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ABSTRACT In this paper, a twin hyper-ellipsoidal support vector machine (TESVM) for binary classifica-
tion of data is presented. Similar to twin support SVM(TWSVM) and twin hypersphere SVM (THSVM),
as in the literature, our proposed method finds two hyper-ellipsoidals by solving two related SVM-type
quadratic programming problem (QPPs), each of which is smaller than that of the classical SVM, causing
it to achieve higher speed. The main idea of this paper is to employ Mahalanobis distance-based kernels for
two classes of data in the THSVM algorithm to improve its generalization performance. Since the kernel
used in SVM, TWSVM, and THSVM is based on Euclidean distance, it is assumed that the data points have
been distributed in a hyper-spherical region, while the data points of two classes have been distributed in
two different hyper-ellipsoidal regions. As mentioned in the literature, to work with hyper-ellipsoidal areas,
Mahalanobis distance is a better choice than Euclidean distance. The effect of computational results of SVM,
TWSVM, THSVM, and TESVM in terms of generalization performance and central processing unit (CPU)
learning time on several benchmarks as well as synthetic and image datasets indicates, TESVM achieves
fast learning speed along with higher generalization.

INDEX TERMS Hyper-ellipsoidal region, Mahalanobis distance, orientation information, support vector
machine (SVM), twin hypersphere SVM (THSVM), twin Mahalanobis distance-based SVM (TMSVM),
twin support vector machine (TWSVM).

I. INTRODUCTION
{S}upport vector machines (SVMs) has become a popular
method in classification and regression data, introduced by
Vapnik and colleagues [1], [2]. The use of kernel techniques
in SVM is one of the reasons to improve and propose several
extensions for this popular method for application in many
fields [3]–[5].

Recently, many extensions of SVM have been presented
to increase the generalization performance and improve the
learning speed [6]–[8]. One of these methods, twin support
vector machine (TWSVM), was proposed by Jayadeva [9]
for binary classification. TWSVM is aimed at generating two
nonparallel hyperplanes for two classes, each of which is as
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close to the points of the corresponding class as possible and
at a distance of at least one from the other. Each hyperplane
is derived by solving an SVM-type quadratic programming
problem (QPP). TWSVM classifies new test points according
to the distance from each of two nonparallel hyperplanes
such that the points belong to the corresponding class of
the nearest hyperplane. TWSVM has recently received more
attention due to its lower computational complexity, mainly
because each of its QPPs is only half as large as the full-sized
QPP in the classical SVM. This is why many extensions
of TWSVM have been proposed, such as recursive pro-
jection twin SVM [10], non-parallel plane proximal classi-
fier [11], least squares twin SVM [12], least squares twin
support vector hypersphere [13], sparse twin SVM [14], twin
SVM [15], twin parametric margin SVM [16], twin support
vector regression (SVR) [17], twin-parametric insensitive
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SVR [18], etc. TWSVM, despite the faster learning speed
and higher generalization performance than the classical
SVM, cannot effectively depict the characteristics of two
classes [19]. In particular, for the classification of two classes
from different Gaussian distributions, we cannot use two non-
parallel hyperplanes. Therefore, in [19], a twin-hypersphere
support vector machine (THSVM) for binary classification of
data was introduced. THSVM determines two hyperspheres,
with each one covering as many data points in one class
as possible while keeping far away from the opposite class.
To find these hyperspheres, THSVM solves two smaller
QPPs instead of one big QPP as in the classical SVM.
THSVM benefits from higher learning speed than TWSVM,
because it avoids the-inversion matrix. It uses two hyper-
spheres instead of two nonparallel hyperplanes to show the
characteristics of two classes, which is more practical for
databases produced by Gaussian distributions. So THSVM
is also superior to TWSVM in terms of its generalization
performance.

As mentioned earlier, one reason for the success of SVM
and its extensions, such as TWSVM and THSVM, is the
employment of the kernel technique. Since the kernels used
in SVM, TWSVM, and THSVM are based on Euclidean
distance, these methods assume that the data points have
been distributed within a hyper-spherical region, while the
data points of two classes are distributed within two differ-
ent hyper-ellipsoidal regions. Therefore, two hyperspheres
of THSVM cannot effectively extract the data information
in two classes. By considering the structural nature of a
hypersphere, THSVM assumes that the data points in one
class have been raised in all directions with the same scale
simultaneously. In other words, using Euclidean distance in
two hyperspheres of THSVM leads to ignoring the covariance
matrices of two classes of data.

Mahalanobis distance not only saves the correlations
between data points but also it is scaled invariant, and there-
fore it is a better choice to work with hyper-ellipsoidal
areas [20]. Mahalanobis distance is a more general case of
Euclidean distance such that if any data point is considered
as a unique region, then Mahalanobis distance degenerates to
Euclidean distance.

In this paper, we propose a twin hyper-ellipsoidal sup-
port vector machine (TESVM) for the binary classification
of data. First of all, a pair of Mahalanobis distance-based
kernels is introduced. Then, according to these kernels, which
are obtained by covariance matrices of two classes of data,
TESVM generates two hyper-ellipsoidals via two smaller
QPPs, in such a way that each hyper-ellipsoidal covers as
many data points in one class as possible and keeps as far
away from the other class as possible. Due to the use ofMaha-
lanobis distance instead of Euclidean distance, TESVM is a
more general case of THSVM. If the covariance matrices of
the two classes reduce to identity matrices, TESVM performs
similarly to THSVM.

The main idea of this paper is to use Mahalanobis
distance-based kernels for two classes of data in the

THSVM algorithm, which leads to improved generalization
performance. TESVM, besides successfully inheriting the
merits of THSVM and TWSVM, such as fast learning speed,
effectively takes the advantages of covariance matrix infor-
mation of two classes, into the prediction phase.

Computational comparisons of SVM, TWSVM, THSVM,
and TESVM in terms of generalization performance and
learning CPU time, on several benchmarks and synthetic
and image datasets indicate that TESVM not only obtains
fast learning speed but also demonstrates comparable
generalization performance.

This paper is organized as follows: The next section repre-
sents a brief review of two related algorithms and presents
the related formulas. In Section III our proposed TESVM
algorithm is explained in detail, and its computational com-
plexity and connections with other algorithms are introduced.
The experimental results on the toy, benchmark, and image
datasets are shown in Section IV, and the analysis experiments
are introduced in this section. Finally, the last section con-
cludes this paper.

II. BACKGROUND
Suppose the training points for two classes are as follows:

X (i)
=

[
x(i)1 , x

(i)
2 , . . . , x

(i)
Ni

]
, i = 1, 2 (1)

where Ni is the samples with n dimension in class i, such as
matrix withN1×n samples ( Ai as ith sample) in class+1 and
matrixBwithN2×n samples in class−1, whereN1+N2 = N .

A. TWIN SUPPORT VECTOR MACHINE
As an extension of the classical SVM to improve its learning
speed and generalization performance, Jayadeva [9] proposed
a new twin support vector machine (TWSVM). There is a
significant difference between SVM and TWSVM, in that
TWSVM solves classification problems by generating two
non-parallel hyperplanes, each of which passes through as
many samples in one class as possible and gets far away,
a distance of at least one from the other class. Each TWSVM
hyperplane is constructed by solving a small half-sized QPP,
compared with only one large-QPP in SVM. This leads to an
approximately four times increased in learning speed.

For the linear case of TWSVM, it solves the following two
QPPs:

min
1
2

∑
i∈I(1)

(
wT(1)xi + b(1)

)2
+

c1
l(2)

∑
j∈I(2)

ξj

s.t.−
(
wT(1)xj + b(1)

)
≥ 1− ξj,

ξj ≥ 0, j ∈ I(2) (2)

min
1
2

∑
j∈I(2)

(
wT(2)xj + b(2)

)2
+

c2
l(1)

∑
i∈I(1)

ξi

s.t. wT(2)xi + b(2) ≥ 1− ξi,

ξi ≥ 0, i ∈ I(1) (3)
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where c1 > 0 and c2 > 0 represent the pre-specified penalty
factors, and ξi and ξj are the slack variables.

A test pointX is assigned to a class according to its distance
from the two nonparallel hyperplanes. More details and the
nonlinear form of TWSVM can be found in [9].

B. TWIN-HYPERSPHERE SUPPORT VECTOR MACHINE
As mentioned in [9], the experimental results show that the
TWSVM algorithm not only derives faster-learning speed
but also obtains better generalization performance compared
to the classical SVM. However, there remain some short-
comings in TWSVM. First, its optimization QPPs need to
compute inversion of matrices with size (m+ 1)× (m+ 1) or
(l + 1)× (l + 1) where m denotes the dimensions of training
points and l the number of training points, which causes
an-increase in central processing unit (CPU) learning time.
Second, the algorithm cannot effectively depict the properties
of data in two classes, since each hyperplane of TWSVM tries
to be closer to as many samples in the corresponding class as
possible and simultaneously get far away, to a distance of at
least one from the other class. So, to overcome the problem
of binary classification with two classes, coming from two
different Gaussian distributions, we cannot use two nonpar-
allel hyperplanes. To overcome the shortcomings, a new twin
hypersphere support vector machine (THSVM)was proposed
in [19]. THSVM aims at generating two hyperspheres, each
of which covers as many samples in one class as possible and
is as far away from the other class as possible. In the learning
phase of the THSVM classifier the following pair of QPPs
must be solved:

min R2(1) −
v1
l(2)

∑
j∈I(2)

∥∥ϕ (xj)− c(1)∥∥2 + c1
l(1)

∑
i∈I(1)

ξi

s.t.
∥∥ϕ (xi)− c(1)∥∥2 ≤ R2(1) + ξi
R2(1) ≥ 0, ξi ≥ 0, i ∈ I(1) (4)

min R2(2) −
v2
l(1)

∑
i∈I(1)

∥∥ϕ (xi)− c(2)∥∥2 + c2
l(2)

∑
j∈I(2)

ξj

s.t.
∥∥ϕ (xj)− c(2)∥∥2 ≤ R2(2) + ξj
R2(2) ≥ 0, ξj ≥ 0, j ∈ I(2) (5)

where c1 > 0 and c2 > 0 represent the pre-specified penalty
factors, and ξi and ξj are the slack variables.

After optimizing Equation (4) and considering suitable
parameters and, the center of the positive hypersphere can be
achieved as follows:

c(1) =
1

1− v1

∑
i∈I(1)

αiϕ (xi)−
v1
l(2)

∑
j∈I(2)

ϕ
(
xj
) (6)

and its squared radius R2(1) value is obtained as:

R2(1) =
1∣∣∣I(1)R ∣∣∣

∑
i∈I(1)R

∥∥ϕ (xi)− c(1)∥∥2 (7)

where the index set I(1)R is calculated as:

I(1)R =
{
i|0 < αi <

c1
l(1)
, i ∈ I(1)

}
(8)

Similar equations for the negative hypersphere are
obtained as in [19]. When the two hyperspheres are
calculated:∥∥ϕ(x)− c(1)∥∥2 ≤ R2(1)and ∥∥ϕ(x)− c(2)∥∥2 ≤ R2(2) (9)

a new test point belongs to the positive or negative class
according to the following minimization:

f (x) = argmin
(1),(2)

{∥∥ϕ(x)− c(1)∥∥2
R2(1)

,

∥∥ϕ(x)− c(2)∥∥2
R2(2)

}
(10)

III. TWIN HYPER-ELLIPSOIDAL SUPPORT VECTOR
MACHINE (TESVM)
As previously mentioned, a pair of hyperspheres can better
depict the data characteristics of classes than two nonpar-
allel hyperplanes, especially when the two classes are of
different Gaussian distributions [19]. However, the THSVM
is blind to the orientation information of samples in two
classes. Note that for many real-world classification prob-
lems, orientation information in two classes is often dif-
ferent, which makes their covariance matrices different.
In the spirit of the covariance matrices of two classes,
we introduceMahalanobis distance-based kernels to THSVM
and propose a novel THSVM classifier, which call the
twin hyper-ellipsoidal support vector machine (TESVM)
classifier.

A. TESVM CLASSIFIE
The TESVM classifier uses two SVM-type QPPs in its opti-
mization problems, similar to THSVM and TWSVM. How-
ever, compared with the Euclidean distance-based kernels
used in the two QPPs of THSVM and TWSVM, our proposed
method employs Mahalanobis distance instead. In brief, this
model finds a pair of hyper-ellipsoidals such that each one
not only covers as many samples in one class as possible,
and keeps as far away from the other class as possible, but
also captures the orientation information of the corresponding
class samples. A new sample is assigned to a positive or
negative class according to which hyper-ellipsoidal it lies
closest to.

The aim is to fit one hyper-ellipsoidal for each class in the
feature space with minimum effective radius R(R > 0) that
covers a majority of samples and is far away from the other
class.

Fact 1: Two TESVM hyper-ellipsoidals with Mahalanobis
distance-based kernels in the feature space are obtained by
solving the following pair of optimization problems:

min R2+ −
v1
l−
∑
j∈I−

(
ϕ
(
xj
)
− c+

)
6−1+

(
ϕ
(
xj
)
− c+

)
+
c1
l+
∑
i∈I+

ξi
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s.t. (ϕ (xi)− c+)6
−1
+ (ϕ (xi)− c+) ≤ R2+ + ξi

R2+ ≥ 0, ξi ≥ 0, i ∈ I+ (11)

min R2− −
v2
l+
∑
i∈I+

(ϕ (xi)− c−)6
−1
− (ϕ (xi)− c−)

+
c2
l−
∑
j∈I−

ξj

s.t.
(
ϕ
(
xj
)
− c−

)
6−1−

(
ϕ
(
xj
)
− c−

)
≤ R2− + ξj

R2− ≥ 0, ξj ≥ 0, j ∈ I− (12)

where the penalty factors c1, c2 > 0 and v1, v2 > 0 are
pre-specified by the user, and c+ and R+ denote as the center
and radius of the corresponding hyper-ellipsoidal, respec-
tively. (proof in Appendix).

We now discuss the optimization problems, Equations (11)
and (12), more precisely. The first term in the objective
function of these two Equations minimizes the square of the
effective radius of the corresponding hyper-ellipsoidal. This
leads to construction of as compact a hyper-ellipsoidal as pos-
sible. The second term in the objective functions maximizes
the sum of squared Mahalanobis distances from the center of
the corresponding hyper-ellipsoidal to the points of the oppo-
site class, which causes the center of this hyper-ellipsoidal to
be as far from the samples of the opposite class as possible,
by taking into account the orientation information of the
corresponding class, embedded in the covariance matrices
and of Equations (11) and (12), respectively. The constraints
make the corresponding hyper-ellipsoidal cover samples of
the corresponding class with regard to the orientation infor-
mation of its samples. On the other hand, this information can
change the shape of the corresponding hyper-ellipsoidal to
better cover its class samples and be farther from the opposite
class samples.

Besides, the slack variables ξi, i ∈ I+ and ξj, j ∈ I− for
error measurement are added. As the last term in the objective
functions of Equations (11) and (12), the sum of error vari-
ables is minimized, which leads to reduced misclassification
due to the points belonging to the opposite class.

Now we optimize the optimization problems, Equa-
tions (11) and (12):

Fact 2: The dual QPP form of Equation (11) is as follows:

max (1−
∑
i∈I+

αi − s)R2+ +
∑
i∈I+

( c1
l+
− αi − ri

)
ξi

−
v1
l−
∑
j∈I−

((
ϕ
(
xj
)
− c+

)
6−1+

(
ϕ
(
xj
)
− c+

))
+

∑
i∈I+

αi

(
(ϕ (xi)− c+)6

−1
+ (ϕ (xi)− c+)

)
s.t.
∑
i∈I+

αi = 1, 0 ≤ αi ≤
c1
l+
, i ∈ I+ (13)

(proof in Appendix.)

Fact 3: The simpler dual form of Equation (12) becomes:

max
∑

j1,j2∈I−
βj1βj2

((
1

1− v2

)2 (
1−

( v2
l+

))
K−(xj1 , xj2 )

)

+

∑
j∈I−

βj

( v2
l+

)( 1
1− v2

)∑
i∈I+

K−(xi, xj)

+ K−(xj, xi)−
(

2
1− v2

)
K−(xj, xj)

)
s.t.
∑
j∈I−

βj = 1, 0 ≤ βj ≤
c2
l−
, j ∈ I− (14)

where βi, j ∈ I− are the Lagrangianmultipliers, and the center
c− is computed as:

c− =
1

1− v2

∑
j∈I−

βjϕ
(
xj
)
−
v2
l+
∑
i∈I+

ϕ (xi)

 (15)

also, we have:

R2− =
1∣∣I−R ∣∣

∑
j∈IR−

(
ϕ
(
xj
)
− c−

)
6−1−

(
ϕ
(
xj
)
− c−

)
(16)

where I−R =
{
j|0 < βj <

c2
l− , j ∈ I−

}
.

(proof in Appendix.)
When the positive and negative centers c+ and their

squared radiuses R2+ are obtained, we can acquire the follow-
ing two hyper-ellipsoidals for positive and negative classes,
respectively:

(ϕ(x)− c+)6
−1
+ (ϕ(x)− c+) ≤ R2+,

(ϕ(x)− c−)6
−1
− (ϕ(x)− c−) ≤ R2− (17)

Based on the distance of a test point x from the two
hyper-ellipsoidals (Equation (12)), we can determine its
class label, such that test point belongs to a class whose
hyper-ellipsoidal is located closer to x, i.e:

f (x) = argmin
+,−

{
(ϕ(x)− c+)6

−1
+ (ϕ(x)− c+)

R2+
,

(ϕ(x)− c−)6
−1
− (ϕ(x)− c−)

R2−

}
(18)

B. COMPUTATIONAL COMPLEXIT
Our proposed method comprises two hyper-ellipsoidals to
model two classes of data, each of which is constructed
concerning the points of only one class.

Therefore, any QPPs of the TESVM are almost of the size
of the classical SVM, making TESVM almost four times
faster.

In contrast to TWSVM and similar to TMSVM, our
proposed algorithm has higher computational complexity.
The calculation of two Mahalanobis distance-based kernels
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K+(., .) and K−(., .) is the main cost in TESVM, which needs
to reverse (

σ I+ J I+Kv(1)J+
)

and (
σ I+ J1−Kv(2)J−

)
The time order of matrix inversion is O(l2.3) [21]. However,
by caching some necessary matrices, we can avoid the extra
communication cost. For instance, caching

J+
(
σ I+ J I+Kv(1)J+

)−1
J1+

and

J−
(
σ I+ J1−Kv(2)J−

)−1
J1−,

avoids the extra computation cost in the test section but
consumes more RAM capacity.

In summary, the computational complexity of TESVM is
higher than TWSVM and THSVM algorithms but, as shown
in the experiments, the learning speed of TESVM is still faster
than that of the classical SVM.

C. CONNECTION TO OTHER METHODS
In this section, we compare our corresponding TESVM to
other related classification algorithms.

1) CONNECTION TO TWSVM
As we saw earlier, the TESVM algorithm finds a pair of
hyper-ellipsoidals to classify data points, while the TWSVM
algorithm does it with a pair of hyperplanes. Each of the
TESVM’s hyper-ellipsoidals concerning the trend of data
distribution in different directions tries to cover as many
samples in the corresponding class as possible and keeps
away from the other class. For TWSVM, each hyperplane
passes through as many samples in one class as possible and
resides at a distance of at least one from the other class.
As another difference, for TWSVM we have two matrix
inversions with size (l + 1)∗(l + 1) or (m + 1)∗(m + 1)
at a cost of O(l2), which is calculated in its optimization
problems. TESVM needs to calculate K+(., .) and K−(., .)
with inversion of

(
σ I+ JT+Kv(1)J+

)
and

(
σ I+ JT−Kv(2)J−

)
at a cost of O(l2.3) [21], which makes the computational
complexity larger for THSVM than TWSVM.

2) CONNECTION TO THSVM
Similar to THSVM and TWSVM, our proposed algorithm
comprises a pair of QPPs. In the constraints of each QPP,
only the samples of one class participate. In other words,
each QPP is roughly half the size of all samples compared
with the full-sized QPP in the classical SVM. THSVM
aims to find two hyperspheres such that each one covers as
many samples in one class as possible and keeps away from
the other class. Note that a hypersphere is a set of points
at a constant distance from the center of the hypersphere.

Also, it implicitly assumes that the growth rate of points
in different directions is the same. As seen in the THSVM
models, they use this assumption, which does not usually
occur in real-world problems.

On the other hand, TESVM does not consider this assump-
tion and can effectively change its shape due to the different
growth rates of points in different directions. Therefore,
TESVM can capture the trends of points in one class in
different directions while trying to effectively cover as many
samples in the corresponding class as possible and be as
far away from the other class. TESVM exploits this ori-
entation information of samples in one class by employ-
ing Mahalanobis distance-based kernels in its optimization
problems. Compared with THSVM, our TESVM considers
that the samples of two classes are distributed in two dif-
ferent hyper-ellipsoidal regions. This makes TESVM surpass
THSVM in terms of classification accuracy and generaliza-
tion performance, as can be observed in the experiments.

However, the THSVM algorithm needs to solve two
SVM-type optimization problems with no matrix inversion in
the objective functions of its dual QPPs, while TESVM has
to calculate matrix inversions at the cost ofO(l2.3), leading to
higher computational complexity.

IV. EXPERIMENTS
To evaluate our proposed algorithm with THSVM, TWSVM,
and SVM, we show the execution results on several bench-
mark datasets in terms of classification accuracy and CPU
learning time. These experiments use MATLAB software on
a system with a 2.26 GHZ CPU and 4 GB of RAM. For
simplicity of all algorithms, we set c1 = c2 = c and
v1 = v2 = v; they are selected from the set of values
{2i|i = −9,−8, · · · , 0, · · · , 9, 10} through the random data
including 30% of the training data as a tuning set. The v value
in THSVM is chosen from the set {0.1, 0.2, . . . , 0.9} Once
the parameters are determined, the tuning set is returned to
the training set to obtain the final classifier.

A. TOY DATASET
In this section, to show the performance of our TESVM,
we compare it with the other algorithms on the two
Gaussian problem dataset. Similar to [19], this dataset
comprises 400 samples such that each positive and neg-
ative class has 200 samples, with a Gaussian distribution
N
(
(3, 3)T , diag{4, 0.5}

)
for the positive class (blue samples)

andN
(
(0, 0)T , diag{0.5, 4}

)
for the negative class (red sam-

ples). For testing, we produced 2000 samples of each posi-
tive and negative class with the same Gaussian distribution.
As shown in Figure 1, the positive class (blue) has a roughly
horizontal orientation and the negative class has a roughly
vertical orientation, such that a structural conflict between the
two classes appears.

The results of SVM, TWSVM, THSVM, and TESVM
with the linear kernel are shown in Figure 1. As seen in
this figure, linear SVM, THSVM, and TESVM obtain bet-
ter classification accuracy than linear TWSVM. This is for
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FIGURE 1. Classification results for the (a)SVM, (b)TWSVM, (c)THSVM, and
(d)TESVM on the ‘‘Two-Gaussian’’ dataset with a linear kernel. The
separating hyperplanes are shown as solid curves, and the nonparallel
hyperplanes or hyperspheres are shown as dashed curves.

two non-parallel hyperplanes of TWSVM that could not
effectively extract the characteristics of the samples in two
classes. Therefore, the separating hyperplane of TWSVM

cannot classify the training samples correctly. For SVM, since
its attention is focused on the support vectors, the separating
hyperplane resides almost in themiddle of the support vectors
of the two classes and can classify most of the training
samples. On the other hand, one of the assumptions of SVM
on data orientation or data shape is 6+ = 6− = 6,
which means two positive and negative classes have the same
covariance matrices. This assumption makes SVM ignore the
orientation information of samples in two classes and is not
appropriate for this example. THSVM, uses two hyperspheres
to model two classes, so the data scattering magnitude can
take into account but cannot insert the orientation information
of two classes into its models. Thus positive and negative
classes would not be effectively covered. On the other hand,
two hyper-ellipsoidals of our TESVM, due to themerits of the
hyper-ellipsoidal shape, exploit the orientation information
of two classes embedded in the corresponding covariance
matrices. Therefore, they can better follow the data trend
of two classes than the other two algorithms and cover the
corresponding class samples more precisely. Thus TESVM’s
separating hyperplane can classify the samples more accu-
rately than that of the other algorithms.

The results of the TESVM and other algorithms on the
two Gaussian problem is shown in Table 1. As can be found,
THSVMand TESVMalgorithms achieve better classification
accuracy than the other algorithms. Besides, TESVM sur-
passes THSVM and TWSVM in terms of classification accu-
racy. This indicates that TESVM can more effectively extract
the characteristics of samples in two classes. In terms of the
learning CPU time, although TESVM spends more time in
the learning phase compared with THSVM and TWSVM,
it is still faster than the traditional SVM on the artificial two
Gaussian example.

TABLE 1. Performance of the SVM, TWSVM, THSVM, and TESVM on the
‘‘Two-Gaussian’’ and checkerboard datasets.

For another experiment, we have the checkerboard exam-
ple. This example contains 16 squares of uniformly dis-
tributed samples taken from two classes of data. Similar
to \ cite{b19}, in the checkerboard experiment we indepen-
dently produced 10 groups of datasets, each one containing
1000 training samples (500 for each class) and 1000 testing
samples (500 for each class). The classification results of
SVM, TWSVM, THSVM, and TESVM on the checkerboard
dataset with the Gaussian kernel are shown in Figure 2.
Observing the performance of the hyperplanes, hyperspheres,
and hyper-ellipsoidals of TWSVM, THSVM and TESVM,
in Figure 2, similar to [19], the hyperspheres of THSVM
effectively covered the samples of the corresponding classes
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FIGURE 2. The result of SVM, TWSVM, THSVM, and TESVM on the
checkerboard dataset with Gaussian kernel. The dashed curves denote for
hyperellipsoids, hyperspheres, and nonparallel hyperplanes and for the
separating hyperplanes we used solid curves.

and obtained a better result than TWSVM and SVM. This
is because the embedded information in the samples of two
classes could not be exploited in SVM and TWSVM. How-
ever, in THSVM, two hyperspheres can partially depict the
characteristics of the two classes, since the orientation infor-
mation still could not be derived in the models. Considering
the covariance matrices, we can effectively introduce the ori-
entation information into TESVM’s optimization problems.

FIGURE 3. Two-dimensional projections for the checkerboard dataset by
(a) TWSVM, (b) THSVM and (c) TESVM.

This makes it better cover the samples of each class, leading
to a better separating hyperplane compared to the others.

The classification accuracy of SVM, TWSVM, THSVM,
and TESVM on the checkerboard dataset is also shown
in Table 1. As can be seen, TESVM’s classification accu-
racy is much better than other algorithms and THSVM
achieves higher classification accuracy. For the CPU learning
time, TESVM needs more time compared with THSVM and
TWSVM, but, it is faster than the classical SVM. To fur-
ther illustrate the difference between TESVM and THSVM,
we show two-dimensional scatter plots for the 1000 samples
(500 for each class) of this checkerboard dataset obtained by
THSVM and TESVM in Figure 3.
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In Figure 3-a, the distances of each test point xi from two
hyperspheres of THSVM are calculated by using
d iTH+ =

‖ϕ(xi)−c+‖
R+

for positive hypersphere and d iTH− =
‖ϕ(xi)−c−‖

R−
for negative hypersphere. In Figure 3-b, the dis-

tances of xi from two hyper-ellipsoidals of TESVM are

obtained by using d iTE+ =
(ϕ(xi)−c+)6

−1
+ (ϕ(xi)−c+)
R+

and d iTE− =
(ϕ(xi)−c−)6

−1
− (ϕ(xi)−c−)
R−

and for positive and negative hyper-
ellipsoidals, respectively. If d iTH+ ≤ d iTH− or d iTE+ ≤ d iTE−
test point xi belongs to the positive class and if d iTH+ > d iTH−
or d iTE+ > d iTE− , it belongs to the negative class.

The two-dimensional projection plots represent the ability
of each algorithm to separate between two classes. The dots
marked in red denote negative class and those in blue denote
positive class. As can be seen in Figure 3-a, each hyperplane
of TWSVM tries to pass through as many points in one class
as possible. So the distance between the points of each class
from the corresponding hyperplane will be near zero, which
causes an over-fitting problem. On the other hand, the dis-
tance between this hyperplane and the points of the opposite
class also approaches zero, which reduces the generalization
ability.

In THSVM, as observed in Figure 3-b, the points of each
class are almost covered by a hypersphere such that their dis-
tances to the corresponding hypersphere are almost less than
one. This indicates that THSVM often succeeds in extracting
the structure of each class and has less over-fitting than
TWSVM. However, as derived from Figure 3-b, the distance
of points in one class to the opposite hypersphere is still small,
which makes THSVM’s generalization ability remain low.

On the other hand, each hyper-ellipsoidal of the TESVM
algorithm, not only tries to cover as many points in one class
as possible and stay far away from the points of the opposite
class, but also can effectively extract the characteristics and
trends of data points in one class. As seen in Figure 3-c,
the distances of data points in one class from the correspond-
ing hyper-ellipsoidal become approximately less than one.
Therefore, TESVM, similar to THSVM, can successfully
exploit the structure of each class, leading to decreased over-
fitting. On the other hand, the distance of data points in one
class from the opposite hyper-ellipsoidal greatly increases
improving the separability of the algorithm and achieving
higher generalization performance compared with THSVM.
Thus the TESVM algorithm can not only better extract the
characteristics of each class, more effectively covering it, but
also better discriminate between the two classes compared
with THSVM.

B. BENCHMARK DATASET
We compared TESVM with the other related algorithms in
terms of classification accuracy and CPU learning time on the
common benchmark classification databases. A description
of each database is shown in Table 2.

For a graphical comparison of TESVM with other
algorithms, the banana dataset, which is two-dimensional,

TABLE 2. The UCI dataset information.

was used. As a result of the four algorithms on the banana
dataset, as shown in Figure 4, the separating hyperplane
of TESVM is better than that of the others. This indi-
cates that TESVM has better performance than the other
algorithms. This is because each hypersphere and hyper-
ellipsoidal in THSVM and TESVM try to cover as many
samples in one class as possible, and be as far away from the
other class as possible, while the hyperplanes in TWSVM, try
to pass through as many samples in one class as possible and
keep away from the other class.

As shown in Figure 4, THSVM and TESVM can better
extract the structure of two classes than TWSVM. On the
other hand, for a class, since THSVM assumes that the
growth rate of its samples in different directions is the same,
it uses a hypersphere to cover its data points. The two
hyper-ellipsoidals of TESVM also inherit the characteristics
of the THSVM’s hyperspheres and try to cover all samples of
the corresponding classes.

However, each hyper-ellipsoidal considers the different
growth of samples in one class in different directions by
employing covariance matrices. So TESVM can better model
each class and the separating hyperplane of TESVM is more
accurate than that of THSVM.

The results of 10 independent executions of the TESVM,
THSVM, TWSVM, and SVM nonlinear algorithms on the
benchmark datasets and the comparison in terms of classifi-
cation accuracy and CPU learning time are given in Table 3.
According to the results in this table, it is observed that the
accuracy of TESVM is better than the others, consequently,
it has higher generalization performance. In addition to the
classification accuracy in this table, the CPU learning times
are also given for each algorithm on every dataset. As a
reminder, the relevant matrices during the learning process
of these algorithms are stored to reduce the CPU learn-
ing time, and no time for calculating duplicate matrices is
needed.

87348 VOLUME 8, 2020



Z. Ebrahimpour et al.: TESVM for Binary Classification

FIGURE 4. The results of execution SVM, TWSVM, THSVM, and TESVM on
the Banana dataset. The dashed curves denote for nonparallel
hyperplanes, hyperspheres, and hyper-ellipsoids and the separating
hyperplane is shown using solid curves.

As can be seen, the TESVM algorithm needs more time
in its learning process than THSVM and TWSVM. However,
we need to calculate the covariance matrices of two classes

TABLE 3. The results of the SVM, TWSVM, THSVM and TESVM on the UCI
benchmark datasets.

to extract the orientation information of their samples. This
information indicates the growth rate of samples in different
directions. However, the learning speed of our proposed algo-
rithm is still faster than the classical SVM.

C. IMAGE RECOGNITION
In this section, for further comparison of the algorithms,
we apply them to typical image recognition problems such
as object recognition (COIL-20) [23] and handwriting recog-
nition (USPS) [24]. COIL-20 contains 20 objects. Images of
each object were taken 5◦ apart as the object was rotated on
a turntable, and there are 72 images of each object. The size
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of each image is 32 × 32 pixels, with 256 gray levels per
pixel. Thus, each image is represented by a 1024-dimensional
vector.

The USPS database involves gray-scale handwritten
images of the digits 0 to 9 such that there are 1100 images
for each digit with a size of pixels in 256 gray levels. For
this dataset, five-pairwise digits for odd vs. even digit classi-
fication were selected. We randomly partitioned these images
into two groups with the same sizes and repeated this process
10 times. One group was used for training and the other for
testing. Also, we used Gaussian kernel in the learning phase
of all algorithms. The experimental results of algorithms over
COIL-20 and USPS datasets are listed in Table 4.

TABLE 4. The results of the classification accuracy of SVM, TWSVM,
THSVM and TESVM on the COIL-20 and USPS datasets.

As shown in Table 4, for almost all cases, our TESVM
algorithm achieved better classification accuracy than the
others.

D. ANALYSIS EXPERIMENTS
1) AUC TEST
To evaluate the performance of classifiers in this paper,
we used the area under the receiver operating curve (AUC)
as a criterion. AUC is defined as follows:

AUC=
∫ 1

0

TP
(TP+ FN )

d
FP

(FP+ TN )
=

∫ 1

0

TP
P
d
FP
N

(19)

where TP stands for true positive, FN for false negative, for
false positive and TN for true negative. If the output of an
algorithms does not surpass the random manner, the AUC
value becomes 0.5, and for refer to the best algorithm outputs
the AUC value becomes 1. Similar to [25], all AUC values
are medians of five twofold cross-validations.

According to [26], in this paper, we performed five two-
fold cross-validations (5 × 2 f cv) as a simple method for
model selection. In this method, initially, all data are divided
into two equal parts, one is used for learning the algorithm and
the other to evaluate it, and the process is repeated five times.
As can be seen in Table 5, the results of median AUC are
shown as 5×2 f cv. Since, all median AUC values are bigger
than 0.5, classifier predictions are better than the random
manner.

As can be observed, TESVM is better than the others in
terms of AUC and THSVM has a higher value than TWSVM
and SVM. As is clear from Table 6, since the interquartile

TABLE 5. Median AUC of the folds for algorithms.

TABLE 6. The interquartile range of the ten folds for AUC.

range (IQR) of TESVM is smaller than the others, its vari-
ations are lower and it has better stability than the other
algorithms.

For better statistical comparison between algorithms,
as proposed in [26], [27], we used the Friedman test with
corresponding post hoc tests. For this study, we used the
average (mean) ranks of four algorithms on AUC, shown
in Table 7.

TABLE 7. Mean ranking of the folds for AUC.

Regardless of the null hypothesis that the algorithms are
all the same, the Friedman test formula is calculated as
follows [10]:

χ2
F =

12N
k(k + 1)

∑
j

R2j −
k(k + 1)2

4

 (20)

where N represents the fold number, K is the number of algo-
rithms, Rj indicates the jth algorithm (of K algorithms) in the
ith fold (from N folds), and Rj = 1

N

∑
i
r ji , where r

j
i represents

AUC values for the ith fold and jth algorithm. By using χ2
F ,

a better statistic can be achieved. We can calculate the F
statistic as follows:

FF =
(N − 1)χ2

F

N (k − 1)− χ2
F

(21)

The F statistic, or f value, is a random variable with f
distribution and k−1 and (k−1)(N −1) degrees of freedom.
According to Equations (59) and (60), we haveχ2

F = 25.9350
and FF = 57.4207, where FF has F distribution with (3,27)
degrees of freedom. For the degree of importance α = 0.05,
the critical value F(3, 27) is 2.96, for α = 0.025 it is 3.64 and
for α = 0.01 it becomes 4.60. Since the value of FF is much
larger than the critical value, there are significant differences
between the four algorithms. Recall that according to Table 7,
the average rank of the TESVM algorithm is much lower than
other algorithms. This indicates that our TESVM algorithm
is more valid than the other three algorithms.
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V. CONCLUSIONS
In this paper, an improved THSVM algorithm for binary
classification of data is presented. In our algorithm, Maha-
lanobis distance-based kernels are made by the covariance
matrices of two classes of data and then TESVM finds two
hyper-ellipsoidals by these obtained kernels, such that each
one covers as many data points in one class as possible
and stays as far away from the other class as possible.
This improvement allows the TESVM to take advantage
of the orientation information of the two classes embedded
in their covariance matrices. Note that for many real-world
problems, two classes often have different covariance
matrices.

The experiments on benchmark, synthetic and image
datasets in Section IV indicate that TESVM also has better
generalization performance compared with the other algo-
rithms and faster learning speed than the classical SVM.
Finally, increasing the learning speed of TESVM can be
investigated in the future works.

Further research could look into comparing the devel-
oped model with classification methods such as Bayesian
networks and random forests. However, another improved
model could be developed for high-dimensional datasets
where the number of variables is more than the number of
observations.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

APPENDIX
PROOF OF FACT 1
First, we have to calculate the covariance matrices, so accord-
ing to [24] we can use the following equations:

6+ = ϕ
(
X (1)

)
J+JT+ϕ

(
X (1)

)T
,

6− = ϕ
(
X (2)

)
J−JT−ϕ

(
X (2)

)T
(22)

where J+JT+ =
1
l(1)

(
I− 1

l(1)
eeT

)
, J−JT− =

1
l(2)

(
I− 1

l(2)
eeT

)
,

l(1) and l(2) denote the number of samples in positive and
negative classes, respectively. I and e are a vector and a
matrix, respectively, with appropriate dimensions. In addi-
tion, ϕ

(
X (I)

)
=

[
ϕ
(
X (1)
1

)
. . . ϕ

(
X (1)
N1

)]
,X (1)

k ∈ I(1), k =

1, . . . , l(1) and similarly,ϕ
(
X (2)

)
=

[
ϕ
(
X (2)
1

)
. . . ϕ

(
X (2)
N2

)]
,

X (2)
k ∈ I(2), k = 1, . . . , l(2).
To calculate the Mahalanobis distance-based inner product

< ϕ(·), ϕ(·) > (i.e., kernels) in the feature space, we have to
calculate the inverses of Since

∑
±
are often ill-conditioned,

to improve the robustness, we add a small positive value σ
to the diagonal elements of

∑
±
. Thus, instead of

∑
−

±
1 we

have to compute (σ I+
∑
±
)−1.

By using the Woodbury matrix identity [27]:(
U + VV T

)−1
=U−1 − UTV

(
I+V TU−1V

)−1
V TU−1

we set U = σ I and V = ϕ
(
X (1)

)
J+, so we have:

(σ I+
∑
+
)−1

=

[
σ I+ ϕ

(
X (1)

)
J+JT+ϕ

(
X (1)

)T]−1
= σ−1I−σ−1ϕ

(
X (1)

)
J+
(
σ I+ JT+KX (1)J+

)−1
JT+ϕ

(
X (1)

)T
(23)

where KX (1) = ϕ
(
X (1)

)T
ϕ
(
X (1)

)
= k

(
X (1),X (1)

)
..

Similarly, we obtain:

(σ I+6−)−1

=

[
σ I+ ϕ

(
X (2)

)
J−JT−ϕ

(
X (2)

)T]−1
= σ−1I−σ−1ϕ

(
X (2)

)
J−
(
σ I+JT−KX (2)J−

)−1
JT−ϕ

(
X (2)

)T
(24)

where KX (2) = ϕ
(
X (2)

)T
ϕ
(
X (2)

)
= k

(
X (2),X (2)

)
.

So the Mahalanobis distance-based kernels K+(xi, xj) and
K−(xi, xj) are obtained as follows:

K+
(
xi, xj

)
=
〈
ϕ (xi) · ϕ

(
xj
)〉
+

= ϕ (xi)6
−1
+ ϕ

(
xj
)
≈ ϕ (xi)T (σ I+6+)−1 ϕ

(
xj
)

= ϕ (xi)T [σ−1I−σ−1ϕ
(
X (1)

)
J+
(
σ I+JT+KX (1)J+

)−1
× JT+ϕ

(
X (1)

)T
]ϕ
(
xj
)

= σ−1K
(
xi, xj

)
−σ−1K

(
xi,X (1)

)
J+
(
σ I+JT+Kx(1)J+

)−1
× JT+K

(
X (1), xj

)
(25)

K−
(
xi, xj

)
=
〈
ϕ (xi) , ϕ

(
xj
)〉
−
= ϕ (xi)6

−1
− ϕ

(
xj
)

≈ ϕ (xi)T (σ I+6−)−1 ϕ
(
xj
)

= ϕ (xi)T [σ−1I− σ−1ϕ
(
X (2)

)
J−
(
σ I+ JT−KX (2)J−

)−1
× JT−ϕ

(
X (2)

)T
]ϕ
(
xj
)

= σ−1K
(
xi, xj

)
−σ−1K

(
xi,X (2)

)
J−
(
σ I+JT−KX (2)J−

)−1
× JT−K

(
X (2), xj

)
. (26)

PROOF OF FACT 2
The Lagrangian function of Equation (11) is:

L (c+,R+, ξ, α, r, s)

= R2+ −
v1
l−
∑
j∈I−

(
ϕ
(
xj
)
− c+

)
6−1+

(
ϕ
(
xj
)
− c+

)
+
c1
l+
∑
i∈I+

ξi +
∑
i∈I+

αi

(
(ϕ (xi)− c+)6

−1
+ (ϕ (xi)− c+)

− R2+ − ξi
)
−

∑
i∈I+

riξi − sR2+ (27)
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where s ≥ 0, αi ≥ 0, ri ≥ 0, i ∈ I+ denote the Lagrangian
multipliers. Differentiating the Lagrangian function (Equa-
tion (27)) concerning c+,R2+ and ξi, i ∈ I+ yields the fol-
lowing necessary and sufficient Karush-Kuhn-Tucker (KKT)
optimality conditions:

∂L

∂R2+
= 1−

∑
i∈I+

αi − s = 0 =>
∑
i∈I+

αi ≤ 1 (28)

∂L
∂ξi
=

c1
l+
− αi − ri = 0 => 0 ≤ αi ≤

c1
l+
, i ∈ I+ (29)

∂L
∂c+
=

2v1
l−

∑
j∈I−

(
ϕ
(
xj
)
− c+

)
6−1+

− 2
∑
i∈I+

αi (ϕ (xi)− c+)6
−1
+ = 0

2v1
l−

∑
j∈I−

ϕ
(
xj
)
−

2v1
l−

c+ − 2
∑
i∈I+

αiϕ (xi)

+ 2
∑
i∈I+

αic+ = 0c+

−2v1
1−
+ 2

∑
i=I+

αi


=
−2v1
l−

∑
j∈I−

ϕ
(
xj
)
+ 2

∑
i∈I+

αiϕ (xi) (30)

c+ =
1∑

i∈I+
αi−

v1
l−

∑
i∈I+

αiϕ (xi)−
v1
l−
∑
j∈I−

ϕ
(
xj
)

(ϕ (xi)− c+)6
−1
+ (ϕ (xi)− c+) ≤ R2+ + ξi, i ∈ I+

(31)
αi

(
(ϕ (xi)− c+)6

−1
+ (ϕ (xi)− c+)− R2+ − ξi

)
= 0,

αi ≥ 0, i ∈ I+ (32)

riξi = 0, ξi ≥ 0, ri ≥ 0, i ∈ I+ (33)

sR2+ = 0, R2+ ≥ 0, s ≥ 0. (34)

By selecting suitable parameters v1 and c1 in optimizing
Equation (11), the condition will hold, and according to the
KKT conditions of Equations (28) and (34), we have:∑

i∈I+
αi = 1 (35)

and

c+ =
1

1− v1

∑
i∈I+

αiϕ (xi)−
v1
l−
∑
j∈I−

ϕ
(
xj
) (36)

which also derives an implicit value for v so that 0 < v1 < 1.
By substituting Equations (28), (29), and (36) into Equa-
tion (27), the dual QPP form of Equation (11) is as follows:

max

1−
∑
i∈I+

αi − s

R2+ +
∑
i∈I+

( c1
l+
− αi − ri

)
ξi

−
v1
l−
∑
j∈I−

((
ϕ
(
xj
)
− c+

)
6−1+

(
ϕ
(
xj
)
− c+

))
+

∑
i∈I+

αi

(
(ϕ (xi)− c+)6

−1
+ (ϕ (xi)− c+)

)

s.t.
∑
i∈I+

αi = 1, 0 ≤ αi ≤
c1
l+
, i ∈ I+ (37)

PROOF OF FACT 3
To solve Equation (37) we have to find the term∑
i∈I+

(ϕ (xi)− c+)6
−1
+ (ϕ (xi)− c+) as follows:

∑
i∈I+

(
(ϕ (xi)− c+)6

−1
+ (ϕ (xi)− c+)

)

=

∑
i∈I+

αi

(
−2

1− v1
K+ (xi, xi)−

(
1

1− v1

)2 ( v1
l−

)
∑
j∈I−

(
K+

(
xi, xj

)
+ K+

(
xj, xi

))
+

(
1

1− v1

)2 ∑
i1,i2∈I+

αiiαi2K+
(
xi1 , xi2

)
(38)

Also, the term
∑

j∈I−

((
ϕ
(
xj
)
− c+

)
6−1+

(
ϕ
(
xj
)
− c+

))
can

be computed similarly. Finally, by discarding the con-
stant items from the optimization problem Equation (29),
it becomes simpler:

max
∑

i1,j2∈I+
αi1αi2

((
1

1− v1

)2 (
1−

( v1
l−

))
K+

(
xi1 , xi2

))

+

∑
i∈I+

αi

( v1
l−

)( 1
1−v1

)∑
j∈I−

(
K+

(
xj, xi

)
+K+

(
xi, xj

))

−

(
2

1− v1

)
K+ (xi, xi)


s.t.

∑
i∈I+

αi = 1, 0 ≤ αi ≤
c1
l+
, i ∈ I+ (39)

Now the squared radius R2+ is obtained by the following
formula:

R2+ =
1∣∣I+R ∣∣

∑
i∈IR+

(ϕ (xi)− c+)6
−1
+ (ϕ (xi)− c+) (40)

where

I+R =
{
i|0 < αi <

c1
l+
, i ∈ I+

}
.
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