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ABSTRACT The multi-objective evolutionary algorithm based on decomposition (MOEA/D) uses a fixed
neighborhood size and allocates the same algorithm resources for all sub-problems. This approach makes
it harder to effectively optimize the sub-problems in different periods of time, slows the convergence of
the algorithm and reduces the quality of the decomposition. This paper proposes an adaptive neighborhood
adjustment strategy designed to solve this problem. The neighborhood size of each generation of different
subproblems can be adjusted adaptively, and limited algorithm resources can be allocated more efficiently
to balance the convergence and diversity of the algorithm. In the algorithm performance comparison
experiment, this paper compares the proposed algorithm with the MOEA/D, MOEA/D-GR, MOEA/D-DU
and MOEA/D-DN in ZDT and DTLZ series test problems. The experimental results show that the proposed
algorithm can efficiently allocate limited algorithm resources, improve algorithm convergence, and achieve
better overall performance of the decomposition set.

INDEX TERMS Multiobjective optimization, evolutionary algorithms, adaptive, neighborhood adjustment.

I. INTRODUCTION
Many multi-objective optimization problems (MOPs) exist
in scientific research and engineering practice. These prob-
lems are composed of multiple conflicting objectives such
that multiple objectives can reach the optimal solution
to the extent possible. Currently, the main method used
to solve MOPs is multi-objective evolutionary algorithms
(MOEAs) [1].

According to the selection principle of the algorithms,
MOEAs can be divided into 1) MOEAs based on Pareto
domination [2]–[4], 2)MOEAs based on indicators [5]–[7],
3) MOEAs based on decomposition [8], [9], and 4) MOEAs
based on preference [10], [11].

Most of the early multi-objective evolutionary algorithms
are based on Pareto dominance, and scholars have done a lot
of research on this basis. Gong et al. proposed a set-based
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genetic algorithm (SetGA), which modified the fast non-
dominance sorting approach of NSGA-II, and proposed a set-
based Pareto dominance relation to solve the optimization
problem with three or more objectives and at least one objec-
tive affected by uncertain factors [12]. Liu et al. Proposed
a many-objective evolutionary algorithm (1by1IEA) using a
one-to-one selection strategy, which selects offspring by cal-
culating the efficiency of convergence indicators, increases
the pressure on population selection, and maintains popula-
tion diversity through niche technologies [13].

With increasing objective dimension, the population size
covering the Pareto Front (PF) in the evolutionary algo-
rithm based on Pareto dominance relationship increases expo-
nentially and the proportion of non dominated solutions
in the population increases rapidly, resulting in the sharp
decline of the search ability of the algorithm, or even stag-
nation [14]. Zhang et al. put forward a multiobjective evo-
lutionary algorithm based on decomposition(MOEA/D) in
2007 [8]. MOEA/D uses aggregation function to decompose
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multi-objective problems into several simple subproblems
and to coevolute instead of relying on Pareto domination.
Compared with the original evolutionary algorithm based
on Pareto dominance, MOEA/D reduces the computational
complexity and improves the convergence of the algorithm.

In recent years, many scholars have done lots of research
work in improving the performance of MOEA/D. Among
them, there are two kinds of methods to optimize the allo-
cation of computing resources. The first species is the
improvement of weight vector adjustment strategy. It mainly
includes: Qi et al. proposed a MOEA/D with adaptive weight
adjustment(MOEA/D-AWA) [15], introduced a new method
to intialize weight vector and adjust weight vector. Chen et
al. proposed the reference vector guided evolutionary algo-
rithm (RVEA) [9], and adjusted the distribution of weight
vectors in the target space through the endpoints of the cur-
rent Pareto solution set regularly. The second species is the
optimization strategy of sub-problems. It mainly includes:
Huili et al. proposed a MOEA/D based on differential
evolution(MOEA/D-DE) [16], introducing differential evo-
lution operator and polynomial mutation to generate off-
spring. Li et al. proposed a stable matching-based selection
in MOEA/D (MOEA/D-STM) [17]. It uses a stable match-
ing model to coordinate the selection process in MOEA/D
and assigns a solution to each subproblem to balance the
convergence and diversity. In order to better solve MOPs
with complex Pareto front, Wang et al. proposed a replace-
ment strategy for balancing convergence and diversity in
MOEA/D(MOEA/D-GR) [18], which gived a global replace-
ment strategy. Yuan et al. proposed a balancing convergence
and diversity in MOEA/D (MOEA/D-DU) [19]. It uses the
improved Tchebycheff function and the vertical distance from
the solution to the weight vector to balance convergence
and diversity. Zhang et al. proposed a dynamic resource
allocation decomposition multi-objective evolutionary algo-
rithm (MOEA/D-DRA) [20]] for the computing resource
allocation problem of different sub-problem. It defines and
calculates the utility function value for each sub-problem.
The larger the utility function value, the greater the prob-
ability that the individual will be selected to participate in
evolution. Zhao et al. proposed aMOEA/DWith an ensemble
of neighborhood sizes(ENS-MOEA/D) [21] by analyzing the
influence of different size neighborhood on the algorithm.
Zhou et al. proposed MOEA/D based on dynamic neighbor-
hood adjustment strategy(MOEA/D-DNS) [22] by reducing
the neighborhood of boundary sub-problems and subprob-
lems close to the boundary and increasing the neighborhood
of other sub-problems.Wu et al. proposedMOEA/D based on
differentiated neighborhood strategy(MOEA/D-DN) [23] by
analyzing different algorithm resources needed by different
subproblems.

Through the analysis of the above research, it is found that:
a) the difficulty in optimization of different sub-problems
varies [10], [20]. As the target dimension increases, assign-
ing the same neighborhood size to each sub-question results
in an excess of computational resources for suboptimal

problems and insufficient computational resources for subop-
timal problems; b) the increasing objective dimension makes
the search ability of the algorithm sharply decrease, and
it is difficult to balance the convergence and diversity of
the algorithm [24], [25]. To solve the above problems, we
propose a decomposition multi-objective evolutionary algo-
rithm based on the adaptive neighborhood adjustment strat-
egy (MOEA/D-ANA). The neighborhood size of the same
subproblem in different evolutionary generations is adjusted
by the differentiated parameter β. The neighborhood size of
different subproblems in the same evolutionary generation is
adjusted via the angle θ . Thus, limited algorithm resources
can be allocated reasonably, and the conflict between the
convergence and diversity of the algorithm can be balanced.

II. BACKGROUND
A. MOP
The general form of themulti-objective optimization problem
is given as follows:

min f (x) = (f1(x), f2(x), · · · , fm(x))T (1)

subject to x ⊂ � ⊆ Rn (2)

where x = ((x1, x2, · · · , xn))T is an n-dimensional decision
vector in decision space �; f : � → 2 ⊆ Rm is an m-
dimensional goal vector.

B. MOEA/D
The core of MOEA/D is decomposition of a complex multi-
objective problem into a certain number of single-objective
subproblems through an aggregation function and subse-
quent optimization of all subproblems at the same time. This
decomposition method can effectively reduce the complexity
and improve the convergence of the algorithm while main-
taining the solution set.

Three types of aggregate functions of the MOEA/D are
available: weighted sum (WS), Tchebycheff (TCH) and
penalty-based boundary intersection (PBI) [9]. In this paper,
the subproblems are defined on the Tchebycheff decomposi-
tion method as follows:{

min g(x|λ, z∗) = max16i6m
{
λi|fi(x)− z∗i |

}
subject to x ∈ �

(3)

where λ = (λ1, λ2, · · · , λk ) is the weight vector of the
current subproblem, z∗ is the reference point, and z∗ =
min {fi|x ∈ X}, for each i = 1, 2, · · · , k .
If the decision maker does not supply the corresponding

preference information, the desired solution is evenly dis-
tributed on the PF. Therefore, MOEA/D generates a weight
vector via the single grid point method, which meets the
following conditions:

λ1 + λ2 + · · · + λk = 1 (4)

λi ∈

{
0,

1
H
,
2
H
, · · · ,

H
H

}
, i = 1, 2, · · · , k (5)

where H is a user-defined positive integer. The weight vector
is uniformly selected on the f1 + f2 + · · · + fk = 1 plane
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FIGURE 1. Defects of fixed neighborhood.

orf 21 + f 22 + · · · + f 2k = 1 hyperplane, and the number of
points meets N = Ck−1

H+k−1, where k is the target number.

III. DECOMPOSITION MULTI-OBJECTIVE EVOLUTIONARY
ALGORITHM BASED ON ADAPTIVE NEIGHBORHOOD
ADJUSTMENT STRATEGY
A. NEIGHBORHOOD ADJUSTMENT STRATEGY
In MOEA/D, the neighborhood of each subproblem consists
of the information of several weight vectors near it. The
initialization population

{
x1, x2, · · · , xN

}
is generated by the

random method, which makes the population distribution in
the target space irregular. MOEA/D assigns the same neigh-
borhood size to optimize all subproblems, creating difficulty
in full use of the limited algorithm resources, as shown in
Figure 1.

Figure 1 shows the Pareto front (PF) graph of MOEA/D on
the 2-objective ZDT4 problem when the population evolves
to 50 generations. The individual distribution of the popula-
tion in the target space is highly nonuniform. The blue circles
represent the individuals covered by the neighborhood of the
current subproblem inMOEA/D, and the red circles represent
the individuals covered by the neighborhood of the current
subproblem after using the ANA strategy.

It can be seen from Figure 1 that the number of Pareto
optimal solutions in the region of subproblem 1 is far from
that in the region of subproblem 2. For the former, the size
of neighborhood should be reduced appropriately, that is,
unnecessary computing resources should be reduced. And for
the latter, the neighborhood norm should be increased appro-
priately, so that the corresponding subproblem has enough
algorithm resources to find the optimal solution. However,
in the early stage of the algorithm, if the neighborhood is too
small (blue circle), sub problem 1 can only be crossed in the
limited parent generation. After several generations of cross
mutation, most of the new solutions will be similar, which
leads to the algorithm falling into local optimization. And if
the neighborhood is too large, when the population updates
the sub problem, it will produce too many copies, which
increases the computational complexity of the algorithm.

In order to avoid losing the excellent solution and falling
into the local optimum in the early stage of the algorithm, it is

necessary to increase the size of the neighborhood appropri-
ately, let the distant individuals participate in the propagation
of subproblem 1 and subproblem 2, maintain the population
diversity and make it approach the Pareto front rapidly. With
the algorithm running, the neighborhood assigned to the sub-
problem is constantly adjusted according to the difficulty of
the subproblem optimization.

To solve the problem that the subproblem needs different
neighborhood sizes in different evolutionary generation, this
paper proposes a neighborhood adjustment strategy (NA). In
the early, the strategy maintains the diversity of the popula-
tion through a large neighborhood scale to avoid the loss of
excellent solutions. In the middle and late stage, the diversity
of the population has basically been consistent with the PF.
The strategy allocates a smaller neighborhood scale for each
generation of the subproblem, which can avoid the waste of
algorithm resources. As shown in Figure 2.

FIGURE 2. NA strategy.

Figure 2 shows the change trend of the neighborhood on
the ZDT4 test function when the difference parameter β is
set to 0.5, 0.6, 0.7, 0.8, 0.9 and 1 to select the appropriate β
value, and the neighborhood cannot be 0.

Ti = Tmax − Tmax ×
1

1+ e(−8×(
gen

Maxgen )−β)
(6)

In the NA strategy, with continuous evolution of the popu-
lation, the neighborhood scale of all subproblems is adjusted
by equation (6), This equation is based on the reference [26].
And β is the differentiated parameter. In this paper, we
propose a MOEA/D based on the neighborhood adjustment
strategy. See Algorithm 1.

B. DIFFERENTIATED NEIGHBORHOOD STRATEGY
Wu Feng et al. proposed a MOEA/D based differentiated
neighborhood strategy [23] and found that the optimization
difficulty of different subproblems varied in the same stage.
The same neighborhood size cannot make every subproblem
obtain the optimal solution. This approach used the differ-
entiated neighborhood strategy to increase the computing
resources for the difficult subproblems and reduce the com-
puting resources for the easy subproblems.
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Algorithm 1 Neighborhood-Adjustment
Input: the maximal number of neighborhood size Tmax ; A
set of uniform reference vectors W ←

{
λ1, λ2, · · · , λN

}
;

the differentiated parameter β;
Output: T = {T1,T2, · · · ,TN };

for gen = 1 to Maxgen do
Ti = Tmax − Tmax × 1

1+e
(−8×( gen

Maxgen )−β)
;

T = ceil(Ti);
end for

FIGURE 3. Schematic diagram of ANA strategy.

However, the differentiated neighborhood strategy (DN)
has the following shortcomings:

1) The DN strategy still adopts a fixed domain scale.
Before the algorithm is run, different sizes of neighborhood
are configured for different subproblems. The optimal neigh-
borhood scale required for the same subproblem in different
periods of algorithm operation is not considered.

2) DN strategy is greatly affected by the parameters Tmax
and Tmin. The optimal domain scale of different objective
functions is different, i.e., different parameters Tmax and
Tminare needed, and these two parameters are pre-tested.
Therefore, before application of this strategy, it is necessary
to test the applicable parameters Tmax in advance for the
objective function.

C. ADAPTIVE NEIGHBORHOOD ADJUSTMENT STRATEGY
Based on a) the same sub-problem at different times, the
required optimal neighborhood size is different (the NA strat-
egy proposed in this paper), and b) for different sub-problems
in the same period, the required neighborhood size is different
(the DN strategy proposed byWu Feng et al [23]). IDue to the
difficulty in optimizing the different sub-problems in differ-
ent periods and the difficulty of the required neighborhood
size, adaptive neighborhood adjustment (ANA) is further
proposed. The strategy adjusts the neighborhood size of the
same sub-problem in different periods via the differentiated
parameter β and adjusts the neighborhood size of each sub-
problem in the same period by the angle θ , thereby dynami-
cally adjusting the size of each neighbor of the different sub-
problems, as illustrated in Figure 3:

FIGURE 4. Influence of differentiated parameter β on the neighborhood
of subproblems when G = 300 under ANA strategy.

To show the effect of ANA more intuitively, this paper
takes the population evolution g = 50, 100, 200, and 300 as
an example on the 2D ZDT4 problem (as shown in Figure 3).
From the vertical perspective, in the early stage of the algo-
rithm, the neighborhood size of each subproblem changes to
a small extent. When the population evolves to the 2/3 stage,
the neighborhood size of each subproblem is appropriately
reduced. For the easy subproblem 1, the neighborhood size is
rapidly reduced from 30 to 5. For the difficult subproblem 2
and subproblem I, the change in the neighborhood size is
small. From a horizontal perspective, in the early stage of
the algorithm, to ensure that the population diversity and the
optimization difficulty of different subproblems is different,
this approach adjusts the neighborhood size of different sub-
problems in the same period according to the angle θi between
the weight vector bound by individuals and the center weight
vector [17].

Ti = Tmax − Tmax ×
1

1+ e(−8×(
gen

Maxgen )−β)
∗

θi

θmax
(7)

In summary, in the ANA strategy, we use equation (7) to
adjust the neighborhood sizee of each generation. This equa-
tion is based on the reference [26]. Therefore, the variation
degree of the neighborhood scale of the same subproblem in
different periods is regulated by the differentiated parameter
β (Figure 2), and the neighborhood scale of different subprob-
lems in the same period is adjusted by the angle θi between the
weight vector of different subproblems and the center vector
(Figure 4). This strategy is presented in detail in Algorithm 2.

Algorithm 2 Adaptive-Neighborhood-Adjustment
Input: the maximal number of neighborhood size Tmax ; A
set of uniform reference vectors W ← {λ1, λ2, · · · , λN };
the difference parameter β;

Output: T = {T1,T2, · · · ,TN };
for gen = 1 to Maxgen do

Ti = Tmax − Tmax × 1

1+e
(−8×( gen

Maxgen )−β)
∗

θi
θmax

;

T = ceil(Ti);
end for

In this paper, we use IGD as an analysis standard for the
influence of different neighborhood sizes on the optimization
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FIGURE 5. Test chart of parameters Tmax and β.

difficulty of different subproblems in different stages. We
confirm that the two parameters Tmax and β of Ti are adjusted
in ANA strategy. where Tmax is the upper limit of Ti, and β
determines the degree of change of Ti in search process.
To find the suitable Tmax and parameters β, this paper

takes the ZDT4 problem as an example, and the maximum
evolution generation is gen − max = 300. We test the
IGD value obtained by MOEA/D-ANA under the different
parameters Tmax and β (where Tmax ∈ [20, 40], β ∈ [0.5, 1]).
The test results are shown in Figure 5.

Figure 5 shows the change of IGD value with β value
obtained by the algorithm when Tmax value is the same. In
order to better visualize the influence of different Tmax and β
on algorithm performance, the picture sets different colors for
adjacent Tmax . It can be seen directly when the differentiated
parameter β ∈ [0.72, 0.86]),, the algorithm performance
tends to be stable, and the IGD values are less than 2E-03.
This result indicates that the performance of ANA is better
under the parameter combination at this time. When the Tmax
axis remains unchanged and the differentiated parameter β
gradually increases, the change degree of the neighborhood
size of the subproblem gradually decreases in the algorithm
searching process, as shown in Figure 2. The change trend
of each column of bars is decreasing-stationary-increasing.
This result shows that the size of the neighborhood is too
large or the neighborhood is too small, which partially affects
the convergence performance of the algorithm. When β ∈
[0.7, 0.9], the performance of the algorithm is stable. When
Tmax increases, the resources obtained by the subproblem
in the algorithm search process gradually increase. At this
time, the change trend of each column of bars is decreasing-
stationary, such as Tmax ∈ [20, 40], β = 0.8. It shows
that when the neighborhood is too small, due to the lack
of computing resources, the algorithm falls into the local
optimum and cannot further approach the ideal Pareto front.
The decrease of the cylinder gradually becomes stable, which
shows that with the increase of the computing resources of
the subproblem, the subproblem getsmore excellent solutions
to reproduce, so that it can jump out of the local optimum,
which is conducive to improving the convergence of the
algorithm. But at last, the column rises, which shows that too
much computing resources will make the population produce

too many copies when updating sub problems, hinder the
evolution of the population, and reduce the quality of solution
set.

Thus, for different subproblems in different stages and only
in the appropriate neighborhood size, the limited algorithm
resources can be maximized to maintain the diversity of the
solution set and improve the convergence performance of the
algorithm. Therefore, the most suitable control parameters of
MOEA/D-ANA are set as β = 0.82 and Tmax = 30.

D. ALGORITHM STEPS
The Tchebycheff function is a common aggregation function
method used in the decomposition of MOEAS. To alleviate
the difficulty in maintaining the diversity of the algorithm,
this paper adopts the improved version of Tchebycheff in
MOEA/D-DU [19]:

g(x|λ,Z∗) = max
16i6k

{
1
λi
|fi(x)− Z∗i

}
(8)

where λ = (λ1, λ2, · · · , λk ) is the weight vector of uniform
distribution, and Z∗ is the ideal point.

Compared with the original Tchebycheff function, this
improved version has two advantages [19]: 1) the uniformly
distributed weight vector renders the search direction in the
target space uniform, and 2) each weight vector corresponds
to the optimal solution on the unique Pareto front (PF).
The mathematical proof can be found in reference [11]. The
MOEA/D-ANA is shown in Algorithm 3.

Algorithm 3MOEA/D-ANA
Input: Multi-objective Optimization Problem; Termination

condition; Population size; the maximal number of neigh-
borhood size Tmax ; A set of uniform reference vectors
W ←

{
λ1, λ2, · · · , λN

}
; the difference parameter β;

Output:
{
x1, · · · , xN

}
;
{
f (x1), · · · , f (x i)

}
Initial the population: P←

{
x1, x2, · · · , xN

}
;

Initialization the ideal point: Z∗← (Z1,Z2, · · · ,Zk )T ;
for gen = 1 to Maxgen do

T = Adaptive-Neighborhood-Adjustment(β,Tmax);
for i = 1 to N do

if rand() < δ then
B← B(i);

else
E ← 1, 2, · · · ,N ;

end if
y← GenticOperators(xk , xl);
UpdateIdealPoint(y,Z∗);
UpdateNeigh(y,Z∗,W ,B(i),P);

end for
end for
return All non-dominated solutions in P

IV. SIMULATION EXPERIMENT AND ANALYSIS
The experimental environment is an Intel(R) Core(TM)
i7-4770HQ CPU @2.20 GHz and 16.0 GB. To verify the
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performance of MOEA/D-ANA, it is compared with that
of the typical algorithms MOEA/D [8], MOEA/D-GR [18],
MOEA/D-DU [19], and MOEA/D-DN [23]. To reduce the
deviation of the experimental results caused by random fac-
tors, each test function was run 20 times independently in this
experiment, and its mean value and standard deviation were
calculated as the final test results of this experiment.Bold
font in Table means that compared with other comparison
algorithms, the Algorithm has the best results.

This process selects three indicators to measure the per-
formance of the algorithm in different aspects. Generation
distance (GD) [27] is used to measure the convergence of the
algorithm, and the smaller the value, the closer the solution set
of the algorithm is to PF, indicating better convergence. The
uniformity index (SP) [28] is used to measure the uniformity
of the solution set distribution, and the smaller the value, the
more uniform the distribution, and the better the diversity of
the solution set. The inverse generation distance (IGD) [29]
is used to measure the overall performance of the algorithm,
and the smaller the value, the higher the overall quality of the
solution set obtained by the algorithm.

A. PARAMETER SETTING
In this work, we consider the 2-objective ZDT problems
(ZDT1-4 and ZDT6) [30] as test objects, and the evolu-
tionary generation is set as 300. We select DTLZ problems
(DTLZ1-4) [31]with 3-, 4- and 5-objective tests. For the
3- to 5-objective problems, the evolutionary generation of
the DTLZ2 and DTLZ4 populations is set to 500. For the
3-objective problems, the maximum evolutionary generation
of DTLZ1 and DTLZ3 is set to 1000; for the 4-objective
problems, it is set to 2000; and for the 5-objective problems,
it is set to 3000. The specific parameter settings are shown in
Table 1:

TABLE 1. Parameter settings.

B. PERFORMANCE COMPARISON BETWEEN NA
STRATEGY AND ANA STRATEGY
The neighborhood size of each comparison algorithm is
set as follows: the neighborhood scale of MOEA/D and
MOEA/DDU is T = 20, and the neighborhood scale of
MOEA/D-GR is T = 10.. To prove the effectiveness of the
ANA strategy, the control variable method is used to set the
neighborhood size of the MOEA/D-DN algorithm using the
differentiated domain strategy on the DTLZ series functions
to set Tmax = 30 and Tmin = 5. The control parameters
of MOEA/D-ANA are set as β = 0.82 and Ti ∈ [5, 30],
θi ∈ [0◦, 45◦].

To verify the effectiveness of the NA strategy and ANA
strategy proposed in this paper, the GD, SP and IGD indices
of MOEA/D-ANA, MOEA/D-NA and MOEA/D on the ZDT
problems are tested, and they are measured with respect to the
convergence, the uniformity of the solution set distribution
and the performance of the algorithm. After each ZDT prob-
lems is run 20 times, the mean value and standard deviation
of the results are taken as the final test results. And T-test
was used to test the significance of the algorithm performance
improvement after adopting NA strategy and ANA strat-
egy. Where ‘‘+’’, ‘‘−’’ and ‘‘=’’ indicate that the measured
index value is at a significant level of 5%, MOEA/D-NA
is better than, inferior to, or not different from MOEA/D,
MOEA/D-ANA is superior, inferior, or not different from
MOEA/D-NA. As shown in Table 2.

It can be observed from Table 2 that in the ZDT problems,
with use of the NA strategy, the convergence, uniformity
and comprehensive performance of the solution set solved by
MOEA/D-NA are mostly better than those of MOEA/D. The
results show that the optimal neighborhood size of the same
subproblem is different in different stages. In the early stage,
the larger neighborhoodmaintains the diversity of the popula-
tion and avoids loss of the optimal solution. In the later stage,
a smaller neighborhood size is allocated to each generation of
the subproblem to avoid the waste of algorithm resources and
promote the population convergence. This result verifies the
effectiveness of the NA strategy. However, the improvement
in the algorithm performance is not significant because in
the same period, the optimization difficulty of the different
subproblems is different, and the same neighborhood scale
cannot make each subproblem obtain the optimal solution.

Figure 8 shows the PF obtained byMOEA/D,MOEA/D-NA
and MOEA/D-ANA algorithm and the ideal PF on the 2D
ZDT test function, so as to directly measure the uniformity
of the set distribution solved by the algorithm and the con-
vergence of the algorithm. It can be seen from Figure 8 (d)
that at the end of population evolution, MOEA/D-ANA has
completely converged to Pareto frontier, while MOEA/D
and MOEA/D-NA have fallen into local optimum. From the
other four test functions except Figure 8 (d), it can be seen
intuitively that at the end of population evolution, although
the three algorithms have converged to the front, the conver-
gence effect MOEA/D-ANA is the best, MOEA/D-NA is the
second, MOEA/D is the worst.

Therefore, based on the NA strategy, we make further
improvements and propose the ANA strategy according to
the difficulty of different subproblems. It can be observed
from Table 2 that with use of the ANA strategy, the con-
vergence and comprehensive performance of the solution set
of the algorithm are not only significantly superior to those
of MOEA/D but also strictly superior to those of MOEA/D-
NA. The solution set uniformity is mostly weakly superior to
those of MOEA/D and MOEA/D-NA. The results show that
the ANA strategy can significantly improve the convergence
and overall performance of the algorithm by not affecting the
diversity of the algorithm.
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TABLE 2. Comparisons of GD, SP and IGD indices before and after improvement.

FIGURE 6. GD index curve of two strategies on 2D ZDT test function.

Figure 6 shows the change curve of the GD index on the
ZDT problems inwhich the two strategies are used tomeasure
the convergence speed and accuracy of the algorithm. In the
early stage of evolution, the GD index curve using the ANA
strategy shows a rapid downward trend, thus converging to the
PF. MOEA/D and MOEA/D-NA not only converge slowly
but also gradually stabilize after 250 generations. On the

ZDT3 problem (discontinuous, multimodal), MOEA/D and
MOEA/D-NA waste limited resources in discrete areas.

On the ZDT4 problem (continuous convex, multimode),
compared with that of MOEA/D and MOEA/D-NA, the
accuracy of the GD value obtained by MOEA/D-ANA is
increased by 2 orders of magnitude, and the accuracy of
the SP value and IGD value are increased by 1 order of
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FIGURE 7. IGD box graphs of two strategies on 2D ZDT test functions.

FIGURE 8. Pareto fronts of 3 algorithms on ZDT test functions.

magnitude. Moreover, from Figure 6(d), when the GD index
curve of MOEA/D-ANA tends to be stable and convergent
after 150 generations, MOEA/D and MOEA/D-NA are still
undergoing slow iteration and eventually do not converge.
The reason for this result is that in the target space, the initial
population of ZDT4 is located far away from the PF, which
makes it more difficult for the population to quickly converge
to the PF. However, the continuous convex and multimodal
function characteristics make it easy for the algorithm to fall
into local optima. Moreover, due to the different degree of
difficulty in the optimization of different subproblems, the

neighborhood of the same scale cannot ensure that the new
solution generated by the population can jump out of the local
optimum.

Figure 7 shows the statistical box chart of the IGD index
values of the two strategies used on the 2-objective ZDT
problem to directly measure the overall quality of the solution
set of the algorithm and the stability of the algorithm.We note
that the quartile distance of MOEA/D-ANA in the box graph
(the shortest box length) is far less than that of MOEA/D and
MOEA/D-NA, and the outliers are fewer or even none, which
shows that the stability of the MOEA/D-ANA algorithm is
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TABLE 3. GD Index test results of 4 algorithms in 3 to 5-objective DTLZ problem.

TABLE 4. IGD indicator test results of 4 Algorithms in 3- to 5-objective DTLZ problem.

high and that the overall quality of the solution set is better.
The median (red line) and maximum value of MOEA/DANA
in the box chart are significantly lower than those of the
two improved algorithms, which shows that the accuracy and
performance of the MOEA/D-ANA algorithm are better.

By applying the ANA strategy to dynamically adjust the
size of each generation neighborhood of each subproblem and
allocate the algorithm resources effectively, the convergence
accuracy and speed of the algorithm can be significantly
improved under the premise of maintaining the diversity of
the algorithm to avoid the algorithm falling into local optima
and improve the overall quality of the solution set of the
algorithm. The experiments show the effectiveness of the
ANA strategy.

C. ALGORITHM PERFORMANCE COMPARISON
To verify the overall performance of MOEA/D-ANA in
the multi-objective optimization problem, GD and IGD are
used to measure the convergence and set uniformity of
MOEA/D, MOEA/D-GR, MOEA/D-DU, MOEA/D-DN and

MOEA/D-ANA in the 3- to 5-objective optimization prob-
lem. To avoid deviation of the result caused by random fac-
tors, each test function is run 20 times independently, and its
mean value and standard deviation are taken as the final test
results.

1) ALGORITHM CONVERGENCE ANALYSIS
Table 3 shows the GD index test results of the 5 algorithms
on the 3- to 5-objective DTLZ problem. To more intuitively
reflect the convergence of the algorithm, Figure 9 shows
the curve of the GD index of the 5 algorithms on the 3- to
5-objective DTLZ problem changing with the evolutionary
generation.

From Table 3, we observe that the mean value and standard
deviation of the convergence (GD index value) obtained by
MOEA/D-ANA are strictly superior to those of the other
three comparison algorithms in the 3- to 5-objective DTLZ1
and DTLZ3 problems because the DTLZ1 and DTLZ3 prob-
lems are complex multimodal problems, and multiple local
optimal solutions exist. This situation makes optimization of
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FIGURE 9. GD evolution curve of 4 algorithm on 3 to 5-objective DTLZ problem.

the different subproblems difficult and easy, and the initial
population is located far away from the PF in the target
space. Therefore, the algorithm requires additional evolution-
ary generations to converge to the PF. Thus, the ANA strategy
can improve the convergence of the algorithm and avoid
falling into the local optimum in the process of the algorithm
search by reasonably allocating the optimal neighborhood
size for different subproblems in different periods.

It can be observed from Figure 9 that for the 3-objective
DTLZ3 problem, MOEA/D-ANA must rapidly converge to
the Pareto front when the population evolves to 500 gen-
erations. However, MOEA/D, MOEA/D-GR, MOEA/D-DU
and MOEA/D-DN only converge to the Pareto front when
there are 1000 generations, and the final test value is still
inferior to that of MOEA/DANA. For the 4-objective DTLZ1
and DTLZ3 problems, MOEA/D-ANA rapidly converges
to the PF when they evolve to 1000 generations, whereas
MOEA/D, MOEA/D-GR, MOEA/D-DU and MOEA/D-DN
need to evolve to at least 1600 generations. For the 5-objective
DTLZ1 and 3-objective problems, MOEA/D-ANA can con-
verge to the PF when the population evolves to 2000 gen-
erations, whereas the comparison algorithm cannot converge
to the PF when the population evolves to the end. This
result shows that the objectives are few, the complexity of
the algorithm is low, and the population evolves to a certain
algebra and that MOEA/D, MOEA/D-GR, MOEA/D-DU

and MOEA/D-DN can all converge to the PF. With the
increase in the objective, the complexity of the algorithm
also increases. Even if the population has sufficient evolu-
tionary generations,MOEA/D,MOEA/D-GR,MOEA/D-DU
and MOEA/D-DN fall into the local optimum and cannot
converge to the PF. However, MOEA/D-ANA maximizes the
limited algorithm resources through the ANA strategy, which
not only makes the population converge to the front faster but
also obtains a higher solution set accuracy.

In the 3- to 5-objective DTLZ2 and DTLZ4 problems,
MOEA/D-DU and MOEA/D-ANA show little difference,
but they are strictly superior to MOEA/D, MOEA/D-GR
and MOEA/D-DN, and this advantage is more obvious with
increasing dimensions. Because the DTLZ2 and DTLZ4 test
functions are simple single-mode problems and the initial
population is close to the PF, the population can quickly con-
verge to the PF in the early stage of the algorithm search. The
difference between the subproblems is not significant, and
thus the improvement effect of the MOEA/D-ANA algorithm
is not obvious in the DTLZ1 and DTLZ3 problems.

Horizontally, MOEA/D-ANA improves the convergence
of problems with complex Pareto solution sets, such as the
DTLZ1 and DTLZ3 test problems. From the vertical point
of view, we can obtain the following conclusions: 1) with
the increase in the objective, the value of the GD index
gradually increases, which shows that the selection pressure
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FIGURE 10. IGD box graph of 4 algorithms on 3- to 5-objective DTLZ problem.

of the solution and the complexity of the algorithm increase
with the increasing target dimension, leading to a decrease in
the convergence of MOEA/D, MOEA/D-GR, MOEA/DDU,
MOEA/D-DN and MOEA/D-ANA with the increasing target
dimension, and 2) with the increase in the objective, the
GD value obtained by MOEA/D-ANA changes minimally,
which shows that the ANA strategy can effectively relieve the
pressure of solution selection in multi-objective optimization
and is conducive to the stability of the algorithm performance
such that the convergence performance of the algorithm is
well maintained in the multi-objective optimization problem.

2) OVERALL PERFORMANCE ANALYSIS OF ALGORITHM
Table 4 shows the IGD index test results of MOEA/D-ANA
and its comparative algorithms MOEA/D, MOEA/D-GR,
MOEA/D-DU and MOEA/D-DN with respect to generation.
To more intuitively reflect the stability of the algorithm,
Figure 10 shows the statistical box chart of the IGD index
values of the four algorithms on the 3-5DDTLZ test function.

From the IGD index test results shown in Table 4,
MOEA/D-ANA is strictly superior to MOEA/D, MOEA/D-
GR,MOEA/D-DU andMOEA/D-DN in terms of the DTLZ1
and DTLZ3 test problems, and MOEA/D-ANA is strictly
superior to MOEA/D, MOEA/D-GR and MOEA/D-DN in
terms of the DTLZ2 and DTLZ4. Except for the dif-
ference between 4- and 5-objective MOEA/D-ANA and
MOEA/D-DU, the test results are strictly better or weaker

than MOEA/D-DU. This result shows that the quality of the
solution set obtained by MOEA/DANA is obviously better
than that of other comparison algorithms. The reason for this
result is that the DTLZ2 and DTLZ4 problems are simple
and continuous single-mode test problems, and the initial
population is relatively close to the PF in the target space.
When the population evolves to a certain algebra, MOEA/D,
MOEA/D-GR, MOEA/D-DU and MOEA/D-DN can obtain
excellent solution sets. However, in the case of complex mul-
timodal DTLZ1 and DTLZ3 test problems, MOEA/DANA
can quickly converge to the PF and obtain a higher quality
solution set. With the increase in objectives, the solution set
quality of the algorithm is stable while the performance of the
comparison algorithm is significantly reduced, which further
reflects the performance of MOEA/D-ANA.

It can be observed from Figure 10 that compared with
the four algorithms of MOEA/D, MOEA/D-GR, MOEA/D-
DU and MOEA/D-DN, the quaternion distance (the shortest
box length) of MOEA/D-ANA is far less than that of the
four comparison algorithms in the 3-5D DTLZ series test
function, and the algorithm does not easily produce abnor-
mal values or less abnormal values (the abnormal value is
indicated by the red plus sign in the figure). Even if the
algorithm produces such values, the outlier is not higher than
the median of the other four algorithms. This result shows
that the stability of the MOEA/D-ANA algorithm is strong
and that the overall quality of the solution set is higher. In the
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TABLE 5. Running time of 5 algorithms on DTLZ problems (Unit: s.)

DTLZ1 and DTLZ3 test functions, the median (red line in the
figure) of theMOEA/D-ANA algorithm is significantly lower
than that of the four comparison algorithms. In the DTLZ2
and DTLZ4 test functions, the median values of MOEA/D-
ANA and MOEA/D-DU are not significantly different and
are significantly lower than those ofMOEA/D,MOEA/D-GR
and MOEA/D-DN, indicating that the algorithm has higher
accuracy and better performance.

These phenomena more intuitively show that the
MOEA/DANA algorithm can adaptively adjust the size of
each generation neighborhood of each subproblem via the
ANA strategy. This approach makes the limited algorithm
resources more efficient, and it can enhance the stability of
the algorithm performance and improve the overall quality of
the solution set of the algorithm.

D. ALGORITHM CONVERGENCE ANALYSIS
The complexity of the algorithm is reflected in the number of
computing resources needed to run the algorithm. The shorter
the running time is, the less computing resources are needed,
which shows that the lower the complexity of the algorithm
and the better the performance of the algorithm. Table 5
shows the running time comparison data of MOEA/D-ANA,
MOEA/D, MOEA/D-GR, MOEA/D-DU and MOEA/D-DN
on DTLZ test functions.

From Table 5, it can be seen that for the same test problem,
when the target dimensions are the same, the running time
of MOEA/D-ANA algorithm is significantly lower than the
other four comparison algorithms. It shows that the algorithm
has low computational complexity and better performance.
With the increase of the objective dimension, the calculation
complexity of MOEA/D-GR and MOEA/D-DU increases
rapidly, which shows that it is unreasonable to allocate the
same neighborhood for each subproblem. MOEA/D-DN uses
differentiated neighborhood, and its running time is signif-
icantly better than the first three comparison algorithms.
However, this algorithm needs to test the appropriate neigh-
borhood size for each test function in advance, and then
set up neighborhood for each test function. The early test
work of this algorithm is more complex and time-consuming.
MOEA/D-ANA strategy uses adaptive method to allocate
neighborhood for subproblems, and its robustness is less

affected by the increase of target dimension. It shows that the
use of ANA strategy can effectively use algorithm resources,
and make algorithm performance better.

V. CONCLUSION
To allocate limited algorithmic resources more efficiently,
this paper proposes a decomposition multi-objective evolu-
tionary algorithm (MOEA/D-ANA) based on the adaptive
neighborhood adjustment strategy. This approach improves
the convergence of the algorithm and the overall quality
of the solution set and also balances the conflict between
the convergence and diversity of the algorithm by adjusting
the neighborhood scale of the same sub-problem in differ-
ent evolution algebras with different values of parameter β
and the neighborhood scale of different sub-problems in the
same evolution algebras with the included angle θ to reason-
ably allocate the limited algorithmic resources to different
sub-problems in each generation. The experimental results
indicate that the MOEA/D-ANA algorithm not only max-
imizes the utilization of limited algorithmic resources and
significantly improves the performance of the algorithm but
also shows good performance in addressing multi-objective
optimization problems with complex Pareto solution sets.
In future work, we will investigate extension of this idea
to multi-objective optimization problems of complex Pareto
solution sets and application to network optimization, path
optimization, plant location and other problems in logistics.
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