
Received March 5, 2020, accepted March 19, 2020, date of publication April 24, 2020, date of current version May 15, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2990155

Maximum Feasible Subsystem Algorithms for
Recovery of Compressively Sensed Speech
FERESHTEH FAKHAR FIROUZEH , (Member, IEEE), JOHN W. CHINNECK ,
AND SREERAMAN RAJAN , (Senior Member, IEEE)
Department of Systems and Computer Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada

Corresponding author: Fereshteh Fakhar Firouzeh (behnazfakharfirouzeh@cmail.carleton.ca)

This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).

ABSTRACT The goal in signal compression is to reduce the size of the input signal without a significant loss
in the quality of the recovered signal. One way to achieve this goal is to apply the principles of compressive
sensing, but this has not been particularly successful for real-world signals that are insufficiently sparse,
such as speech. We present three new algorithms based on solutions for the MAXimum Feasible Subsystem
problem (MAX FS) that improve upon the state of the art in recovery of compressed speech signals:
more highly compressed signals can be successfully recovered with greater quality. The new recovery
algorithms deliver sparser solutions when compared with those obtained using traditional compressive
sensing recovery algorithms. When tested by recovering compressively sensed speech signals from the
TIMIT speech database, the recovered speech signals had better perceptual quality than speech signals
recovered using traditional compressive sensing recovery algorithms.

INDEX TERMS Compressive sensing, maximum feasible subsystem problem, sparse recovery.

I. INTRODUCTION
A sparse solution is one in which most of the variables have
the value zero. The few variables that take nonzero values
are called the support. Sparse solution estimation or sparse
recovery is an important part of Compressive Sensing (CS)
and plays a major role in reconstructing a compressively
acquired signal.

Sparse recovery can be cast as an instance of the Maxi-
mum Feasible Subsystem problem (MAX FS) [1], and can
be described in the following manner: given an infeasible set
of linear constraints, find the largest cardinality subset that
admits a feasible solution. This is the same as the minimum
unsatisfied linear relation problem (MIN ULR) of finding
the minimum number of constraints in an infeasible linear
system such that its complement is feasible [2]. Finding
a maximum feasible subsystem has applications in a wide
variety of fields, including machine learning [3], misclassi-
fication minimization [4], training of neural networks [2],
telecommunications [5], computational biology [6]. MAXFS
is NP-hard [7]–[9] but effective polynomial time heuristics
are available [1].
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Finding a sparse solution to an underdetermined system of
linear equations is the central problem in compressive sensing
signal recovery, and is cast as an instance of MAX FS [10] as
follows: given the system Ax = y, x = 0, find the maximum
cardinality subset of x = 0 that permits a feasible solution
to the original system. Several other formulations are also
possible.

In compressive sensing, a sparse input signal a of size n×1
having S nonzeros (S-sparse) is compressed by multiplying it
by anm×nmeasurement matrix8, wherem� n, to yield the
compressed signal y (also called the measurement vector) of
sizem×1, i.e. y = 8a, where8 is typically a randommatrix.
Random matrices are considered in compressive sensing as
they have the Restricted Isometry Property [11] which is
a sufficient condition for signal recovery. The compressed
signal y can now be transmitted or stored more efficiently
because of its reduced length.

The goal of the signal recovery process is to recreate the
input signal a given the compressed signal y and 8. This
is an underdetermined system that has multiple solutions,
but knowing that the input signal is sparse, the recovery
process attempts to reconstruct a sparse signal. Unfortunately,
recovering a sparse solution from an underdetermined system
of linear equations is NP-hard [12], as the sparsity of the
recovered signal should be close to the sparsity of the input
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signal so that the ‘‘sparse approximation’’ is almost an exact
recovery.

Mathematically, the sparse approximation problem is to
find x = argminx ‖x‖0 subject to y = 8x where the
number of nonzeros in a vector is commonly expressed as
the zero ‘‘norm’’ ‖x‖0. Because the recovery is NP-hard,
most algorithms instead minimize some other norm ‖x‖p =

(
∑n

i=1 |xi|
p)

1
p , p ≥ 1. Lustig et al. [13] evaluated sparse

recovery based on `p norm minimization at different values
of p. Not all norms provide sparse recovery reliably. For
instance, `2-minimization performs poorly.
Unfortunately, `0 minimization is a difficult nonconvex

problem. Donoho and Huo [14] and Candès and Tao [15]
developed a convex optimization approach called Basis Pur-
suit (BP) which minimizes the `1 norm of x. Basis Pursuit is
effective in returning an x that matches the input a, when a
is very sparse [15]–[17], that is BP has small critical sparsity
(the maximum sparsity at which the algorithm returns sparse
solutions reliably). Beyond the critical sparsity, the recovered
signal will usually have more non-zero elements than the
original sparse signal, and hence will lead to a poor approxi-
mation.

It has been shown empirically [18] that using `p norm
minimization when p < 1 requires fewer measurements
(i.e. greater compression) than for p = 1. Chartrand and Yin
proposed the nonconvex Iterative Reweighted Least Squares
(IRWLS) algorithm [19] and showed that the algorithm
needs fewer measurements and has a larger critical sparsity.
It can correctly recover less sparse input signals than can be
recovered by the unregularized versions of other nonconvex
algorithms.

A small critical sparsity means that the recovery algorithm
needs a longer measurement vector if it is to return the input
vector accurately. This means that the compressed vector
must be longer with more elements. BP and greedy algo-
rithms such as Matching Pursuit (MP) [20] and Orthogonal
Matching Pursuit (OMP) [21] are relatively fast, but as their
critical sparsity is low theymay fail to recover the input signal
accurately when the compressed signal is not long enough
relative to the sparsity of the input signal. They are thus
inappropriate for use with more highly compressible signals.
Plumbley [22] proposed the greedy technique Polytope Faces
Pursuit (PFP) to obtain better recovery of compressed signals
which are difficult for MP. This technique is based on the
geometry of the polar polytope and uses BP to approximate
the sparse solution.

The main issues in sparse recovery are: (i) the small crit-
ical sparsities of many widely used recovery algorithms and
(ii) the quality of the recovered signals. Existing algorithms
can recover the input signal exactly with high probability only
when the input signal is very sparse and it is not compressed
much [23], otherwise the recovered signal is of low quality.
In practical applications, a sparse solution is needed even if
these conditions are not met [23]. In practice, the input signal

sparsity is not known during the recovery phase; it is either
estimated or assumed.

Recognizing that MAX FS solution techniques can be used
for sparse recovery, Jokar and Pfetsch [23] compared a num-
ber ofMAXFS solution algorithmswith state-of-the-art algo-
rithms such as BP and OMP for sparse recovery of synthetic
signals and concluded that Chinneck’s linear programming
(LP)-based MAX FS solution algorithm [24] provided the
best results overall. Surprisingly, MAX FS solution methods
have not been adopted for sparse recovery in compressive
sensing. This motivates our work here to evaluate MAX FS
solution methods for use in the recovery phase of CS for real-
world signals.

We investigate the compression of speech signals as they
are not sparse by nature [25], and hence are challenging
for CS. As a main contribution, we demonstrate that MAX
FS-based solution algorithms are able to accurately recover
more highly compressed speech signals with better quality,
though they require more computation. This is less of an issue
in recent years due to the easy availability of computational
resources, e.g. via cloud computing.

Our experiments show that the critical sparsities for BP,
OMP, PFP, MP and IRWLS require measurement vectors of
length m > 3.2S, 2.8S, 3.2S, 6.4S, and 8.5S respectively.
In contrast, the MAX FS solution algorithms require only
m > 2S for accurate recovery of low pass speech segments,
a reduction of 37.5%, 28.6%, 37.5%, 68.7% and 76.5% in
the length of the compressed signal with respect to BP, OMP,
PFP, MP, and IRWLS. Also, MAX FS algorithms require
m > 2.6S for accurate recovery of high pass speech seg-
ments, still better than the existing algorithms. Furthermore,
we also observe higher quality in the recovered signals. The
MAX FS-based sparse recovery algorithms perform well in
finding both the positions and the values of the nonzeros.
We believe that it is time to considerMAXFS-based solutions
for CS recovery.

The remainder of the paper is organized as follows.
Section II gives a brief overview of CS and existing CS sparse
recovery algorithms. New MAX FS solution algorithms for
sparse recovery are developed in Section III. The CS-based
process for speech signals is provided in Section IV. Experi-
mental setup and empirical results are presented in Sections V
and VI. Section VII concludes the paper and outlines our
future work.

II. BACKGROUND
A. SIGNAL ACQUISITION AND SPARSIFICATION
CS compression requires that the input signal be sufficiently
sparse.When it is not sparse, the input signal can be sparsified
by applying a suitable basis to produce an S-sparse signal a.
Many real-world signals can be sparsified by applying the
DCT (Discrete Cosine Transform) or DWT (DiscreteWavelet
Transform) in which the basis coefficient weights satisfy a
power law decay.More precisely, if the given input in the time
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domain, f, is sparsified using the basis9 as fn×1 = 9n×nan×1
and the coefficients are sorted in descending order such that
|a1| ≥ |a2| ≥ . . . ≥ |an|, then the signal is compressible if it
satisfies

|ai| ≤ Const(i−q) (1)

where Const is a constant and q > 0. To obtain a S-sparse
signal, all but the S largest coefficients are set to zero.

Based on [26], no information is lost if the length of the
measurement vector m is determined as follows:

m ≥ C .µ2(8,9).S. log n (2)

where C is a positive constant and µ2(8,9) is the square
of mutual coherence between the measurement and the basis
(sparsification) matrices. Mutual coherence (µ) between
8m×n and 9n×n is defined as follows [14]:

µ(8,9) = max
1≤i6=j≤n

| < 8i, 9j > | (3)

where < ., . > denotes the numerical operation of inner
product between the column vectors φi, ψj ∈ Rn of8 and9.
Low coherence between the measurement matrix, 8 and the
basis matrix, 9, leads to a better sparse reconstruction from
fewer measurements.

To ensure a good recovery, the number of measure-
ments m is often determined as given below, where
µ2(8,9) = 1 [26].

m ≥ C .S. log n (4)

After determining m, the compressed measurement vector,
ym×1, is obtained by multiplying the signal, an×1, by 8m×n
in the last step of signal acquisition to achieve compression.

B. SPARSE RECOVERY
Sparse recovery algorithms can be broadly classified into
three categories: convex relaxations, greedy algorithms, and
non-convex optimization techniques [27]. We compare the
proposed methods with one example algorithm from each
class. BP and IRWLS use convex relaxation and a non-convex
optimization technique, respectively, while MP, OMP, and
PFP are greedy algorithms. These algorithms are known to
provide sparse solutions having good reconstructed signal
quality. We review the main steps in these algorithms to
clarify their approaches.

1) BASIS PURSUIT (BP)
Chen et al. [27] find a sparse vector by minimizing the
`1−norm:

min||x||1 =
n∑
j=1

|xj| s.t. 8x = y (5)

This can be converted to a linear program (LP) by a change
of variables xj = uj − vj, where uj and vj are nonnegative:

min
n∑
j=1

(uj + vj) s.t. 8(u+ v) = y, uj, vj ≥ 0 (6)

The resulting LP has 2n variables and m equations. Upon
solution, each xj is obtained as xj = uj − vj.

2) MATCHING PURSUIT (MP)
Matching Pursuit [20] is an iterative greedy algorithm. In each
iteration, it selects the column t of 8, φwinner t , that is best
aligned with the residual vector, rt−1, where r0 = y. winnert
is identified using Eqn. 7 [20].

winnert = argmax
j=1,...,n

|φHj rt−1| (7)

where (.)H is the hermitian transpose matrix. The sup-
port is enlarged by adding the index winner t , support t =
support t−1∪winnert , and the support matrix8sup is updated
as 8supt = [8supt−1 φwinner t ]. If winnert ∈ supportt−1,
the support set and the support matrix are unchanged, i.e.
supportt = support t−1 and 8supt = 8supt−1 .
After updating the support, the new residual vector and the

sparse solution are calculated using Eqn. 8 and Eqn. 9.

rt = rt−1 −
(φHwinnert rt−1)φwinnert
‖φwinnert‖

2
2

(8)

x̃t (winnert ) = x̃t−1(winnert )+
(φHwinnert rt−1)

‖φwinnert‖
2
2

(9)

The algorithm halts when the stopping condition is achieved
(e.g. ‖rt‖ ≤ ε).

C. ORTHOGONAL MATCHING PURSUIT (OMP)
Orthogonal Matching Pursuit (OMP) [21] is an improvement
of MP. In each iteration, the residual vector rt is orthogonal
to the columns already selected. Therefore, no columns are
selected twice. The inputs to this greedy algorithm are the
measurement matrix 8 and the measurement vector y [28].
A new element is selected at each step and 8supt has full
column rank. The OMP algorithm is summarized as follows;

1) Initialization:
• Iteration Counter: t ← 1.
• Residual: r0← y.
• Index set: support ← ∅.
• support matrix: 8sup← ∅.

2) Find the index winnert by solving winnert =

arg maxj=1,...,n| < rt−1, φj > |.
3) Update the index set, support t = support t−1∪winnert ,

and the support matrix 8supt = [8supt−1 , φwinner t ].
4) Estimate the signal by solving a least-squares problem,

xt = argminx ‖8suptx− y‖2.
5) Update the measurement vector, yt = 8suptxt , and the

residual, rt = y− yt .
6) If ‖rt‖ > threshold , increment t and go to Step 2.

Output:
• T -sparse signal, aT .
The goal is to obtain an output signal having a sparsity T

as close as possible to S. In OMP, the sparsity of the input
signal S can be supplied to the algorithm as an input. If S is
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specified, the maximum iteration counter t will be equal to S.
Otherwise, the algorithm stops when rt reaches to the defined
error tolerance 10−5.

D. THE POLYTOPE FACES PURSUIT (PFP)
This algorithm [22] performs BP to find the sparse solution
of the dual LP maxc{yTc|8Tc ≤ 1} ≥ 0. Following the
style of the MP algorithm, it adds one new basis vector at
each step. PFP adopts a path following method through the
relative interior of the faces of the polar polytope P∗ = {c|8T

c ≤ 1} associated with the dual LP problem and searches for
the vertex c∗ ∈ P∗ that maximizes yT c. The steps of the PFP
Algorithm are summarised below [22]:

1) Initialization:
• Iteration counter: t ← 1.
• Residual: r0← y.
• Index set: support ← ∅.
• Matrix of support: 8sup← ∅.
• c = 0.

2) Find face: winnert ← arg maxi/∈supportt−1{(φ
T
i rt−1)/

(1− φTi ct−1)|φ
T
i rt−1 > 0}

3) Add constraint:
• support t = support t−1 ∪ winnert .
• 8supt = [8supt−1 , φwinner t ].
• xt ← (8supt )

†y
4) If xt < 0

• Select j ∈ supportt such that xtj < 0; remove φj
from 8supt

• Update:
supportt ← supportt\{j}, xt ← (8supt )

†y

5) ct ← (8supt )
†T 1, yt← 8suptxt , rt ← y− yt

6) If termination condition ismet (e.g. sparsity or residual)
then exit. Else go to Step 2.

Output:
• T -sparse signal, aT .

The algorithm stops when the size of support reaches the
maximum sparsity, S, (i.e. if specified in the initialization
stage, t = S) or if maxi φTi r

t−1 is smaller than the minimum
residual condition, θmin. Note that the notation (.)† means
pseudo-inverse matrix.

E. ITERATIVE REWEIGHTED LEAST SQUARES (IRWLS)
A nonconvex variant of BP [18] has been shown to provide
exact recovery with fewer measurements. The `1 norm is
replaced by the `p norm,

min
x
‖x‖pp s.t. 8x = y (10)

where 0 < p < 1. Before Rao and Kreutz-Delgado [29]
considered p < 1, p ≥ 1 was studied, replacing the `p cost
function in Eqn.10 by a weighted `2 norm:

min
x

n∑
i=1

wix2i s.t. 8x = y (11)

where the objective function is a first order estimate of the `p
such that wi = |u

(n−1)
i |

p−2. Chartrand and Yin [19] proposed
a particular regularization strategy that greatly improved the
ability of the reweighted least-squares algorithm to recover
sparse signals.

In [19], 8 is assumed to have the unique representation
property (any m columns are linearly independent) [30]. This
property leads to a unique solution of8x = y having sparsity
‖x‖0 = S. The approach finds weights based on Eqn. 12 for
each iteration t .

wi = (x2i + εt )
p
2−1 (12)

where εt is a sequence converging to zero, εt ∈ (0, 1),
0 ≤ p < 2 and y = 8x. Then, a unique solution of a convex
optimization problem Eqn. 11 is obtained in which xt → a.

III. MAX FS SOLUTION ALGORITHMS FOR
SPARSE RECOVERY
Finding a sparse solution to a linear system can be cast as
an instance of MAX FS [10]: find a MAX FS solution for
the system 8x = y, x = 0 where only constraints in the set
x = 0 can be removed in order to achieve feasibility. Jokar
and Pfetsch [23] used an alternative formulation based on BP
(Eqn. 6), as follows. The support is initially empty. At each
iteration, the k non-support variables having the largest abso-
lute values of ui − vi are candidates for inclusion in the
support. Each candidate is tested by temporarily setting the
objective function values of its associated ui and vi to zero
and solving the LP: the candidate giving the largest drop
in Z (where Z refers to the objective function) is added to
the support by permanently zeroing the objective function
coefficients of its associated ui and vi. The process stops
when Z = 0; the support consists of those variables whose
associated ui and vi have objective function coefficients of
zero.

Jokar and Pfetsch [23] compared Chinneck’s algo-
rithm [24] to a number of others for sparse recovery and
concluded that it provided the best results overall. Three
recent variants of Chinneck’s algorithm [31] are used in this
paper for CS sparse recovery. The algorithms may return a
support having superfluous members. Some can be removed
by postprocessing [23] as follows. First, all non-support xj are
set to zero (or removed from the model) in y = 8x. Next,
temporarily force each remaining variable to zero in turn;
if there is a feasible solution, then that variable is removed
from the support.

The values of the support variables are found by solving a
final LP. The system 8sol containing only the columns of 8
corresponding to the support variables is constructed. Then
an LP is solved to obtain the values of uj and vj:

min Z =
∑
j

(uj + vj) s.t. 8sol(u− v) = y (13)

where u ≥ 0, v ≥ 0. The support values are recovered by
reversing the change of variables: xj = uj − vj.

82542 VOLUME 8, 2020



F. Fakhar Firouzeh et al.: MAX FS Algorithms for Recovery of Compressively Sensed Speech

Three recent variants (Methods C, B, and M) [31] of
Chinneck’s method are summarized below.

A. METHOD C
Method C uses explicit elastic variable zeroing constraints
xj+e

+

j −e
−

j = 0, where e+j and e−j are nonnegative, resulting
in the following elastic LP:

minZ =
∑
j

(e+j + e
−

j ) st.

[
8 0m×n 0m×n
I I −I

]  x
e+

e−

 = [ ym×10n×1

]
(14)

8 is m × n and I is n × n. The model has m + n constraints
in 3n variables. The main features of Method C are:
• There are two lists of candidates, one based on the
magnitude of the nonzeros,CandidatesNZ, and the other
based on the sensitivity of the elastic objective function
to the variable zeroing constraint, CandidatesSens. Both
lists are sorted in decreasing order of magnitude and the
top ListLength candidates from each list are taken.

• Variable k is added to the support set by removing the
corresponding elastic variables, e+k and e−k , from the
objective function.

Method C is summarized as Algorithm 1.

B. METHOD B
MethodB is summarized as Algorithm 2. It uses the change of
variables LP formulation as in Eqn. (6) and has m constraints
in 2n variables. It is identical to the Jokar and Pfetsch imple-
mentation except for the objective function weights of the
support variables. The algorithm follows the general MAX
FS algorithm logic with these features:
• Candidate variables xj = uj − vj are those having an
objective function coefficient of 1.0 and a magnitude
greater than a stated tolerance (10−6 is used in the exper-
iments). The length of the list of candidates is controlled
by a parameter ListLength, typically set to integer value
in the range 1 - 7 [24].

• The objective function coefficients of the winning uj, vj
pair are reset to 0.1 instead of 0 [1]. This encourages
support variables towards zero, reducing the need for
postprocessing.

• At the final solution, only variables that have nonzero
values are included in the support set.

C. METHOD M
MethodM combinesMethod Bwith Basis Pursuit. BP is very
efficient if the input vector a is sufficiently sparse: it returns
the correct solution x after solving a single LP. BP typically
returns either a sparse solution x with T -sparsity �m, or it
returns x with a larger sparsity equal to or close to m. It is
thus easy to recognize when BP has succeeded. M applies
the more time-consuming Method B only if BP fails.

Algorithm 1Method C
STEP 0: SupportSet ← ∅

Set up elastic LP.
STEP 1: Solve elastic LP.

CandidatesNZ← ListLength largest magnitude
nonzero variables.
CandidatesSens← ListLength variables having
value 0 whose zeroing constraints have the
largest magnitude sensitivities.
CandidateSet← CandidatesNZ ∪

CandidatesSens
STEP 2:WinnerZ ←∞.

for each candidate k in CandidateSet :
Set the objective function coefficients of
e+k and e−k to 0.
Solve elastic LP.
if Z = 0 then

Add variable k to SupportSet.
Exit.

end if
if Z < WinnerZ then
Winner← k .
WinnerZ ← Z .
NextCandidatesNZ← ListLength
largest magnitude nonzero variables,
excluding support variables and k .
NextCandidatesSens← ListLength
non-support variables having value
0 whose zeroing constraints have the
largest magnitude sensitivities.
NextCandidateSet← NextCandidat-
esNZ ∪ NextCandidatedatesSens

end if
Set the objective function coefficients of
e+k and e−k to 1.

end for
STEP 3: AddWinner to SupportSet.

Set the objective function coefficients of e+winner
and e−winner to 0 permanently.
CandidateSet← NextCandidateSet.
Go to STEP 2.

OUTPUT: SupportSet is a small number of variables form-
ing a support for the system of equations.

Method M assumes BP failure if the T -sparsity of the BP
solution is greater thanm−3, in which case it runs Method B.

IV. SPEECH PROCESSING VIA CS AND MAX FS
Speech is a challenging input for CS as it is not typically
sparse and any sparsity varies greatly over time [32]. Our
process for speech processing using CS with MAX FS sparse
approximation has these main steps:
• Signal Acquisition:

1) f is the original speech signal in the time domain.
2) Remove the silent parts of the input.
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Algorithm 2Method B
STEP 0: SupportSet ← ∅
STEP 1: Solve LP.

CandidateSet← ListLength largest nonzero
|uj − vj|

STEP 2:WinnerZ←∞.
for each candidate variable k in CandidateSet:

Set the objective function coefficients of uk
and vk to 0.
Solve the LP.

if Z = 0 then
Add variable k to SupportSet.
Exit.

end if
if Z < WinnerZ then
Winner← k .
WinnerZ ← Z .
NextCandidateSet← ListLength largest
nonzero |uj − vj| having objective coefficient
1.0

end if
Reset the objective function coefficients of uk
and vk to 1.0.

end for
STEP 3: AddWinner to SupportSet.

Fix the coefficients of uwinner and vwinner to 0.1
in the objective function permanently.
CandidateSet← NextCandidateSet.
Go to STEP 2.

OUTPUT: SupportSet is a small number of variables form-
ing a support for the system of equations.

3) Segment the signal into frames of length n.
4) For each segment of signal f:

a) Apply DCT.
b) Use only the S largest DCT coefficients to

generate an S-sparse vector a of length n.
c) Calculate the measurement vector y = 8a,

where 8 is of size m× n.
• Sparse Approximation:

1) For each segment of signal f:
a) Apply a MAX FS sparse approximation algo-

rithm to 8x = y to find a T -sparse solution x
as an approximation to a.

• Speech Signal Recovery:
1) Apply the inverse DCT to x to recover the speech

segment in the time domain.
2) Concatenate all recovered segments to obtain the

reconstructed speech signal, f̃.
The silent portions of a signal contain no useful infor-

mation, so removing them decreases processing time and
increases recovery accuracy. In our experiments, the word
transcription information in the dataset is used to identify the
silent parts of the input.

Based on [26], by using a proper sparsifying orthonormal
basis 9, we have ‖f − fS‖2 = ‖a − aS‖2 where fS = 9aS .
When a is sparse or compressible, a is well estimated by
using aS and, consequently, the error ‖f− fS‖2 is small, so all
except the S largest components of the compressible signal a
can be removed without much loss [26]. Here, to obtain aS,
the DCT coefficients of each segment are sorted in descend-
ing order of magnitude; these decay rapidly to zero if the
signal is compressible. The S largest coefficients are selected
by thresholding. The threshold used here is 1.3 times the
mean of all DCT coefficients in a segment and was fixed
after examining over 100 different speech segments from the
database used in this work.

V. EXPERIMENTAL SETUP
A. SPEECH SAMPLES
Examples are drawn from the TIMIT database of speech
samples that includes time-aligned orthographic, phonetic
and word transcriptions and speech waveforms sampled
at 16 kHz [33]. This well-known database has a total of
6300 sentences, 10 sentences spoken by each of 630 speakers,
438 male and 192 female, from 8 major dialect regions of the
United States. From the dataset, 96 examples, 48 male and
48 female speakers, are used, covering all 8 dialect regions
and all 3 types of sentences. The silent parts of each input
speech signal are removed based on the word transcription
information in the TIMIT database.

B. SAMPLING AND MEASUREMENT
The signals are sampled at 16 kHz. Speech signals are typi-
cally segmented into frames of size 10ms-30ms due to their
non-stationary characteristics. In this paper, speech signals
are divided into segments of 16ms, n = 256 with Compres-
sion Ratio (CR) = (1 − m

n ) × 100 equal to 50%. We study
50% CR.

In the signal acquisition stage, two types of random mea-
surement matrices 8 are used to compress the speech signal:
Random Normalized Matrices (RNM) and RandomGaussian
Matrices (RGM).

C. SOFTWARE
All algorithms are implemented in Matlab version 2018, run-
ning in a Windows 10 environment. The linear programming
solver is MOSEK via the MOSEK Optimization Toolbox for
Matlab version 8.1.0.56 [34]. Comparison algorithms were
implemented using SparseLab [35], except for IRLWSwhich
uses the code available in [36], [37].

D. HARDWARE
The computations are carried out on a 3.40 GHz Intel core i7
machine with 16.0 GB RAM, running Windows 10.

E. EXPERIMENTS
Two sets of experiments are conducted. The first set demon-
strates that MAX FS has the highest critical sparsity among
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the algorithms considered. The second set demonstrates that
the signals recovered using MAX FS-based algorithms are
superior to those recovered by other algorithms.

For the first set of experiments, the speech signals were
first divided into two groups: signals that have energy concen-
tration in the ‘‘low frequency region’’ (low pass) and signals
with energy concentration in the ‘‘high frequency region’’
(high pass). A speech signal is low pass if the first 100 DCT
coefficients (low frequencies) contribute more to the total
energy in the signal than the rest. A speech signal is high
pass if the components after the 100th coefficient contribute
significantly to the total energy of the signal (say 95% of
the total energy). 10 low pass and 10 high pass male and
female speech segments were selected for this experiment.
Examples of low pass and high pass segments are shown
in Fig. 1.

FIGURE 1. Example low and high pass speech signal segments.

F. EVALUATION METRICS
Different evaluation metrics are used for the two sets of
experiments.

For the first set of experiments, the recovered signal spar-
sity is compared with the input signal sparsity. The speech
recovery is successful if T , the number of nonzeros in the
recovered sparse vector, is identical to S, the number of
nonzeros in the DCT input signal. We record the average
T -sparsity of the recovered DCT signals over 10 trials,
Taverage at various values of S. The number of successful
recoveries is recorded. The GeometricMean (GM) of the
average T -sparsity (Eqn. 15) is used to compare algorithms,
following [23].

GM = (
Etot∏
i=1

Taveragei )
1

Etot (15)

where Etot is the total number of entries.
The second experiment also evaluates algorithm perfor-

mance based on the quality of the recovered speech sig-
nals as measured by the Relative Squared Error (RSE)

(Eqn. 16), Perceptual Evaluation of Speech Quality
(PESQ) [38], spectrograms and spectra. The equation used
for RSE is given below:

RSE =

∑
j (̃fj − fj)

2∑
j(fj)2

(16)

PESQ is a standardized algorithm recommended by the
International Telecommunication Union (ITU) [39] and used
to assess the quality of speech [38]. PESQ constructs a loud-
ness spectrum by applying an auditory transform, which is
a psychoacoustic model that projects the signals into a rep-
resentation of perceived loudness in time and frequency [38].
The loudness spectra of the original input signal are then com-
pared with those of the recovered signal to produce a single
number in the range 1 (Bad) to 5 (Excellent) corresponding
to the prediction of the perceptual mean opinion score.

G. COMPARATORS
We compare the new MAX FS methods B, C and M with
representative algorithms from three different categories of
CS sparse recovery algorithms: Basis Pursuit (BP), Matching
Pursuit (MP), Orthogonal Matching Pursuit (OMP), Poly-
tope Faces Pursuit (PFP), and Iterative Reweighted Least
Squares (IRWLS). We excluded more recent algorithms such
as Iterative Hard Thresholding (IHT) [40] and Look Ahead
Orthogonal Matching Pursuit (LAOMP) [41] because they
require prior knowledge of the input sparsity, S, which is not
available in practice. The Forward-Backward Pursuit algo-
rithm (FBP) [42] is also excluded because it has much worse
performance in our experiments in recovering compressively
sensed speech signals in comparison to our chosen conven-
tional comparators.

VI. EXPERIMENTAL RESULTS
A. CRITICAL SPARSITY OF THE SPARSE
RECOVERY ALGORITHMS
In this work, a signal recovery algorithm is declared success-
ful if the recovered signal is exactly the same as the original
input signal. Successful recovery becomes harder as the frac-
tion of nonzeros in the input signal increases (i.e. the input is
not sparse enough). In our experiments, it is observed that if
the output signal T -sparsity equals the input signal S-sparsity,
then the signals are also identical, so we use the matching
of the signal sizes as our measure of success. Failures are
declared if T > S.

The concentration of the DCT coefficients in low and high
frequency intervals affects the success of sparse recovery
heuristics, so results are analysed for low pass and high pass
segments separately.

The results for both RNMandRGMmeasurementmatrices
and for low pass and high pass segments are summarized
in Table 1 and Table 2. Each cell shows the average output
T -sparsity Taverage over 10 segments at given values of input
S-sparsity, with the number of successes shown in parenthe-
ses. The input S-sparse signal is constructed by retaining only
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TABLE 1. Average recovered T -sparsity for low pass speech segments at CR= 50%, n= 256.

TABLE 2. Average recovered T -sparsity for high pass speech segments at CR= 50%, n=256.

the S largest DCT coefficients among the 256 input positions.
Complete success occurs when T = S in all 10 trials and is
indicated in boldface. The last three rows in the tables have
the following meanings: ‘‘Tot. Succ.’’ shows the total number
of successes, ‘‘MinM ’’ shows the minimum number of mea-
surements required for each algorithm, and ‘‘GM’’ indicates
the geometric mean over each column. Algorithms having
smaller GMs provide sparser solutions.

Table 1 shows that all algorithms except IRWLS and MP
perform very well for S ≤ 35. MP succeeds completely only
when S ≤ 20 and the measurement matrix is RGM. IRWLS
fails for all S for RNM and its critical sparsity is 15 while
using RGM. Failures increase with larger S, as expected. The
three MAX FS algorithms produce the sparsest solutions in
geometric mean and fail only when S > 65. The general
outcome is similar in Table 2, though the algorithms are less
successful for the high pass segments. Methods B, M and C
again provide better results than the others.

The geometric means from Tables 1 and 2 are summarized
in Fig. 2 to compare the effect of choice of measurement

matrices, RNM and RGM. Existing algorithms show better
performance on signals compressed using RGM. In contrast,
the best performance is seen for the MAX FS algorithm C
when using RNM.

Fig. 3 (for RGM) and Fig. 4 (for RNM) summarize the
algorithms successes for low pass segments as the input spar-
sity varies. All algorithms have more failures as S-sparsity
increases. IRWLS is the worst followed by MP. BP and PFP
have roughly the same performance. OMP outperforms all
other existing algorithms. The MAX FS recovery methods
provide the best results, succeeding in all runs until S = 65.
Success drops off after m = 2S as expected. Method C
provides more successes than Methods B and M for S = 75.
The MAX FS methods never fail completely even at S = 80.

B. QUALITY OF THE RECOVERED SPEECH SIGNALS
The quality of recovered speech signal depends on the recov-
ery of the sparse DCT coefficients as described previously.
48 male and 48 female speech signals of different lengths
are considered. Although RNM provides better results for the
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FIGURE 2. Impact on performance due to choice of measurement
matrices.

FIGURE 3. Number of successes vs. S-sparsity for RGM and low pass
segments.

MAX FS algorithms,8 is RGM since this is preferred by the
existing sparse recovery algorithms.

Each speech signal is segmented into frames of length 256.
After taking the DCT of each segment, the S largest coef-
ficients are selected by thresholding, where the threshold
in each segment is 1.3 times the mean of all of its DCT
coefficients. The sparsity of the entire speech signal is the
sum of the sparsities of all of its segments. The speech
inputs are compressed at CR= 50% and then recovered. The
performances of the algorithms in approximating the input
sparsities of the complete speech signals are shown in Fig. 5.
The black box shows the sparsity of all 96 uncompressed
speech signals. Blue boxes show the estimated sparsities
returned by the recovery algorithms. The sparsities are shown

FIGURE 4. Number of successes vs. S-sparsity for RNM and low pass
segments.

FIGURE 5. Comparison of output T -sparsity and input S-sparsity for
48 female and 48 male speech signals of differing lengths.

as box-and-whisker plots with the median sparsity as the
central mark in the box and the 25th and 75th percentiles as
the box boundaries. The whiskers extend to the most extreme
sparsities not considered outliers, and the outliers are plotted
using the ′+′ symbol.
The median sparsities are also listed in the text inside the

Fig. 5. The MAX FS methods have recovered sparsities that
are only slightly larger than the input sparsities, and similar
ranges. The median recovered sparsities obtained using OMP
and the 25th percentile of BP are in the upper quartile of the
original sparsity level. MP returns the worst result among
all algorithms, and its lower extreme of recovered sparsity
is higher than the upper extreme of the original. The MAX
FS algorithms are more successful at recovering the original
sparsity of the speech signals at 50% compression than any
other algorithm considered. They outperform existing sparse
recovery methods in estimating sparsity in real-world speech
signals, even when the signal is longer than considered in the
previous section.
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To recover the complete speech signal, all segments are
concatenated after taking the inverse DCT. All 96 recov-
ered signals are evaluated using the Relative Squared Error
in Fig. 6. The RSE for the MAX FS methods are very small.
They provide higher fidelity recovered signals even though
their solutions are sparser than those of the other algorithms.

FIGURE 6. Average RSE of 96 recovered signals.

FIGURE 7. Comparison of average PESQ for 48 female and 48 male
recovered speech signals.

Fig. 7 evaluates the quality of the recovered signals using
the Perceptual Evaluation Speech Quality (PESQ). The aver-
age PESQ score for recovered female speech signals is better
than that for recovered male speech signals. For both male
and female speech signals, the MAX FS algorithms outper-
form the others, providing the highest PESQ score of 4.3
for female speech signals. OMP provides the highest average
PESQ score among the traditional recovery algorithms, yet
its highest PESQ score is slightly more than 2.5, indicating
poor quality.

The spectrograms and the frequency responses of the linear
predictor coefficients of the recovered and original speech

FIGURE 8. Spectrogram of input female speech signal FDRW 0− SA1 and
reconstructed signals.

FIGURE 9. Spectrogram of input male speech signal MCAL0− SX58 and
reconstructed signals.

signal of a randomly selected male and randomly selected
female speech signal are presented in Figs. 8-10. These fig-
ures compare the MAX FS methods with OMP since OMP
provided the smallest RSE and sparsity among the existing
algorithms as shown in Fig.5 and Fig. 6. The spectrograms of
female sample FDRW0 − SA1 and male sample MCAL0 −
SX58, both the original signal and the recovered signal, are
obtained by using 16ms Hamming window. To improve the
FFT performance, a length that is an exact power of two is
chosen. The number of data points used for the FFT in each
block is 1024.

Fig. 10 shows the good performance of the MAX FS
methods in recovering the spectrum of the original signals
FDRW0−SA1 andMCAL0−SX58. The first three formants
of the recovered signals follow the first three formants of
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FIGURE 10. Comparison of spectrum of female speech signal
FDRW 0− SA1 and reconstructed signals (top panel), and spectrum of
male speech signal MCAL0− SX58 and reconstructed signals (bottom
panel).

TABLE 3. Comparison of the recovered sparsity and the formants of the
max FS methods and OMP with the sparsity and formants of the original
female speech signal FDRW 0− SA1 for CR= 50%.

both female and male original signals. Table 3 compares the
recovered sparsity and the formants of the MAX FS methods
and OMP with the sparsity and formants of the original
female speech signal FDRW0 − SA1 for CR= %50. The
MAX FS methods recover the exact sparsity while following
the formants of the original signal. OMP shows good perfor-
mance in following the original signal formants but fails in
estimating sparsity.

VII. CONCLUSION
This paper describes a technique that uses MAX FS solutions
for sparse recovery in compressed sensing speech processing.
It shows that MAX FS solution algorithms recover the input
signal better than recovery methods commonly used in com-
pressive sensing. MAX FS-based techniques require fewer
measurement signals (on the order of m ≥ 2.5S) for sparse
recovery to succeed. Thus, when the recovery algorithms
are MAX FS-based, higher compression can be used in the
measurement phase of compressive sensing.

MAX FS-based recovery requires more computation than
most existing recovery algorithms, but its ability to recover
more highly compressed signals with higher quality means
that it is especially useful for applications such as archiving.
For archiving signals, it is important to minimize storage
size and recovery need not be done in real time. We plan
to work towards speeding up the algorithms to give it wider
applicability.

We also plan to investigate the application of these new
techniques in non-speech applications, e.g. medical uses such
as compression and recovery of ECG signals. We are also
studying how to adapt the technique to handle noisy signals.
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