–4406,
Oct. 2017, doi: 10.1007/s11227-017-2023-9.

[26] Y.-H. Liu and X.-H. Sun, ‘‘Evaluating the combined effect of memory
capacity and concurrency for many-core chip design,’’ ACM Trans. Model.
Perform. Eval. Comput. Syst., vol. 2, no. 2, pp. 1–25, May 2017, doi:
10.1145/3038915.

[27] X.-H. Sun and D. Wang, ‘‘Concurrent Average Memory Access Time,’’
Computer, vol. 47, no. 5, pp. 74–80, May 2014.

[28] S. Williams, A. Waterman, and D. Patterson, ‘‘Roofline: An insightful
visual performance model for multicore architectures,’’ Commun. ACM,
vol. 52, no. 4, pp. 65–76, Apr. 2009, doi: 10.1145/1498765.1498785.

[29] A. Ilic, F. Pratas, and L. Sousa, ‘‘Cache-aware roofline model: Upgrading
the loft,’’ IEEE Comput. Archit. Lett., vol. 13, no. 1, pp. 21–24, Jan. 2014.

[30] K. Georgiou, S. Xavier-de-Souza, and K. Eder, ‘‘The IoT energy chal-
lenge: A software perspective,’’ IEEE Embedded Syst. Lett., vol. 10,
no. 3, pp. 53–56, Sep. 2018. [Online]. Available: http://ieeexplore.ieee.org/
document/8012513/

[31] A. Pahlevan, J. Picorel, A. Pourhabibi Zarandi, D. Rossi, M. Zapater,
A. Bartolini, P. G. Del Valle, D. Atienza, L. Benini, and B. Falsafi,
‘‘Towards near-threshold server processors,’’ in Proc. Design, Autom. Test
Eur. Conf. Exhib. (DATE), 2016, pp. 7–12.

[32] V. R. G. Silva, A. Furtunato, K. Georgiou, K. Eder, and S. Xavier-de-Souza,
‘‘Energy-optimal configurations for single-node HPC applications,’’ 2018,
arXiv:1805.00998. [Online]. Available: http://arxiv.org/abs/1805.00998

[33] D. De Sensi, T. De Matteis, and M. Danelutto, ‘‘Simplifying self-adaptive
and power-aware computing with nornir,’’ Future Gener. Comput. Syst.,
vol. 87, pp. 136–151, Oct. 2018. . [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0167739X17326699

[34] A. F. Lorenzon, M. C. Cera, and A. C. S. Beck, ‘‘Investigating different
general-purpose and embedded multicores to achieve optimal trade-offs
between performance and energy,’’ J. Parallel Distrib. Comput., vol. 95,
pp. 107–123, Sep. 2016. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0743731516300090

[35] D. De Sensi, ‘‘Predicting performance and power consumption of paral-
lel applications,’’ in Proc. 24th Euromicro Int. Conf. Parallel, Distrib.,
Network-Based Process. (PDP), Feb. 2016, pp. 200–207.

ALEX F. A. FURTUNATO received the B.Sc.
degree in automation and computer engi-
neering from the University of Rio Grande
do Norte, in 1997. His research interests
include high-performance computing, security and
cryptography, computer networks, systems soft-
ware, and distributed computing.

KYRIAKOS GEORGIOU received the B.Sc.
degree in computer science from the Univer-
sity of Cyprus, and the M.Sc. degree in Internet
Technologies with security and the Ph.D. degree
from the University of Bristol. He is currently a
Senior Research Associate with the Trustworthy
System Laboratory, University of Bristol, where
he has been researching a broad spectrum of
ICT subjects, including energy-aware computing,
execution time and energy consumption modeling,

compiler auto-tuning, and software engineering. He has previously worked
in the industry for two years as a software developer for financial services,
and as compiler engineer for three years.

KERSTIN EDER received the M.Eng. degree in
informatics from Technical University Dresden,
Germany, and the M.Sc. degree in artificial intelli-
gence and the Ph.D. degree in computational logic
from the University of Bristol, U.K. She is cur-
rently a Professor of computer science and leads
the Trustworthy Systems Laboratory, University
of Bristol, and the Verification and Validation for
Safety in Robots research theme at the Bristol
Robotics Laboratory. Her research is focused on

specification, verification and analysis techniques to verify or explore a
system’s behavior in terms of functional correctness, safety, performance,
and energy efficiency. Her initiated research into Energy Aware COmputing
(EACO) at Bristol during her Royal Academy of Engineering funded Indus-
trial Secondment, in 2010.

SAMUEL XAVIER-DE-SOUZA (Senior Member,
IEEE) was born in Natal, Brazil. He received the
Computer Engineering degree from the Univer-
sidade Federal do Rio Grande do Norte-UFRN,
Brazil, in 2000, and the Ph.D. degree in electri-
cal engineering from Katholieke Universiteit Leu-
ven, Belgium, in 2007. He worked for IMEC,
Belgium, as a Software/Hardware Engineer, and
for the Flemish Supercomputing Center, Belgium,
as a High-Performance Computing Consultant. In

2009, he joined the Department of Computer Engineering and Automation of
UFRN, where he currently holds the position of an Associate Professor. He
is also a Founder and the Chief Coordinator of UFRN’s High-Performance
Computing Center-NPAD. In 2016, he became a Royal Society-Newton
Advanced Fellow. His research interests include software energy, scalable
and efficient parallel systems, parallel algorithms, parallel architectures, and
their applications.

79238 VOLUME 8, 2020

http://dx.doi.org/10.1145/1454115.1454128
http://dx.doi.org/10.1007/s11227-013-0908-9
http://dx.doi.org/10.1145/1816038.1816011
http://dx.doi.org/10.1145/1816038.1816011
http://dx.doi.org/10.1016/j.parco.2013.11.001
http://dx.doi.org/10.1145/3185768.3185770
http://dx.doi.org/10.1145/3185768.3185770
http://dx.doi.org/10.1145/2742854.2742867
http://dx.doi.org/10.1145/2742854.2742867
http://dx.doi.org/10.1007/s11227-017-2023-9
http://dx.doi.org/10.1145/3038915
http://dx.doi.org/10.1145/1498765.1498785

