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ABSTRACT A two-dimensional (2-D) discrete dielectric lens antenna is designed to radiate fan-shaped
multi-beam patterns for gain stability in beam switching. The target is to minimize adjacent-beam over-
lapping transition regions and provide sufficient and similar gains for all field angles when the antenna
is employed in a mobile device. This design starts with a conventional 2-D Luneburg lens antenna, and
distorts its dielectric permittivity and the sizes of discrete dielectric rings to defocus the pencil beam patterns
into shaped ones with a relatively flat pattern for uniform field distribution. The design is realistically
implemented at 38 GHz with both simulation and measurement results shown to validate the concept.
Successful validation of feasibility in beam synthesis is achieved. Fabrication discrepancy to result in slight

radiation degradation is also discussed.

INDEX TERMS Genetic algorithm, Luneburg lens antenna, multi-beam radiation, pattern synthesis.

I. INTRODUCTION

User equipment (UE) or customer-premises equipment (CPE)
antennas in mobile or fixed network communications [1]
require high gains in radiation to compensate electromag-
netic (EM) wave propagation loss in air [2] which is severe
at millimeter wave (mmW) frequencies. Conventional imple-
mentation of a phased array of antennas to produce elec-
tronically steering beams is very cumbersome as it involves
numerous costly RF devices. Their realization on dielec-
tric substrates also faces severe challenge of power loss in
the lossy substrates when beamforming networks (BFNs)
are implemented by microstrip lines. Instead, multi-beam
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antennas are among the potential solutions to provide high
directional beams of easy switch at a much lower cost.

Due to the dynamic changing of position and orientation
in UE and CPE usage scenario, multi-beam radiations with a
fan-shape pattern [3], [4] (i.e., vertically broad and horizon-
tally narrow to perform horizontal beam switching) is very
attractive because a single one-dimensional (1-D) beam scan,
instead of applying sophisticated two-dimensional (2-D)
ones, is sufficient to provide the required gain. Moreover,
a flat-top pattern is most desired along the beam scan
dimension to provide seamless connection links with rela-
tively uniform gain performance. This importance has been
well-documented in literatures for various antenna designs
[5]-[11]. Potential antenna candidates include a 1-D phased
array of antennas with proper BFNs and 2-D Luneburg lens
antennas [12]-[14]. More advantageous than a phased array
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of antennas, which suffer from limited beam scan range due to
high wide angle scan loss, a 2-D Luneburg lens is rotationally
symmetric to provide equal gains for all beams with broad
frequency bandwidth in terms of reflection coefficients and
radiation characteristics when the feed has broad operational
bandwidth.

It is noted that the conventional implementation of
multi- or steering beams gives rise to severe drawbacks
for producing discrete beams when digital phase shifters
and multi-feeds are employed in phased array antennas and
Luneburg lens antennas, respectively. For the case of Luneb-
urg lens antennas, the best gain at the crossover point of
two adjacent beams is smaller than -6 dB below the beam
peak due to limited space for feeds as shown in Fig. 1(a)
when they are excited by classic waveguides of fundamental
modes. Insufficient gains appear in the transition regions to
cause power instability by frequent handovers (i.e., the ping-
pong effect) [15], where call drops may also happen. It is
noted that even though a smaller gain-drop at the crossover
point of approximately -3 dB was claimed in [16] by using
transmission line excitations for more crowded feeding ports,
where numerical simulation results were shown, the inter-
port isolation has been significantly degraded so that it is
worse than -15 dB, and the back-lobes are significantly high
due to the radiation from the transmission line exciting port.
Moreover, experimental validation has not been shown. This
increase of excitation ports will make the system implemen-
tation more sophisticated.

This paper presents a 2-D lens antenna design for the
first time to radiate relatively uniform patterns as illus-
trated in Fig. 1(b) to reduce the adjacent beam transi-
tion region for beam stability at mmW frequencies, also
applicable to CPE of front-haul networks. It is noted that
front-haul networks are currently viewed as the most impor-
tant application in the first stage of commercial 5G (the
fifth generation) mobile communication system at mmW
frequencies. The fan-shaped patterns with relatively flat-
top patterns provide a very simple connecting mechanism
between the base station and CPE antennas by performing
a 1-D beam scan. The flat structure of 2-D Luneburg lens
can be implemented inside a PCB, which can be integrated
with the multi-layered substrate based hardware system for
compactness.

The design uses the genetic algorithm (GA) as a tool,
and starts with an initial design by a discrete 2-D Luneburg
lens [17]-[19] to assure the property of directional beams.
Its permittivity and sizes of discrete dielectric rings are then
optimized by the GA [20]. In contrast to previous works of
three-dimensional (3-D) Luneburg lens optimization, which
either minimize the estimation error of permittivity [21] in
a least squares error (LSE) sense, or enhance the gain and
reduce sidelobe levels (SLLs) [22], [23], we focus on the
2-D main beam synthesis for CPE applications. The major
target is to simultaneously reduce the inter-beam transition
area [24], and minimize gain variation, i.e., creating a more
uniform field. This optimization is more challenging than
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FIGURE 1. Beam overlapping of a conventional Luneburg lens antenna,
and the desired patterns of multi-beams with small transition regions.
In (a), the radius is 40 mm at 38 GHz, which will be explained in
Section IL.A. (a) Beam overlapping; (b) Desired patterns.

the uniform permittivity lens optimization on its external
surface profile [20], [25] because of the limited parameters
available for optimization of retaining symmetric multi-ring
structures. After the optimization, the radiation patterns are
compared to that of conventional Luneburg lens antennas at
38 GHz. Radiation measurements on an antenna prototype
are also presented to validate the design feasibility. Numerical
results show that the gain-drop at the crossover point is less
than 1 dB in addition to the flat-top main beam pattern for
stable coverage, exhibiting much better behavior than that in
[16]. The low crossover point gain drop is also validated by
measurement results.

The rest of the paper is organized in the following format.
Section 2 presents the basic radiation behavior of 1-D multi-
beams by Luneburg lens, and shows the pattern synthesis
for better communication links. Section 3 presents the basic
implementation of GA to synthesize the radiation patterns of
a 2-D dielectric lens. Parametric studies of GA optimization
are also shown. A realistic design is shown in Section 4 for
validation of this proposed work of a multi-beam lens antenna
design. Finally, a short discussion is presented in Section 5 as
a conclusion.
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FIGURE 2. Illustration of discretized Luneburg lens and its architecture as
a multi-beam antenna, where the feeds and radiation beams are also
illustrated. (a) shows the concept while (b) shows the application for a
CPE antenna. (a) Concept; (b) CPE application.

Il. DESIGN CONCEPT AND OPTIMIZATION

A. ARCHITECTURE OF LUNEBURG LENS

AND PROBLEM STATEMENT

A 3-D Luneburg lens is an inhomogeneous dielec-
tric sphere with varying relative permittivity governed
by [12]-[14], [17]-[19]

e (r) =2— (r/a)*, 4))

where r is the radial distance and a is the sphere radius.
In practice, the 2-D Luneburg lens is a dielectric slab sand-
wiched by a pair of parallel metal plates, where the dielectric
slab is formed by a finite number of uniform, concentric
dielectric rings of various widths, as shown in Fig. 2 (a),
where its potential application as a CPE antenna is also shown
in Fig. 2(b). The widths and relative permittivity values of
the dielectric slabs are determined by optimization schemes
according to different mechanisms as mentioned in [20]-[25].

Based on realistic feed antennas at a separation distance
of larger than a half-wavelength, the crossover point of two
adjacent beams is more than -6 dB below the beam peaks as
shown by the HFSS simulated results in Fig. 1 (a), where
a = 40 mm, and 10 rings (including an air ring) are
used. Their widths and relative permittivity values of the
dielectric slabs are determined by the optimization scheme
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in [4] and [21]. It is fed by rectangular waveguides
(0.7 x 0.3522 in aperture size, where X is the wavelength of
free space) placed tightly to each other.

Numerical experiments show that the larger 6 dB gain
drops in the transition regions in Fig. 1(b) are similar for
any Luneburg lens regardless of its size of lens except for
slight inwardly shifted beam directions due to the smaller
angular span occupied by the feeds’ physical size when a
larger lens is considered. The gain drops are even worse when
the two adjacent feeds are further separated to increase the
isolation between them. This problem results naturally from
the radiation phenomenon of a pencil beam shape, and may
cause the pin-pong effect due to insufficient gain. This is most
undesired because the possibility of dynamic moving will
worsen the stability of connection to the base station antenna.

In this paper, we propose to synthesize a shaped beam
to alter the beam overlapping by pencil beams as shown
in Fig. 1(a), where the desired one is shown in Fig. 1 (b).
In this case, the beam overlapping region is reduced to avoid
hand-overs while the beam connection has a high stability due
to its uniform field distributions in the main beam regions.
This shaped beam pattern synthesis is described below.

B. DESCRIPTION OF RADIATION BEAM

PATTERN OPTIMIZATION

The beam shape in Fig. 1(b) is synthesized in the lens design
with a cost function first defined by

M
F = melfm ‘Gm - Gi

where G;in and Gj,are the desired and computed gains at the
M sampled field points. In (2), f;, is used to balance the field
weightings of main beam to the sidelobes in the transition
regions, where f;, = 1 is assumed for simplification because
we focus on the main beam pattern. The shaped beam is
particularly performed to optimize the main beams for better
field distribution with minimum overlapping.

The parameters of the lens structure used in the optimiza-
tion include the overall size, the widths of dielectric rings and
their permittivity values. In particular, the relative permittiv-
ity is relaxed to be larger than 2 while retaining its sequential
decrease from the center to its boundary for air ring matching.
Only a single beam is considered for the circular symmetry of
the lens, where HFSS is employed to compute the radiation.
In GA [20], [26] optimization, each optimization parameter
is represented by a 3-bit variable. In order to assure a gradual
decrease of relative permittivity, one first selects reference
values by performing the algorithm in [4], [21] to minimize
the estimation error with respect to (1) as indicated by the
black stepped lines in Fig. 3. Afterward, a variation range is
selected for the theoretical values between the two boundaries
of a selected dielectric ring inside the two red dashed lines
in Fig. 3.

To relax the variation of relative permittivity, (1) is modi-
fied by

) @
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FIGURE 3. lllustration of the relative permittivity variation range for
optimization, which is set up by using the estimation in (1) as initial
values.

where « is the modification factor, which is slightly larger
than 1. The relative permittivity of the most outer ring reduces
to 1 for the air while that at the central ring may be larger
than 2. This range of dielectric constant may allow the lens
to retain the basic property of a directional beam as provided
by the 2-D Luneburg lens.

IIl. PARAMETRIC STUDY IN GA 2-D LENS

ANTENNA SYNTHESIS

One first examines the effectiveness of optimization for a 2-D
Luneburg lens by the GA with a thickness of 2.84 mm which
is the thickness of the feeding rectangular waveguide. This
lens has an initial radius of 27.5 mm at 38 GHz, and is sand-
wiched by a pair of circular metal parallel-plates to form a
cavity. The target gains are 11dBi for the flat partin Fig. 1 (b),
where the fields in this flat region within a beamwidth of
16 degrees are sampled to compute the cost function in (2).
As pointed out in Section 1, the desired radiation has fan-
shaped patterns, i.e. vertically broad and horizontally narrow,
to perform a 1-D scan. In particular, a uniform distribution
of main beams, as illustrated in Fig. 1 (b), is desired in order
to retain gain stability when the multi-beams are discretely
switched. It may potentially provide a seamless transition
when the beam is switched from one to another.

In the synthesis stage of examining the effectiveness of
the GA application, the feeds are rectangular waveguides
with a cross-section of 5.68 x 2.84 mm? to excite TE,
modes and investigate the radiation characteristics. A com-
pact embedded probe excitation will be implemented for the
later antenna prototype design as well as for the numerical
and experimental validation.

A. PARAMETERS EMPLOYED IN GA OPTIMIZATION

The parameters in the GA synthesis are first described in
this section. In these examinations, either the thickness of
dielectric rings, dielectric constants or both is considered in
the synthesis to exhibit their characteristics. For all cases,
8 populations and 4 generations are employed, where each
population consists of 6 chromosomes of 3 parameters of
thicknesses and 3 parameters of dielectric constants for the
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TABLE 1. Initial values of geometrical parameters and relative
permittivity.

Shell Index 1 2 3 4
Thickness (mm) | 15.88 | 6.57 5.05 2.2
Relative 1.76 1.48 1.23 1 (air)
permittivity

dielectric shells. Each chromosome is represented by 3 bits
of binary expression. In the case of synthesis, the average
CPU time is roughly 16.5 minutes on an i7-7820X proces-
sor. In addition, they all start with same values for their
geometrical parameters and relative permittivity values as
shown in Table 1. This set of initial values is obtained by
using the optimized selection of discretized parameters of the
Luneburg lens in (1) as suggested in [4], where four rings are
considered including three dielectric rings and an air ring for
cost consideration.

The four cases examined consider the four combinations of
parametric variables by the dielectric constants and the ring
thicknesses. In particular, the first case of synthesis considers
the dielectric constants of each rings as the optimization
variables, where the variation of dielectric constant in (1) is
employed to discretize the ranges for optimization of each
ring in Fig. 3. In this case, the thicknesses of each ring
remains fixed, as in Table 1. Thus the maximum dielectric
constant in Fig. 3 is 2. On the other hand, the second case also
considers the dielectric constants of each ring as optimization
variables under similar conditions except now (3) is employed
to specify the ranges of dielectric constants for each ring to
optimize their dielectric constants. The other two cases of
optimization, which are referred to cases 3 and 4 in Table 2,
add the thicknesses of each ring, D, as the optimization
variations to the first two cases.

In the GA implementation of dielectric ring thicknesses as
optimization variables, one considers the ratios of thicknesses
to a fixed size of lens. It is performed by using 3 digits to
discretize the range of variation into 8 steps (1 ~ 8™ step). Let
each ring’s thickness be represented by S, in the discretized
representation, then the thickness of the n’” is given by

Sn
——a

N
Zn—l S, n
where a is the selected radius of the lens including the air ring.
Once the thicknesses are determined, the ranges of each ring
to determine their dielectric constants in Fig. 3 are specified.
Similarly, three digits are employed to discretize each of the

ranges and represent the variations of dielectric constants in
these ranges.

; “

D, =

B. EFFECTIVE OF 2-D LUNEBERG LENS OPTIMIZATION

Due to the rotationally symmetric configuration, a single
beam is considered for simplification, where the co-polarized
(Co-pol) patterns of this initial architecture on the
E- and H-planes are shown by the black lines in
Fig. 4(a) and (b), respectively, which serve as reference
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FIGURE 4. Radiation patterns of optimized Luneburg lens, where
different optimization variables are used in the synthesis.

patterns for comparison. The gain is roughly 15.5 dBi with
a -3 dB beamwidth of 7.9 degrees along the multibeam
dimension. The relative SLL is roughly -17 dB below the
main beam peak. As described in Section II, the target
beamwidth of the desired flat patterns in Fig 3 is 16 degrees.
The roll-off rate on both sides of main beam curve depends
on the size of the resulting lens.

The resulting values of variables by GA optimization for
the four cases are summarized in Table 2. It is observed that
cases 1 and 3 result in a converged relative permittivity of
nearly 1.99 for the central dielectric disks. On the other hand,
cases 2 and 4 result in an optimized relative permittivity
of 2.38 and 2.47, respectively, which are larger than 2 as
desired in the original Luneburg lens design in (3). On the
other hand, the third rings of cases 1 and 3 are close to free
space, where the relative permittivity values are roughly 1.05.
In addition, the thicknesses of the first and third shells are
almost equal after synthesis.

The resulted radiation patterns on the two principal planes
corresponding to the four cases of Table 2 are shown
in Fig. 4(a) and (b), respectively by different color lines in
comparison to the patterns of the initial design in Table 1.
In all cases, the E-plane patterns are relatively broad due to
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TABLE 2. Comparison of optimized parameters of Luneburg lens antenna.

Case | Optimization Shell Index
approach 1 2 3 4
(air)
L@ & 199|138 |105]|1
2 10 & 238|164 |144|1
31 + & 199|175 |[1.08 |1
D,
Dy 1859|1032 |8.59
(mm)
4 |3 + & 2471213 | 1131
D,
Dy 1982|786 |9.82
(mm)

the thin thickness of the 2-D lens. The -3 dB beamwidth is
roughly 60 degrees to provide a wide coverage. The gain
drops by roughly 3-5 dB caused by the H-plane pattern opti-
mization for the flatness of the central main beam area. The
H-plane patterns, which are used to form the multi-beams,
have larger variations because of the optimization to achieve
flat patterns in Fig. 3.

It is first observed that the case 1 of using (1) with a
maximum of 2 at the center of the Luneburg lens only results
in a broader pattern without changing the pencil beam shape,
which does not fulfill the target pattern in Fig. 3. On the other
hand, the remaining three cases may result in relatively flat
main beam patterns. In comparison, the main beam shape in
the second case, by using (3) to set the variables of optimiza-
tion, descends very rapidly near the boundary of flat main
beam region, where the -1 dB beamwidth is 15.5 degrees
while the -3 dB beamwidth is 18.7 degrees. In this case,
o in (3) is set to be 1.5 to make a relative permittivity
of 2.38 for the central dielectric disk. Also the fourth case
of using both (3) and the thicknesses of dielectric shells as
the optimization variables results in the largest beamwidth
with a smaller slope of descent for its main beam shape near
the boundary, which may result in a larger overlapping area
between two adjacent beams. All these three cases result in
similar SLLs, which are roughly -6 dB below the main beam
peak. This side lobe discrepancy can be improved by using
H-plane rectangular horns as the feed to create a tapered
illumination.

IV. DESIGN IMPLEMENTATION OF VALIDATION

A. A REALISTIC DESIGN FOR EXPERIMENTAL

VALIDATION

The antenna is designed and prototyped for validation of
feasibility at a 38 GHz band, where the achieved geomet-
rical parameters and relative permittivity are summarized
in Table 3. The radius of the lens is 50 mm with a thickness
of 2 mm, which is larger than these in Table 2 in order to
further control the SLLs by a larger aperture. The paired cir-
cular metal parallel-plates sandwiching the lens has a radius
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TABLE 3. Synthesized values of geometrical parameters and relative
permittivity.

Ring Index 1 2 3 4
Width (mm) 28.87 | 11.95 ]9.18 3
Relative 1.82 1.73 1.28 1 (air)
permittivity

Teflon thickness | 1.50 1.30 0.50 0
(mm)
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(a) Architecture

ps P4 P3P2p|
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Discrete Lens
(b) Prototype

FIGURE 5. Numerical model and prototype of the 2-D multi-beam lens.

of 56 mm, slightly larger than the lens to increase isolation
to the nearby RF devices for future applications. In this
design, 4 dielectric rings (including an outer air ring) are
employed to form the lens. The incident wave illuminating
the lens is excited by a probe pin backed by a metal parabolic
reflector at 38 GHz as shown by the numerical model and
prototype in Fig. 5. The prototype is hand-assembled after
every component is fabricated.

For the prototype implementation, the slab of each dielec-
tric ring is equivalently resembled using two stacked layers
of Teflon and air [4] whose thickness ratio is selected to
make the average relative permittivity equal to the computed
ones in Table 1. In this case, five beams are implemented,
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FIGURE 6. Radiation patterns of a 2-D Luneburg lens antenna.

where the feeding structures are illustrated in Fig. 5. Detailed
structures are referred to [4] for brevity.

B. RADIATION CHARACTERISTICS

The simulated and measured radiation patterns are shown
in Fig. 6(a) and (b), respectively, where relatively uniform
fan-shape patterns are seen in the simulation results as
expected. The good agreement between simulation and mea-
surement is achieved with some slight discrepancy in the
measurement results due to prototyping discrepancy. The
gain variations are relatively uniform on the main beams,
where the gain is larger than the targeted value of 11 dBi in
the synthesis. The relative cross-polarization level (XPL) is
less than -40 dB from the numerical simulations in Fig. 6 (a),
which is slightly higher in measurements due to the difficulty
of accurate alignment for hand-assembly since the parallel-
plate antenna structure is well-known to have good polariza-
tion characteristics.

The simulated and measured reflection coefficients are
shown in Fig. 7 (a) and (b) respectively, where both exhibit
very broad frequency bandwidths. The simulation reflection
coefficient level is below -15 dB for most frequencies while
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FIGURE 7. Simulated and measured reflection coefficients.

it is higher in the measurement results due to the fabrication
discrepancy and K-type connector implementation. However,
the agreement with the simulation results is in general very
good, where the -10 dB bandwidth is more than 7.5 GHz in
measurement results.

C. CHARACTERISTIC DISCUSSIONS

One first considers the multi-beam distribution in
Fig. 8 (a) and (b) for the simulation and measurement results
respectively, where good agreement has been achieved. The
asymmetric measured patterns of wide-angle beams on both
sides are attributed to the discrepancy of hand-assembly
and alignment for wide angle patterns in a 2-D far-field
measurement system. In this case, the overlapped patterns
along the H-plane are relatively uniform, almost 12 dBi in
gain in the region covered by these beams. The crossover
points are roughly 0.5 dB below the flat top. The roll-off
rate of the main beam boundary is much higher than that
in Fig. 1 (a), indicating a much smaller transition region.
Similar behaviour is also observed on the measurement result
even though the first sidelobes are much larger than that of the
simulation. Finally, the isolation of beam ports is investigated
by considering that between ports 4 and 5, as shown in Fig. 9.
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FIGURE 8. Multi-beam overlapping of the 2-D lens antenna. (c) is the
simulated results of a Luneburg lens under the same condition of size
and feeding.

It is observed that the isolation is better than -20 dB in both
simulation and measurement. The other ports have similar
behaviors, which are omitted for simplification.

To further examine the effectiveness of fan-shaped beams,
the multi-beam radiations of a Luneburg lens without opti-
mization under the same conditions of size and feeds are
shown by the simulation results in Fig. 8 (c). It is seen that
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FIGURE 10. Simulated contoured patterns to compare the coverage
between the cases of Fig. 8(a) and (c) with and without synthesis for
shaped patterns, respectively.

the gains are roughly 15.5 dBi, which is 3.5 dB larger than
the designed one. However, the crossover point is at 8§ dB
below the beam peak. Thus, in the transition region near the
crossover point, the received EM power by the UE will be
8 dB smaller. On the other hand, in the transmitting mode with
power control, the EM power in the beam peak direction is
8 dB larger, and causes severe interferences to the other UEs.
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FIGURE 11. Examination of frequency stability for the 2-D Luneburg lens
antenna with and without main beam synthesis, where the gain and
reflection coefficients are compared.

The simulated contoured patterns in the cases of
Fig. 8 (a) and (c) are shown in Fig. 10 (a) and (b), respec-
tively. If one considers a 10 dBi gain as the threshold of
coverage area. It can be seen that Fig. 10 (a) shows a coverage
with much better uniform field distribution inside the cover-
age area, indicating a better fan-shape pattern along beam
switching, resulting in a smooth beam transition for CPE
connections.

Finally, the frequency stability, by comparing the cases
with and without the GA synthesis, is shown in Fig. 11,
where simulated gains and reflection coefficients (R.C.) are
shown. It is observed that the reflection coefficients remain
relatively stable when the lens is synthesized. On the other
hand, the synthesized gains exhibit higher fluctuations of
roughly 1 dB.

V. CONCLUSION

In this paper, we present a 2-D lens antenna design for fan-
shaped multi-beam radiations with relatively uniform pat-
terns to minimize the beam overlapping transition regions,
where a GA was employed to synthesize the discretized
dielectric rings in the widths of dielectric rings and their per-
mittivity. Distinguished radiation characteristics have been
shown in both the simulation and measurement results,
which provide the advantage of increasing better gain in
the transition region of adjacent beams for the stable power
control. Currently, only the main beams are employed in
the pattern synthesis, and may result in higher sidelobes.
Our experimental experience indicates that manufacturing
discrepancies may result in significant radiation distortion
leading to a loss of uniform shape and a reduction in the
conventional pencil beam when the operational frequency
is far away from the design central frequency. However,
the gain and reflection coefficients have relatively high sta-
bility with respect to frequency change. This phenomenon
is caused by the limited few available parameters in the GA
synthesis.
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