
Received April 7, 2020, accepted April 14, 2020, date of publication April 24, 2020, date of current version May 11, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2990375

Feature Extraction Methods in Quantitative
Structure–Activity Relationship Modeling:
A Comparative Study
SHROOQ A. ALSENAN 1, (Member, IEEE), ISRA M. AL-TURAIKI2,
AND ALAAELDIN M. HAFEZ3, (Member, IEEE)
1Research Center, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
2Information Technology Department, College of Computer and Information Sciences, King Saud University, Riyadh 11451, Saudi Arabia
3Information Systems Department, College of Computer and Information Sciences, King Saud University, Riyadh 11451, Saudi Arabia

Corresponding author: Shrooq A. Alsenan (saalsnan@pnu.edu.sa)

This work was supported by the Deanship of Scientific Research at Princess Nourah Bint Abdulrahman University through the Fast-Track
Research Funding Program.

ABSTRACT Computational approaches for synthesizing new chemical compounds have resulted in a
major explosion of chemical data in the field of drug discovery. The quantitative structure–activity relation-
ship (QSAR) is a widely used classification and regressionmethod used to represent the relationship between
a chemical structure and its activities. This research focuses on the effect of dimensionality-reduction
techniques on a high-dimensional QSAR dataset. Because of the multi-dimensional nature of QSAR,
dimensionality-reduction techniques have become an integral part of its modeling process. Principal compo-
nent analysis (PCA) is a feature extraction technique with several applications in exploratory data analysis,
visualization and dimensionality reduction. However, linear PCA is inadequate to handle the complex
structure of QSAR data. In light of the wide array of current feature-extraction techniques, we perform
a comparative empirical study to investigate five feature-extraction techniques: PCA, kernel PCA, deep
generalized autoencoder (dGAE), Gaussian random projection (GRP), and sparse random projection (SRP).
The experiments are performed on a high-dimensional QSAR dataset, which comprises 6394 features.
The transformed low-dimensional dataset is inputted into a deep learning classification model to predict
a QSAR biological activity. Three approaches are adopted to validate and measure the proposed techniques:
(i) comparing the performance of the classification models, (ii) visualizing the relationship (correlation)
between features in the low-dimension Euclidean space, and (iii) validating the proposed techniques using
an external dataset. To the best of our knowledge, this study is the first to investigate and compare the
aforementioned feature-extraction techniques in QSAR modeling context. The results obtained provide
invaluable insights regarding the behavior of different techniques with both negative and positive classes.
With linear PCA as a baseline, we prove that the investigated techniques substantially outperform the baseline
in multiple accuracy measures and demonstrate useful ways of extracting significant features.

INDEX TERMS Autoencoder, blood-brain barrier (BBB) permeability, deep generalized autoencoder
(dGAE), dimensioanlity reduction, feature extraction, Gaussian random projection, principal component
analysis, quantitative structure–activity relation (QSAR), sparse random projection.

I. INTRODUCTION
The rapid development of technology had led to explosive
growth in data in many fields. Drug discovery has bene-
fited from the computational approaches for synthesizing
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new compounds. Chemical synthesis and virtual screen-
ing enabled the fast-paced generation of biological and
chemical data and automated modeling [1]. This resulted
in a need for practical methods to model the relationship
between molecular structures and properties [2]. Quantita-
tive structure–activity relation (QSAR) modeling is a widely
used classification and regression method that represents the

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 78737

https://orcid.org/0000-0003-1476-5357
https://orcid.org/0000-0002-3784-5504


S. A. Alsenan et al.: Feature Extraction Methods in QSAR Modeling

FIGURE 1. Feature extraction and selection.

relationship between a chemical structure and its activities.
Features in QSAR dataset are calledmolecular descriptors or
simply descriptors. QSARmodels are characterized by being
high-dimensional. However, high dimensionality of datasets
is not desirable because it causes noise, redundancy, and
increases computational complexity [3]. A large number of
irrelevant features that do not contribute to the classifica-
tion task may cause model overfitting [4]. With overfitting,
the classifier learns exceptions specific to the training data
and fails to generalize to newly encountered data [5]. Accord-
ing to Ladha [6], reducing the high-dimensional space of
molecular descriptors provides many advantages, including
limiting storage requirements, accelerating the algorithm’s
learning speed, improving the data quality, increasing the
model accuracy and hence improving performance, saving
resources for subsequent data collection, and providing fur-
ther knowledge since the data are simple to understand and
visualize.

Manual feature selection or selection based on prior knowl-
edge has a clear potential for bias modelling, especially if
certain features are known to be more effective than others
in a classification problem [7], [8]. Many previous stud-
ies relied on the prior knowledge of experts for selecting
descriptors [9]–[11] or applying dimensionality-reduction
techniques to a formerly selected set of descriptors [12], [13].

There are two broad approaches for reducing the num-
ber of features in datasets: feature extraction and feature
selection [3], [14]. Feature selection is a process in which
a subset of the feature’s space is chosen according to its
relevance to the output of the classifier. The ultimate goal
is to obtain the most effective subset of existing features
without creating new features [3]. Feature-extraction tech-
niques produce new features by combining existing ones
and then discarding the original features. A simple overview
of feature selection and extraction methods is shown
in Figure 1. Feature-extraction techniques make it pos-
sible to handle the complexity of high-dimensional data,
extract invaluable feature patterns, and improve classifica-
tion accuracy. Feature-selection methods are effective in

removing redundant features, while extraction methods are
more capable of handling the complexity of high-dimensional
data [15], [16]. The most widely used feature-extraction
method in QSAR is Principal Component Analysis (PCA)
[17], used due to its simplicity and low computational cost.
PCA analyzes inter-correlated dependent variables to obtain
a new set of variables called (principal components). How-
ever, studies have shown that other feature-extraction meth-
ods can handle the complexity of high-dimensional data
more efficiently than linear PCA. According to Sharma [18],
non-linear feature-extraction methods, such as autoen-
coder [8], [19] or Kernel PCA [20], [21], are found to be
more effective in extracting complex structures and hidden
patterns. Other studies argued that linear feature-extraction
methods such as random projection (RP) have achieved sat-
isfactory results with less computational overheadwhen com-
pared to PCA [22], [23].

To address the formally presented perspectives,
we addressed the following fundamental question: How
can the high dimensionality of QSAR datasets be reduced
to a low-dimensional space with a minimum loss of valu-
able information? To answer this question, we investigate
a number of feature-extraction techniques that have proven
to be successful in the context of dimensionality reduction.
In particular, we experiment with KPCA [20], deep gener-
alized autoencoder (dGAE) [24], Gaussian random projec-
tion (GRP) [22], and sparse random projection (SRP) [25].
Previous efforts to review feature-extraction methods by
Storcheus et al. [14] and Idakwo et al. [26] indicated that
there is an urgent need to demonstrate the performance capa-
bilities of different feature-extraction techniques in handling
a high-dimensional QSAR dataset. The choice of the afore-
mentioned feature-extraction methods relied on three main
reasons: (i) multiple studies reported successful application
of each of these techniques in other domains, [16], [21], [22],
[24], [25], (ii) the proposed techniques represent branches
of both linear and non-linear feature-extraction techniques,
and (iii) there is a lack of work comparing these five
feature-extraction methods collectively in a QSAR problem.

To the best of our knowledge, this is the first empiri-
cal comparative analysis of feature-extraction methods on
a high-dimensional QSAR dataset, as compared previous
endeavors have centered around feature-selection techniques
in QSAR [3], [17], [27]. One essential requirement in a binary
QSAR classification problem is the capability of separating
class labels efficiently. Although dimensionality-reduction
techniques facilitate this task, linear PCA may fail to extract
non-linear relationships or extract complex hidden structures
when modeling QSAR problems. This study contributes to
QSAR modeling by investigating other linear and non-linear
feature-extraction methods that have proven to outperform
both selection methods and linear PCA in other contexts.
We want to investigate the potential of feature-extraction
methods in separating class labels in QSAR datasets.
Specifically, we seek to understand whether the investi-
gated feature-extraction methods are capable of improving
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specificity scores (predicting the negative class) and separat-
ing class labels in a binary classification problem.

The selected high-dimensional QSAR dataset is for
blood–brain barrier (BBB) permeability [13]. The BBB per-
meability dataset was chosen for this study for two primary
reasons: it is a benchmark dataset consisting of 2350 com-
pounds, which were used to compare our results, and there
are no research studies that have applied feature-extraction
methods (besides linear PCA) on this dataset. With the avail-
ability of online tools to calculate descriptors, generating a
high-dimensional dataset with over 6390 descriptors is feasi-
ble, which could aid in accomplishing the research objectives.

According to Idakwo et al. [26], one way to assess the per-
formance of feature-extraction methods is based on the clas-
sification model’s accuracy. This study follows this approach
in comparing the five feature-extraction methods by inputting
the dataset with the reduced dimensions into a deep learn-
ing (DL) classification model. The performance of the classi-
fication model is assessed using multiple accuracy measures
to closely investigate the classifier’s capability in predicting
both class labels.

In addition to validating the feature-extraction methods
using the classifier’s accuracy, this paper provides another
view of the proposed techniques through scatter-plot visu-
alization of the distribution of data points. This step serves
two purposes: (i) to detect if the transformed feature space
demonstrates positive correlation between features, and (ii) to
showcase the proposed the ability of the proposed technique
to separate class labels prior to inputting the data into the clas-
sification model [28]. When data move in the same positive
direction corresponding to two or more features, it indicates a
statistical correlation between these features. The occurrence
of correlated features in the low-transformed feature space
is not a desirable quality, as it indicates the inability of the
technique to retain invaluable information [29].

The accuracy measures used in this study consider the
imbalanced nature of the dataset. We assess the classifier
performance based on the area under the curve (AUC),
Matthew Correlation Coefficient (MCC), accuracy, sensitiv-
ity, and specificity. The AUC showcases the ability of a
feature-extraction technique to separate instances of differ-
ent classes. Achieving high accuracy in both sensitivity and
specificity has been a challenging task in previous QSAR
studies [13], [30].

This paper is organized as follows. First, in Section (II) we
review previous attempts using QSAR datasets for dimen-
sionality reduction; then, we provide an overview of both
feature-selection and extraction methods. Although a brief
review of feature-selection methods is presented, the primary
focus is on feature-extraction methods in QSAR modeling.
Next, in Section IV we present our research methodology and
three ways to assess the proposed techniques: a classification
model, a visualization analysis of the relationships between
features in a QSAR dataset, and finally a visualization anal-
ysis on an external dataset.

II. LITERATURE REVIEW
QSAR models encode features related to chemical com-
pounds using molecular descriptors (MDs). QSAR datasets
are characterized by their high dimensionality. Thousands of
features are generated to model QSAR classification prob-
lems [26]. Early application of QSAR models were reliant
on a small number of linearly correlated MDs. However,
current QSAR models are non-linear and include thousands
of chemical compounds and their respective (MDs) [31]. Fea-
ture selection and extraction are challenging tasks in recent
non-linear QSAR models. High dimensionality affects the
performance of the classifier because of data noise, redundant
data, and high complexity [32], [33].

Studies on MD types, their usefulness, and their selection
and extraction methods are plentiful [3], [15], [34], [35].
Danishuddin et al. presented a review of a number of
feature-selection methods for QSAR modeling, including fil-
ters, wrappers, and embedded/hybrid approaches [3]. They
concluded that feature-selection methods vary in their impor-
tance depending on the task under consideration. How-
ever, feature-selection methods are commonly preferred
in QSAR for removing redundant data while still apply-
ing feature-extraction techniques to efficiently handle the
complexity and high dimensionality of QSAR data [15].
Hechinger et al. [36] provided insights on the heterogeneity
of which various descriptors are obtained. They concluded
that the use of molecule conformations for 3D descriptors and
the many computational programs for generating descriptors
may lead to inaccurate information about the chemical struc-
ture. Feature-selection methods have been used extensively
in BBB permeability problems. Li et al. [12] performed one
of the early works on dimensionality reduction on a BBB
dataset using a feature-selection method called recursive fea-
ture elimination (RFE) to extract features. They reported that
features selected by RFE contributed to the best-performing
classification model.

At the most basic level, dimensionality-reduction tech-
niques can be linear or non-linear and supervised or unsu-
pervised [14]. Widely used linear feature-extraction methods
include PCA [37], Linear Discriminant Analysis (LDA) [38],
and random projection (RP) [39].

PCA is a widely used dimensionality-reduction technique
in QSAR. Yoo and Shahlaei [40] tested PCA on a dataset of
chemokine receptor 5 inhibitors. Their results showed that
three principle components were able to describe the variance
with a minimum loss of original information. In addition,
they showed that PCA can contain important information
held in multiple descriptors in only a few principle com-
ponents. LDA is a supervised machine learning technique
that employs a linear transformation of the features to reach
the optimal class discrimination [38] for the purposes of
dimensionality-reduction or classification. As with linear
PCA, LDA closely extracts linear combinations of features
that best describe the data. LDA is used for classification and
for feature-extraction purposes. LDA has had many recent
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applications, such as extracting EEG and EMG signals [41],
emotion recognition [42], and face recognition [43]. Accord-
ing to Idakwo et al. [26], it is common for LDA to be ineffec-
tive when dealing with complex data structures. Studies with
binary classification problems have reported that PCA works
better than LDA in separating two-class labels. Therefore,
LDA was not considered for this study [44].

RP is a linear method based on metric learning that calcu-
lates the distance between data points [14]. It is a useful and
computationally inexpensive linear dimensionality-reduction
method based on the Johnson- Lindenstrauss lemma
theorem [39]. Dimitris Achlioptas presented a less computa-
tionally complex version of RP [23]. RP is yet to be explored
in QSAR studies, although it has been proven successful
in classification problems when compared to PCA [25].
Li et al. [45] presented a comparative analysis of
feature-extraction techniques in optical projection tomog-
raphy. They reported that RP excelled in efficiency and
simplicity.

Kernel PCA is a non-linear feature-extraction method.
As with linear PCA, KPCA is an embedding method that
maps input vectors into another space. The main difference
between the two methods is that the former transforms data
in Euclidean space, while KPCA projects data in kernel
space [46]. Kernel PCA is a type of ‘‘manifold leanring’’
in which data points are projected to a lower-dimensional
space. A number of algorithms exist, such as Locally Lin-
ear Embedding (LLE) [47], Isomap [48], and Hessian LLE
(HLLE) [49]. According to Chen and Liu et al. [50], many
manifold algorithms, such as LLE and HLLE, are sensitive to
noise and do not perform well on unseen data. Other studies
confirmed this view, such as [51], [52], where linear PCA
was more robust than LLE and Isomap in a noisy dataset.
In addition, these algorithms require a higher computational
overhead and excessive parameter adjustment. In QSAR
models, L’Heureux et al. [53] confirmed that LLE handles
non-linearity in smaller datasets compared to autoencoder.
In addition, LLE has a limitation of learning one-way map-
ping, as compared to autonecoder, which is capable of learn-
ing two-way mapping between the high- and low-dimension
space [54]. LLE has a major limitation of not being able to
gradually extract features; hence, features are extracted at
once, and the relationship between samples is not properly
preserved [16].

Other types of non-linear feature-extraction methods
include graph-based methods [55] and autoencoder [56].
Graph-based methods have demonstrated great success in
extracting feature in image datasets. Autoencoder is a
feature-extraction method based on representation learning.
Some of the early attempts to use Artificial Neural Net-
works (ANN) architecture to extract features were conducted
by Dorronsoro et al. [57] and Guerra et al. [58]. They
developed an unsupervised ANNmodel to extract descriptors
for a QSAR classification problem. Since then, researchers
have determined that the autoencoder architecture is use-
ful for dimensionality-reduction purposes [16]. Unlike PCA,

autonedoer can handle non-linear data efficiently. Hinton and
Salakhutdinov [59], a leading group of scientists in neural
network research, presented one of the early publications on
the application of autoencoder for dimensionality-reduction
purposes. Hu et al. [60] attempted to utilize autoencoder
in QSAR studies. A fully connected autoencoder model
was developed to predict drug likeness to identify com-
pound candidates that could become marketed drugs. They
reported that autoencoder provided promising insights for
extracting meaningful features. Autoencoder is an appeal-
ing choice for developing models for molecule generation.
Gómez-Bombarelli et al. [61] developed a model to generate
molecules using the autoencoder architecture. Their model
was also able to predict the properties of molecules using the
latent space (the bottleneck hidden layer) of the autoencoder.
Bjerrum and Sattarov [62] analyzed the effect of choosing
different representations in the input and output during the
training of autoencoder to produce vector representations
of molecules that are considered descriptors of the model.
They showed that properties represented by autoencoder are
influenced significantly by the choice of the training data.

A variety of dimensionality-reduction techniques have
been applied to QSAR, such as genetic algorithms (GA),
[63] partial least squares (PLS) [64], a hybrid GA and PLS
approach [65], K-means clustering algorithm [66], and ant
colony optimization (ACO) [67]. However, PCA was deliev-
ered superior results in QSAR [40].

Idakwo et al. [26] presented one of the few reviews
of feature-extraction methods in QSAR prediction. Vari-
ous review studies focused on feature-selection methods in
QSAR, such as the work of Danishuddin and Khan [3]
and [15]. There is a major need for comparative studies
focused on feature-extraction methods in QSAR, as the rele-
vance and efficiency of feature-extraction techniques (besides
linear PCA) in QSAR modeling have not yet been explored.

III. DIMENSIOANLITY REDUCTION
For a given dataset with n data points or records and
p features, high-dimensional data is observed when the num-
ber of features p is higher than the number of records n,
as p>n [68]. Dimensionality-reduction has the following
advantages [6], [17], [27], [34]:

1) Computationally less expensive: The lower number of
features reduces computational overhead on the hard-
ware resources. This ensures the preservation of time
and storage.

2) Easier visualization: When data are visualized in
multi-dimensional space, they are more difficult to ana-
lyze and understand.

3) Improved prediction performance: When data are
higher dimensional, they can be noisy, sparse, or have
missing values. Such sparsity affects the capability of
machine learning models; hence, it affects the accuracy
of the model.

There are two broad approaches to reduce the number of
features in datasets: feature extraction and feature selection.
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FIGURE 2. Dimensionality reduction techniques.

A. FEATURE SELECTION
Feature selection is a process in which a subset of the fea-
tures’ space is chosen according to its relevance to the output
of the classifier. The ultimate goal is to extract the most effec-
tive subset of features and to remove redundant irrelevant
information. The selection methods are categorized into filter
methods, wrappers, and embedded/hybrid methods [3], [34].

1) Filters Filter methods simply select the feature sub-
set independent of the classifier by calculating a fea-
ture relevance score or by applying a feature-searching
algorithm [69]. For example, the variance of each fea-
ture is computed based on a certain threshold with-
out considering the relationship between the features
and the classifier. This method is simple and quick
but yields lower accuracy compared to wrapper and
embedded methods. The most popular filter methods
are the correlation coefficient score, Chi squared test,
and T-test.

2) Wrappers In contrast, wrapper methods work as a
predictive model by selecting the feature subset and
calculating the error in the classifier function. This
method outperforms the filter method because it works
on optimizing the classifier performance by calculating
the error until the optimal feature subset is selected
[70]. However, it is not as simple and quick as the filter
method, as it requires more computational complexity
and time. A third approach in feature selection is called
the embedded or hybrid method.

3) Embedded/Hybrid Embedded methods work simi-
larly to wrappers in terms of being dependent on the
classifier; however, they requires less computational
complexity. Embedded methods differ from wrappers,
as the selection of features is dependent on the type of
classifier used and might not work with other classi-
fiers. An example of an embedded method is random

FIGURE 3. Principal component analysis.

forest, in which multiple random forests are created
iteratiely until a forest of features with the lowest error
rate is selected [5].

Another feature-selection method classification is based
on dataset characteristics: supervised (labeled dataset),
semi-supervised (partially labeled dataset), or unsupervised
(labeled dataset) [69], [71]. Recent developments in various
fields require diverse types of feature-selectionmethods, such
as online feature selection, ensemble feature selection, and
methods for extreme datasets [69].

B. FEATURE EXTRACTION
Feature-extraction or feature-reduction techniques identify
a new subset of features that are transformed or combined
from the original feature space to obtain a more significant
set of features. Feature-extraction methods can be linear or
non-linear. Linear PCA is the dominant feature-extraction
technique in QSAR [17]. However, there are many recent
feature-extraction methods, such as graph-based meth-
ods [55], which have demonstrated success in dealing
with image datasets. PCA is used as a baseline to com-
pare the proposed dimensionality-reduction techniques in
this study. Next, we provide a brief introduction of each
feature-extraction technique used in this study.

1) PRINCIPAL COMPONENT ANALYSIS
PCAminimizes redundancy by measuring variance and elim-
inating redundant and noisy features. It is commonly used
in QSAR studies for dimensionality-reduction purposes [40].
PCA uses a matrix to calculate the covariance by analyzing
inter-correlated dependent variables to obtain a new set of
variables called principal components or eigenvectors. The
first principal component contains the most effective set of
variables. The second component contains the second most
important variables and so on, as shown in Figure 3.

Eventually, PCA attempts to identify the top K principal
components, and the remaining less influential variables are
dropped [17]. The principal component (eigenvector) has a
value known as the eigenvalue that corresponds to the vari-
ance. When the eigenvalue is large, the principle component
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represents a large variance in the data. In the QSAR context,
this definition implies that PCA finds a set of descriptors that
best characterizes and describes compounds pertaining to a
specific QSAR activity or property with minimum redun-
dancy. Eigenvectors and eigenvalues can be calculated as a
square matrix. —λ is an eigenvalue for a matrix A, i.e,:

det( —λI - A ) = 0 (1)

where, I is the identity matrix of the same dimension as A,
which is a required condition for the matrix subtraction as
well as in this case, and ‘‘det’’ is the determinant of thematrix.
For each eigenvalue —λ, a corresponding eigenvector, v, can
be determined by the following equation:

( —λ I - A )v = 0 (2)

Eigenvalues are sorted from the largest to the smallest
to provide the principle components in the order of their
significance. To reduce the dimensionality, we selected the
first K components and dropped the rest.

2) KERNEL PRINCIPAL COMPONENT ANALYSIS
Linear PCA is a powerful technique for reducing dimen-
sionality, but it lacks the ability to identify and perceive all
structures in the feature space of a dataset. Because linear
PCA assumes a linear relationship between variables and
only functions with numeric values, an alternative non-linear
PCA emerged that can handle nonlinear representations of
data [20]. Given a dataset xi, where i = 1, 2, 3 . . . ,N , and
xi is a D dimensional vector that needs to be projected to a
new dimension space M. The datapoint xi is transformed to
a non-linear representation8(x). Similar to PCA, the covari-
ance matrixM ×M is calculated by:

C =
1
N

N∑
i=1

φ (xi) φ (xi)T (3)

Eigenvalues and enginevectors are calculated by:

Cvk = λkvk (4)

The kernel principle component is calculated as follows:

yk (x) = φ(x)Tvk =
N∑
i=1

akiκ (x, xi) (5)

The kernel matrix is calculated directly from the training
data point xi [72]. The most important aspect of KPCA is
that it can identify the complex non-linear structures found
in QSAR [21]. As with PCA, KPCA creates a covariance
matrix to determine features with high variance. While iden-
tifying the eigenvector (principle component) and eigenvalue,
KPCA differs in that it maps each data point to another vector
space using the8 (x) function. Subsequently, it applies linear
PCA to each mapped data point in the new dimension.

FIGURE 4. Autoencoder architecture.

IV. AUTOENCODER
Deep learning algorithms are widely used for classifica-
tion purposes. Due to their ability to extract hidden pat-
terns and important features, they are also employed for
dimensionality-reduction purposes [18]. Autoencoder is a
branch of ANN that is recognized for dimensionality reduc-
tion. However, it has not been fully implemented in QSAR
studies. Autoencoder is a feed-forward neural network that is
composed of an encoder, one or more hidden layers, and a
decoder, as shown in Figure 4. The input to the hidden layer
is called the encoder, and the hidden layer to the output layer
is the decoder. Autoencoder maps the vectors in the input
layer to the same number of vectors in the output layer [19].
An autoencoder model is expected to reconstruct the same
inputs that originally passed through the input layer. Thus,
the decoder works as a mirror image of the encoder with
a matching number of neurons. Autoencoders are widely
used for image compression, dimensionality reduction, and
information retrieval [8]. While mapping the instances xi,
the encoder maps the input xi to a reduced representation yi
using a function g():

yi = g (Wxi) (6)

where g() is a sigmoid function, and W is a weight
matrix dy × dx . Using the same reduced representation yi,
the decoder reconstructs x ′i as:

x ′i = f
(
W ′yi

)
(7)

Autoencoders are typically trained with both the encoder
and the decoder. However, to utilize it in the context of dimen-
sionality reduction, the smallest hidden layer in the archi-
tecture (also known as the bottleneck) is used to compress
the input to the lowest level of space (called latent space) to
achieve a dimensionality-reduction effect [16]. The decoder
is used in the training process to measure the error rate of the
model but not to restore the original input dimension.
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To handle more complex data structures, the hidden layers
of autoencoder can be expanded to comprise multiple hidden
layers instead of a single one. This architecture is known as a
dGAE [24], which we adopted in this research.

V. RANDOM PROJECTION (RP)
RP is a linear technique used for dimensionality-reduction
purposes that works based on matrix multiplications. This
technique is inspired by the Johnson-Lindenstrauss lemma
theorem [39]. For a given dataset with d dimensions that
must be reduced to k dimensions and n number of datapoints
(instances), Y = RX We note that N data points can be
mapped from:

Rd → Rk

where Xd∗n is the original matrix, and Rk∗d is a random
matrix. This is performed while preserving the distance
between the data points in the original high-dimensional
space and the points in the new sub-space [22]. A major
advantage of RP compared to PCA and autoencoder is its
simplicity and low computational costs [22]. An RP random
matrix can be generated using Gaussian distribution, which
projects a data matrix as (dkN ). A lesser computational sparse
distribution proposed by Achlioptas [23] reduced the com-
plexity further with a distribution that projects the data matrix
as (ckN ), where c represents non-zero feature values. This
simple ‘‘sparse’’ distribution can be expressed as follows:

rij =
√
3


+1p = 1/6
0p = 2/3
−1p = 1/6

(8)

where rij is an element of matrix R. This simplified distri-
bution ensures that all zero variance values of rij would still
produce a projection that satisfies the Johnson-Lindenstrauss
lemma theorem [39] with less computational overhead, as all
computations are performed on non-zero integer values [25].
Both GRP and SRP are investigated in this study.

VI. RESEARCH METHODOLOGY
Oneway to assess the effects of the proposed feature-extraction
techniques is to test and compare their impact on classi-
fier performance [73]. Our research methodology demon-
strates the variations in performance and accuracy of the
same classification model based on different data repre-
sentations. We conducted a series of experiments with five
feature-extraction techniques: KPCA, autoencoder, GRP,
SRP, and PCA. PCA is one of themost used feature-extraction
technique in QSAR modeling and BBB permeability [40],
and it was the baseline with which the other proposed tech-
niques were compared.We followed the proposed steps of [2]
to solve the QSAR classification problem. A walk-through of
these steps can be summarized as follows:

1) Descriptors (features) calculation
2) Dataset preprocessing and curation
3) Feature extraction technique

4) Classification model
5) Validation

We performed descriptor calculation under an experimen-
tal setup. Five different techniques were developed for the
feature extraction and fed to the classifier. The performance
of the feature-extraction techniques was measured based on
the classifier performance.

A. EXPERIMENTAL SETUP
The predicted QSAR activity adopted for our experiment
was the permeability of compounds to the BBB, which is a
binary classification problem with two predicted class labels
(BBB+) and (BBB−) [74]. Building a model using a bench-
mark dataset is crucial for measuring the performance of the
classification model. The benchmark dataset was acquired
from Wang et al. [13] and as composed of 2350 compounds
and 6394 generated fingerprints, 1D, 2D, and 3D descrip-
tors. The dataset was imbalanced with 1803 (BBB+) and
547 (BBB−) class labels. Th synthetic minority oversam-
pling technique (SMOTE) was employed to resample the
dataset to 1803 instances corresponding to class (BBB+) and
1803 instances corresponding to class (BBB−). Compounds
in QSAR are encoded to a special numerical representation
called Simplified Molecular Input Line Entry Specification
(SMILES). SMILES is a one-line notation that describes
molecules and encapsulates all the information related to the
compound structure and activities. This includes the atomic
number, bonds orders, branches, rings and so on [2]. Descrip-
tors in this study were calculated using AlvaDes [75] and
the Online Chemical Modeling Environment (OCHEM) [76].
AlvaDesc was used for calculating 1D and 2D descriptors
and fingerprints (MACCS 16, and Hashed). OCHEM was
used to calculate 3D descriptors and to obtain their atom
coordinates and atomic partial charges. OCHEM utilizes the
Chemistry Development Kit (CDK) [77] package for the
calculation and manipulation of QSARmodels and the calcu-
lation of their respective descriptors. Multiple 3D descriptors
are supported by CDK, such as Weighted Holistic Invariant
Molecular (WHIM), Charged Partial Surface Area (CPSA),
Gravitational Index, Molecular Distance Edge (MDE), and
Geometrical Shape Coefficients of the radius–diameter dia-
gram [78]. The BALLOON optimizer was used to obtain
the partial charge and atom coordinates of 3D descriptors.
In total, 6394 descriptors and FPs were calculated andmerged
into a single file for preprocessing.

B. PREPROCESSING
To ensure that dimensionality-reduction was performed on
a clean consistent dataset, the following preprocessing tasks
were performed.

1) Data cleaning: In this step two primary tasks were
required: handling records with no descriptor values
and handling records with certain missing descriptors
values. During the process of calculating descriptors,
eight records had null values for all the descriptors.
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This implies that the tools and optimizers failed to
calculate their corresponding descriptors. These eight
records were dropped completely, as it was impossible
to compensate for all the descriptors values. The miss-
ing values were replaced by zero, as these compounds
had a corresponding value for all descriptors. There-
fore, mean value or imputation could not be used as a
substitute.

2) Data transformation (Scaling:) Once the descriptors
were calculated and the missing values were handled,
our dataset had a varying range of values. Certain
descriptors had zero or negative values, whereas others
had values reached up to 10000. Scaling or feature
scaling is a preprocessing technique used to normalize
the range of features values in a given dataset [91]. For
instance, instead of having values ranging between -
10 and 10000, it can be scaled to a fixed range between
0 and 1. MinMax scaler is one of the well-known
scalers, which transforms features by scaling each fea-
ture to a given range. It works as shown in the following
equation:

Xnorm =
X − Xmin

Xmax − Xmin
(9)

Min and max indicate the range of the feature. The
values of 1D, 2D, and 3D descriptors were trans-
formed using the MinMax scaler to a range between
0 and 1.

3) Handling class imbalance: A dataset is considered
to be imbalanced if the classes are not equally repre-
sented [79]. Imbalanced distribution of classes when
building machine learning models directly affects the
performance of the model, especially for minority class
accuracy measures such as (specificity). To address
the challenge of an imbalanced dataset, resampling
techniques are used. Wang et al. evaluated multiple
resampling methods, including Random Undersam-
pling (RUS) and the Synthetic Minority Oversampling
Technique (SMOTE), Adaptive Synthetic Sampling
Method (ADASYN), Evolutionary Neural Network
(ENN), and Weight Loss Function (WLF). According
to their study, SMOTE performed consistently well
with a BBB dataset. Following the results reported
by Wang et al. [13], we solve the imbalanced distri-
bution of classes in the BBB permeability dataset by
applying (SMOTE). SMOTE was first introduced by
Chawla et al. [80]. It uses K-Nearest neighbors to add
new instances to the minority class. In this experiment,
the minority class is represented by the compounds
with low permeability (BBB-). K-Nearest neighbors
synthesize new data points (instances) by creating new
ones between two original points that share similar fea-
tures. The SMOTE resampling technique transformed
the dataset from 1803 and 547 compounds in the pos-
itive and negative classes, respectively, to 1803 com-
pounds in each class.

C. FEATURE EXTRACTION
Dimensionality reduction is a preprocessing step that occurs
before building a classification model. Because of its
significance to this study, we explain the feature-extraction
experiment in a separate section. Five feature-extraction
methods were employed: PCA, KPCA, autoencoder, GRP,
and SRP. Our experiments were performed using the
PyCharm python environment. All feature-extraction tech-
niques were imported using scikit-learn. The imported
dataset was the resampled dataset with 1803 (BBB−)
instances and 1803 (BBB+) instances. The parameters
choices were finalized to employ each technique as
follows:
• KPCA: The radial basis function (RBF) kernel is a
popular kernel function with KPCA. RBF was used
to project the data in higher-dimensional space; conse-
quently, it becomes linearly separable. For this exper-
iment, we set the number of jobs to be 10 jobs
running in parallel, which provided faster comput-
ing. We set the number of components to the default
value.

• PCA: To construct a linear PCA, data were projected
using a singular value decomposition to transform them
to a low-dimensional space. The number of components
was set to the default value.

• GRP and SRP For GRP construction, a Gaussian ran-
dom matrix was used to reduce the high-dimensional
data into a low-dimensional Euclidean space. We exper-
imentally set the number of components to 3700, which
represents the desired number of descriptors projected
after applying GRP. The same number of components
were used with SRP.

• dGAE: Five encocder layers and five decoder layers
were used to construct the autoencoder model. During
the experiment, running autoencoder with the original
6394 descriptors resulted in a significantly high num-
ber of computations, which caused a system shut down
and incomplete execution. The experiment was repeated
several times; however, it failed repeatedly. Eventually,
we had to change the initial number of neurons corre-
sponding to the descriptors from 6394 to 4500. The first
encoder layer is the input layer, whereas the remaining
four layers are hidden layers, with 4500, 4200, 4000,
and 3750 neurons, respectively. The last encoder layer
is the output layer, which produced the reduced dimen-
sion feature space. Two dropout layers were used with
a dropout rate of 30%. The last encoder layer is the
the bottleneck layer, with a latent representation of the
compressed data. The decoder layers were only used for
training the network. After training, the output of this
network was set to the last encoder layer to extract the
reduced features in the latent space. The autoencoder
hyperparameter is similar to that of a deep learning
model. A rectified linear unit (ReLU) activation function
was applied. We experimented with both Adam and
rectified Adam optimizers.
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TABLE 1. Model hyperparameter for the deep learning classification
model.

The final set of features obtained by PCA and kernel
PCA included 3606 features, whereas dGAE and RPmethods
reduced the number to 3000 features.

D. CLASSIFICATION MODEL
A deep learning classification model was developed with
five layers: an input layer, three hidden layers, two batch
normalization layers, and an output layer. The activation
function for the proposed model was ReLU with the Adam
optimizer with a learning rate of 0.01. Table 1 summarizes
the hyperparameters for the classification model.

For the experimental comparison proposed in this
paper, we iteratively executed the model six times, with
different datasets in each run. The first run included
the complete high-dimensional dataset with 6394 features
(descriptors). The remaining five runs included each of
the feature-extraction techniques. Because each technique
transformed the dataset differently, the new dataset with the
reduced number of features was input into the classifica-
tion model to test and compare the classifier’s performance
with respect to each feature-extraction technique. The full
model architecture is illustrated in Figure 5. Validation of
the classification model was performed using K-fold cross-
validation, which divides the training set into groups known
as (folds). In every iteration, one fold of the training set is
left out for testing, and the training is performed using the
remaining folds. For our experiment, tenfold cross-validation
was performed.

VII. EXPERIMENTAL RESULTS
To assess the model’s performance, four primary measures
were considered: accuracy, specificity, sensitivity, and AUC.
The accuracy indicates the overall performance of the model
pertaining to the true positive assessment [81]. However, it is
not regarded as a good indication to the performance of the
model, as it only considers the correctly classified instances
regardless of the falsely classified ones. In addition, it is
not considered a good measure for imbalanced datasets [82].
Specificity is the percentage of compounds that are correctly
classified as (BBB−) by the model and sensitivity is the

percentage of compounds that are correctly classified as
(BBB+) by the model.

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(10)

Specificity =
TN

TN + FP
(11)

Sensitivity =
TP

TP+ FN
(12)

Here, TP refers to true positive, which indicates the number
of compounds that were correctly classified as ‘‘positive’’
or (BBB+); TN is true negative, which indicates the num-
ber of compounds that were correctly classified as (BBB−)
by the classifier; FP is false positive, which indicates the
number of compounds that were inaccurately classified as
BBB+, and FN represents false negative, which is the number
of compounds that were mistakenly classified as (BBB−).
Receiver operating characteristics (ROC) graphs are impor-
tant for visualizing classifier performance and comparing
different algorithms. It shows the TP rates in comparison to
FP rates [83].

A. RESULTS
Interpreting the performance of dimensionality-reduction
techniques is essential to determine the technique that was
able to model the problem most efficiently. Three main
approaches were considered to compare the performance of
the feature-extraction techniques: (i) comparing the accuracy
measures of the classificationmodels [73], (ii) designing scat-
ter plots to visualize any existing correlation between features
in the low-dimensional space [28], [29], and (iii) visualiz-
ing class separation with an external widely used Modified
National Institute of Standards and Technology (MNIST)
dataset. Evaluating the proposed dimensionality-reduction
techniques using two datasets (i.e., the BBB permeability and
MNIST datasets) helped us understand the consistency in the
performance of each technique.

B. VALIDATION WITH CLASSIFICATION MODEL
Table 2 lists the results obtained using different feature-
extraction techniques. After applying each technique,
the dataset with the reduced dimensions was input into a feed
forward deep neural network (FFDNN) classification model.
The primary goal was to compare the classifier accuracy
of each technique and obtain insights about the effect of
each feature-extraction technique on a classification model.
Table 2 presents the performance of each model after train-
ing and testing to reveal the model’s overfitting problems.
Overfitting can be detected when a model learns well during
training, which yields high accuracy scores, but demonstrates
significantly inferior performance on the testing set. In the
case of the accuracy measures, the overall accuracy of the
model does not precisely demonstrate the ability of the
model to predict class labels in the classification problem.
The AUC measure is important when assessing the perfor-
mance of dimensionality-reduction techniques and binary
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FIGURE 5. Classification model architecture.

TABLE 2. Performance of Dimensionality Reduction Techniques (ACC = Overall accuracy, Sens = Sensitivity scores, Spec = Specificity scores, AUC = Area
under the curves, RP = Random Projection, FFDNN = Feed Forward Deep Neural Network), DR = Dimensionality Reduction, MCC = Matthew Correlation
Coefficient.

classification models [84]. AUC exposes the ability of the
model to separate the two classes in a classification problem.
In the BBB permeability context, it can distinguish the com-
pounds that are able to penetrate the BBB [85], [86].

The main objective of this study was to investigate
the performance of feature-extraction techniques on a
high-dimensional QSAR dataset. We observed that the AUC
scores of all feature-extraction techniques exceeded those
obtained with PCA. The best AUC score was achieved with
KPCA, which indicates that the non-linearity of KPCA was
able to capture the structure of descriptors better than PCA
and permitted a better distinction between classes. Figure 6(a)
show the ROC graph of KPCA.

While observing the accuracy, sensitivity, and specificity,
it was evident that employing a resampling technique caused
the negative class ‘‘specificity’’ scores to increase dramati-
cally. Consequently, it caused a minor decrease in sensitiv-
ity scores as well. Considering this, we observed that lin-
ear PCA achieved the highest overall accuracy score, but
not in specificity or AUC scores. This indicates that the
overall accuracy does not provide sufficient insight about
the mistakenly classified compounds [87]. The specificity

scores were unsatisfactory in the research studies reported in
the literature, including the works that employed resampling
techniques [13], [88]. In addition, many models that were
developed with resampled datasets in a BBB permeability
context achieved a high score in one measure but a relatively
low score in another.

RP techniques demonstrated promising results proving that
their simplicity and low computational cost were not obtained
at the expense of specificity and AUC scores. GRP achieved
the highest ‘‘specificity’’ score followed by SRP. Linear PCA
and KPCA achieved the highest sensitivity scores represent-
ing the positive class.

Conversely, dGAE delivered average results when com-
pared to the other techniques but still outperformed PCA
in terms of AUC scores. However, the construction of
the autoencoder model was responsible for this limita-
tion, as the input layer had only 4300 neurons repre-
senting descriptors, which excluded 2094 descriptors that
were not even considered. This initial drop in the num-
ber of descriptors ultimately caused a loss of important
information and affected the prediction accuracy of the
model. ROC plots of the autoencoder with both Adam and
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FIGURE 6. Adam vs. RAdam with dGAE.

FIGURE 7. Reconstruction error.

RAdam optimizers are shown in Figures 6(b) and 6(c).
An apparent improvement in the performance of autoen-
coder in separating classes was achieved using the RAdam
optimizer.

The primary goal of training a classifier is to minimize the
reconstruction error between training and validation. Recon-
struction error plots are useful to show the consistency in the
performance of a classifier using an unseen dataset. Figure 7
illustrates the reconstruction errors of autoencoder (dGAE),
PCA, and RP. Despite the low overall accuracy scores of
autoencoder, it demonstrated minimal overfitting, as there
was an obvious near convergence between the training and
validation data. Considering the overall performance of all
techniques, we concluded that KPCA and RP demonstrated
superior performance corresponding to various accuracy
measures in comparison with autoencoder. Although autoen-
coder did not achieve the highest accuracy, it showed some
potential when considering that the initial number of descrip-
tors was not equivalent to that of other techniques. In addition,
it demonstrated minimal predisposition to overfitting. Thus,
we can conclude that feature extraction with PCA is no longer
the best option for handling high-dimensional classification
problems in QSAR.

C. VALIDATION WITH A 3D SCATTERPLOT VISUALISATION
Visualizing the efficiency of a feature-extraction tech-
nique in identifying important features and separate
classes provides invaluable insights. Scatter plots are

a popular visual-encoding technique for observing the rela-
tionships between features. The relationship between data
points were expressed through the plot axes represent-
ing data points pertaining to two or three features [28].
The positioning of data points between the axes indi-
cates the value of each data point with respect to these
features.

Scatter plots demonstrate the correlation between features
(i.e., positive, negative, or no relationship at all). The moti-
vation behind the visualization of a dataset is to detect the
undesired existence of a positive relationship between fea-
tures after employing dimensionality reduction. A positive
relationship or ‘‘low variance’’ between descriptors indicates
that the chosen features are correlated and hence have no
implications on the data. For instance, if the bond count of a
compound and its weight are positively correlated in the sense
that their values change positively or negatively on the same
scale, then the dimensionality-reduction technique failed to
remove redundant data since one of these features can be
deduced from the other [29]. In addition, scatter plots are
useful for clustering a dataset into groups. A clear grouping
indicates a good separation of classes. By applying this in
our dataset, we search for separation in the two class labels
(compounds that are classified as BBB+ or BBB−). Further,
the variables in the low space were randomly picked and
repeated for each technique to ensure overall consistency
and to confirm that a certain observation was not specific to
certain features.
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FIGURE 8. Three-Dimensional Scatter Plots of the Original Dataset, and
After PCA and KPCA.

1) VISUALIZATION WITH QSAR DATASET
Designing scatter plots to visualize the positioning of data
points with respect to features provides useful insights about
each technique. The scatter plot of the original dataset, illus-
trated in Figure 8(a), shows a tight linear and positive cor-
relation between the features. This indicates the existence of

FIGURE 9. Three-Dimensional Scatter Plots of dGAE and Random
Projection (RP).

feature redundancies in the original high-dimensional dataset.
Figure 8(b) and 8(c) illustrate the transformation of data
points after applying PCA and KPCA. The scatter plots show
the distribution of data points with respect to the top three
principle components. PCA and KPCA arrange principle
components according to the highest variance; hence, the first
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FIGURE 10. PCA and KPCA with Modified National Institute of Standards
and Technology (MNIST).

three principle components were selected. Both techniques
show low correlation between descriptors when compared
with the original dataset. This observation is an indication
that certain important descriptors with high variance were
preserved. Both techniques demonstrated good separation
between the class labels and a clear grouping of the positive
class. Out of the five models, KPCA achieved the highest
score on the area under the ROC curve (AUC). This indicates
that KPCA achieved the best performance in distinguishing
the two class labels as illustrated in 8(c).

Figure 9(b) and 9(c) illustrate the positioning of data points
after employing GRP and SRP. Both RP techniques show

FIGURE 11. RP and dGAE with MNIST.

no visible correlation between features, which indicates that
RP retained most of the relevant features from the original
dataset. Linking the high accuracy of RP in the negative class
with the scatter plot images provided useful insights on the
performance of this technique. The high specificity scores of
RP demonstrated that RP was able to identify the negative
class more precisely in comparison with dGAE and PCA. The
scatter plots illustrated in Figure 9(b) and 9(c) show an obvi-
ous grouping of (BBB-) datapoints. The low computational
cost of RP has no implications on its ability to extract useful
features and separate class labels efficiently in a binary clas-
sification problem. The scatter plot demonstrating the dGAE
performance is shown in Figure 9(a). An evident disjointed-
ness between data points is illustrated, and no distinguish-
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FIGURE 12. Zoomed dGAE scatter plot to showcase the separation of
class labels.

able positive correlation was detected between the features.
It can be noted that the data points are clearly separated
with less overlapping when compared to other techniques.
Although the two classes are not clearly grouped at this stage,
the distance between data points indicates a clear separa-
tion of instances of different class labels [89]. This obser-
vation conforms with the high AUC score of 97.85 obtained
by dGAE.

2) VISUALIZATION WITH MNIST DATASET
To test the consistency of the developed feature-extraction
techniques, we explored their performance with the MNIST
database. MNIST is a handwritten digit database that is
widely used for image recognition problems [90]. Although
MNIST is not a QSAR dataset, this experiment was useful
for three primary reasons: 1) to detect any unusual pat-
terns that contradict those obtained in the BBB permeabil-
ity dataset; 2) to provide a broader understanding of the
dimensionality-reduction technique in a multi-class classifi-
cation problem; and 3) to verify the effectiveness of these
techniques using a widely tested benchmark dataset. MNIST
consists of 70000 image samples and 784 features repre-
senting image pixels. The dataset is split into 60000 and
10000 samples for training and testing, respectively. The vec-
tor value ranges from 0 to 1, which symbolizes the intensity
of the pixel. The same parameters and experimental setup
used in the BBB permeability experiment were applied to
the MNIST dataset. The original distribution of MNIST data
points before feature extraction is shown in 10(a), with obvi-
ous overlapping between the 11 class labels.

Figures 10(b) and 10(c) show the transformed dataset
using PCA and KPCA. These techniques improved the class
boundaries marginally, as the majority of classes are visible
when compared to the original dataset. However, apparent
overlapping of the class boundaries continues to exist. Classes
representing the numbers 1 and 0, shown in blue and red,
respectively, are separated better than the others. Most digit
classes were identified using linear PCA and KPCA. How-
ever, when analyzing the RP scatter plot, it was not able to
separate instances or class labels, as shown in Figure 11(a).
There may be two reasons for this issue. First, the linearity of
RP may have failed to handle a non-linear image recognition
problem. Second, the method by which RP projects features
from a high- to a low-dimensional space by maintaining
the distances regardless of the data structure is a drawback

that results in a loss of important information. A zoomed-
in image of RP shows no visual class separation, as shown
in Figure 11(b).

Of the five dimensionality-reduction techniques, autoen-
coder showed the best class separation, as illustrated
in Figure 11(c) and 12. The apparent space between classes
proves that autoencoder was able to extract the most useful
information in the low-dimensional space.

It also confirms that the lower accuracy obtained with
dGAE in the classification model, as shown in Table 2, was
due to the missing features, which were not encoded due
to the computational complexity of autoencoder. This moti-
vates us to investigate a new method for reducing the high
computational cost of autoencoder while still utilizing its
capability to encode important hidden features in the trans-
formed low-dimesional space.

VIII. CONCLUSION
In this paper, we provided a new outlook on dimensionality-
reduction techniques in QSAR modeling. Based on pre-
vious studies that focused on feature-selection techniques
in QSAR, we conducted the first experimental analysis of
five feature-extraction techniques. In addition to review-
ing feature-extraction methods in a high-dimensional QSAR
dataset, we provided new insights about the ability of each
technique to handle the negative class and separate the binary
class labels more accurately when compared to the base-
line (linear PCA). This study proved that, through the accu-
rate transformation of feature space to a low-dimensional
Euclidean space, extraction techniques could substantially
increase the accuracy of the classifier for all class labels. Our
research further showed that the performance and accuracy
of the same classification model varied as a result of different
data representations.

This paper introduced a new approach for comparing
feature-extraction methods in QSAR. Further research is
encouraged to investigate other feature-extraction techniques
in a high-dimensional QSAR dataset. Investigation of autoen-
coder with higher computational capabilities could improve
the performance of proposed approach. Alternatively, hybrid
approaches should be considered to substantially decrease
computational overhead. Although the developed models
improved classification accuracy, a question remains with
regard to reversing the transformation of features, as the
obscureness of the transformed features is a persistent issue
for researchers.
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