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ABSTRACT Semiconductor manufacturing process data usually have multimodel and multiphase character-
istics which do not meet the application assumptions in neighborhood preserving embedding (NPE). Aiming
at the above limitations of NPE, a novel monitoring strategy combining the advantages of the neighborhood
preserving embedding and Gaussian mixture model(NPE-GMM) is proposed. Firstly, the window data are
obtained by the default window width. Next, the score of the current window data set are calculated by NPE.
After that, some Gaussian components of the score are determined by GMM. Finally, a quantification index
is proposed to monitor process status. NPE-GMM can not only maintain more local structure information of
the current window data set in the feature subspace, but also reduce the computational complexity of GMM
in fault detection processes. By introducing the new statistic, NPE-GMM can effectively improve the fault
detection rate of some multimodel batch processes. The effectiveness of the proposed method is verified in
a numerical case and the semiconductor etching process. The simulation results indicated that the proposed
method has a higher fault detection rate than traditional methods.

INDEX TERMS Batch production systems, fault detection, Gaussian mixture model, multimodel, moving
window, neighborhood preserving embedding, process control, semiconductor manufacturing process.

I. INTRODUCTION
With the rapid development of science and technology, it has
been recognized that the industrial production process is
developing towards automation and integration. As an impor-
tant role, batch processes have been widely used in semi-
conductor, chemical, fermentation, pharmaceutical and other
fields [1], [2]. In order to effectively monitor the status of
batch processes, some data-driven methods have been pro-
posed and successfully applied [3]–[5].

As a classical multivariate statistical process con-
trol(MSPC) technique, principal component analysis (PCA)
has been widely used for dimensionality reduction and pro-
cess monitoring [6]. Normally, PCA divides the raw space
into principal component subspace(PCS) and residual sub-
space(RS). However, in PCS, the global Euclidean structure
of process data is usually preserved, and the local struc-
ture information between data points are ignored [7], [8].
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A method based on local structure, neighborhood preserving
embedding(NPE) is a well-applied linear projection tech-
nique [9], [10]. In NPE, the raw space is divided into two
subspaces by a linear transformation, denoted as feature
subspace(FS) and residual subspace(RS). Generally, two
statistics, Hotelling’s T 2 and squared prediction error(SPE),
are used to monitor the status of processes in these subspaces,
respectively. To effectively monitor a process using T 2 and
SPE, it is essential that assumed that the process data follow
amultivariate Gaussian distribution approximately. However,
the unique characteristics of batch processes, such as nonlin-
earity in most batch processes, multimodel batch trajectories
due to product mix, and process steps with variable durations
and multiphase, cause that the process data do not follow
a Gaussian distribution [11]–[13]. Hence, the conventional
mornitoring methods based on PCA and NPE may result in
bias on fault detection [14]. In view of the multiway char-
acteristic of batch process data, some special techniques are
developed for monitoring purposes [15]. For instance, multi-
way PCA(MPCA) proposed by Nomikos et al. is utilized in
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a semibatch reactor for the production of styrene-butadiene
latex [16], multiway kernel PCA(MKPCA) proposed by
Lee et al. is applied in a simulation benchmark of fed-batch
penicillin production [17]. It should be noted that these
techniques are only suitable for monitoring the status of
a single-model process. Their fault detection capability
is degraded when the status of a multimodel process is
monitored. Considering above the issues, Gaussian mixture
model(GMM) is proposed and extensively employed in batch
processes [18], [19]. Nevertheless, GMMmay not efficiently
capture the local features for some complex processes [20].

Above all, a novel monitoring strategy combining the
advantages of the neighborhood preserving embedding and
Gaussian mixture model(NPE-GMM) is proposed. The paper
is organized as follows. In section 2, the conventional NPE,
MNPE and GMM are briefly introduced. The proposed mon-
itoring strategy is introduced in section 3. The result of a
numerical case is presented in section 4. Section 5 illus-
trates the performance of NPE-GMM based monitoring
method through a simulation of the batch semiconduc-
tor etching process. Section 6 gives conclusions of this
paper.

II. BASIC THEORY
A. MULTIWAY NEIGHBORHOOD PRESERVING
EMBEDDING
In this section, the conventional NPE and MNPE are briefly
introduced. Suppose that X = [x (1) , x (2) , · · ·, x (m)]T is a
data set with m samples, where x (i) ∈ Rn (i = 1, 2, · · ·,m) .
In NPE, we can determine weight matrixW by minimizing

reconstruction error as follows:

φ (W ) = min
m∑
i=1

∥∥∥∥∥∥x (i)−
m∑
j=1

wijx (j)

∥∥∥∥∥∥
2

s.t.
m∑
j=1

wij = 1 (1)

where wij is a weight parameter between x(i) and x(j), and if
x(j) is not the first k neighbors of x(i),wij = 0.
Generally, we suppose that y=Xa. The vector a is

computed through minimizing the following cost function
under appropriate constraints [10]. The cost function is as
follows:

min
m∑
i=1

∥∥∥∥∥∥y (i)−
m∑
j=1

wijy (j)

∥∥∥∥∥∥
2

s.t.aTXTXa = 1 (2)

LetM=(I-W)T(I-W), the optimization problem of Eq.(2) can
be transformed into a generalized eigenvector problem as
follows:

XTMXa = λXTXa (3)

The eigenvalues obtained from Eq.(3) are arranged in
ascending order. The eigenvectors corresponding to the
first d eigenvalues constitute the projection matrix A =
(a1, a2, a3, · · ·, ad).

For batch process data X I×J×K (I , J and K denote
the number of batches, time steps and process variables

FIGURE 1. Three-dimensional data set unfolded to two-dimensional.

FIGURE 2. The MNPE modeling.

at each time instance, respectively). The basic idea of
MNPE is that the conventional NPE is implemented in a
two- way matrix unfolded from a raw three-way matrix.
In this subsection, the array-data X I×J×K is unfolded into
a large matrix X I×JK , which is shown in Fig.1. For the
jth time slicematrix X I×jK (j = 1, 2, · · ·, J) , its scoreT I×jK
as follows:

T I×jK = X I×jKAj (4)

where Aj is the projection matrix of conventional NPE,
the MNPE modeling is shown in Fig.2.

For monitoring the status of batch process, the T 2 is con-
structed as the measure of variation in the FS [21]. It is
defined as follows:

T 2
i,j = xi,jAj3−1j AT

j x
T
i,j (5)

where xi,j represents the jth time in the ith batch of X, Aj is
calculated by Eq.(3) and3j is the covariance diagonal matrix
of matrix X I×jK.

B. GAUSSIAN MIXTURE MODEL
Let X =

[
x (1) x (2) · · · x (m)

]T is a data set with m
samples, where x (i) ∈ Rn (i = 1, 2 · ··,m). GMM assumes
that the data consist of C Gaussian components with dif-
ferent means and variances. The conditional probability
p
(
x (i)

∣∣Cj ) (i = 1, 2, · · ·,m; j = 1, 2, · · ·,C) that the sam-
ple x(i) belongs to the jth Gaussian component is calculated
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by Eq.(6).

p
(
x (i)

∣∣Cj )
=

1

2π
∣∣6j
∣∣1/2 exp

(x (i)T−µ (j)T)6−1j (
x (i)T−µ (j)T

)T
2


(6)

where µ (j) and 6j are mean column vector and covariance
matrix of the jth Gaussian component, respectively, we can
calculate the probability that the sample belongs to the jth
Gaussian component as follows:

p
(
x (i) ∈ Cj

)
=

p
(
x (i)T

∣∣Cj )Pj
C∑
j=1

p
(
x (i)T

∣∣Cj )Pj (7)

where Pj represents the prior probability of the jth Gaus-
sian component. µj,6j and p

(
x (i)

∣∣Cj ) can be iteratively
obtained by the EM algorithm.

E-step:

P(l)
(
x (i) ∈ Cj

)
=

P(l)j p
(l)
(
x (i)T |∈ Cj

)
C∑
j=1

P(l)j p
(l)
(
x (i)T |∈ Cj

) (8)

where P(l)
(
x (i) ∈ Cj

)
is the posterior probability that the

sample belongs to the jth Gaussian component during the
lth iteration.

M-Step: (9)–(11), as shown at the bottom of this page,
where µ(l+1)j and 6(l+1)j are the mean and covariance matrix

of the jth Gaussian component, and the P(l+1)j is posterior
probability during the l + 1th iteration.

Calculate the label c of the x (i) using Eq.(12)

c = arg max
j=1,2···C

P
(
x (i) ∈ Cj

)
(12)

where c represents the index of the jth Gaussian component
in which sample x (i) is located.

FIGURE 3. Moving window diagram.

III. A NOVEL MONITORING STRATEGY COMBINING THE
ADVANTAGES OF THE NEIGHBORHOOD PRESERVING
EMBEDDING AND GAUSSIAN MIXTURE MODEL
A. NPE-GMM
Considering the status of samples in multimodel batch pro-
cesses, a novel monitoring strategy combining the advantages
of the neighborhood preserving embedding and Gaussian
mixture model(NPE-GMM) is proposed.

In this subsection, NPE-GMM strategy is detailedly intro-
duced. Firstly, a window data are obtained by the default
window width. According to the default window width and
the moving step, a new window data set is updated through
including the newest data and excluding the oldest one [22].
Moving window technique is shown in Fig.3.

Secondly, it is well known that data preprocessing is an
important step for making the variables of data X (k) in the
same order of magnitude. The data is preprocessed by the
following Eq.(13).

X̂ (k) = (X (k)− 1IM (k))3−1 (k) (13)

whereM (k) and3 (k) are mean column vector and standard
deviation diagonal matrix of X (k), respectively, and 1I is a
vector of I × 1 dimension.
Next, NPE is used to reduce the dimension of the data by

Eq.(14), because the moving window technique increases the
number of variables dramatically,

Y (k) = X̂ (k)Ak (14)

where Ak is calculated by Eq.(3). Y (k) remains most of the
local structure information of X̂ (k).
Then, in Y (k), C is obtained by cross-validation

method [23]. Meanwhile, the cth Gaussian component

µ
(l+1)
j =

m∑
i=1

P(l)
(
x (i)T ∈ Cj

)
x (i)T

m∑
i=1

P(l)
(
Cj
∣∣x (i)T ) (9)

6
(l+1)
j =

m∑
i=1

P(l)
(
x (i)T ∈ Cj

) (
x (i)T −

(
µ
(l+1)
j

)T)T (
x (i)T −

(
µ
(l+1)
j

)T)
m∑
i=1

P(l)
(
x (i)T ∈ Cj

) (10)

P(l+1)j =

m∑
i=1

P(l)
(
x (i)T ∈ Cj

)
m

(11)
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parameters, such as the mean vector µc and the diagonal
matrix of variance 6c, are determined by Eqs.(7-10).
After that, the statisticsMD2

i (k) of Y i (k) (i = 1, 2, · · ·, I )
are calculated by Eq.(15).

MD2
i (k)

=

kk∑
j=1

[(
Y i(k)−µc(k)

)
6−1/2c (k)−

(
Y ji(k)−µc(k)

)
6−1/2c (k)

]
2

(i = 1, 2, . . . , I ) (15)

where the Y i (k) belongs to cth Gaussian component, Y ji (k)
is the jth neighbor of Y i (k) in the Gaussian component. And
then Eq.(15) is rearranged as follows:

MD2
i (k) =

kk∑
j=1

[(
Y i (k)− Y

j
i (k)

)
6−1/2c (k)

]2
(16)

Finally, the control limitMD2
α (k) is determined according

to the kernel density estimation method(KDE) [24]. The con-
fidence level α in this paper are all selected as 99%.

The detailed fault detection procedure based onNPE-GMM
method consists of two parts: offline modeling and online
detection.

Step1: Offline modeling
For the training sample X I×J×K , the fault detection part

consists of seven steps.
1). Obtain the X I×JK by unfolding X.
2). Determine the width and moving step of the moving

window.
3). Preprocess of the data X (k) by Eq.(13).
4). Calculate the score Y (k) by Eq.(14).
5). Calculate the parameters of Gaussian components, such

as C , µc, 6c.
6). Calculate the statisticMD2

i (k) by Eq.(16).
7). Determine the control limitMD2

α (k) for fault detection.
Step2: Online detection
For the test sample x̃J×K , the fault detection part consists

of six steps. The parameters used in the online detection phase
are the same as those in the offline modeling phase.

1). Obtain the x̃1×JK by unfolding x̃J×K .
2). Preprocess of the data x̃J×K as follows.

x̂ (k) = (x̃ (k)−M (k))3−1 (k) (17)

3). Calculate the score y (k) by Eq.(14).
4). Calculate the label c of Gaussian component of y (k)

in Y (k) by Eq.(12).
5). Calculate theMD2 (k) by Eq.(18).

MD2 (k) =
kk∑
j=1

[(
ỹ (k)− Y j (k)

)
6−1/2c (k)

]2
(18)

6). Compare MD2 (k) with the control limits MD2
α (k).

If MD2 (k) < MD2
α (k), x̃1×JK is classified as a normal

sample. Otherwise, it is detected as a fault sample.

B. NOTICE
(1). When parameters of the moving window are determined,
the moving step is usually chosen as process variables at each
time instance k , and the windowwidthw is usually set as 3k to
5k , because the w is too short to effectively obtain the sample
status between adjacent moments, and it is too long to make
them responsive to process fault.
(2). The dimension of FS is related to moving win-

dow width and the dimension of data increases with
width.
(3). The parameter kk in MD2 should be smaller than the

parameter k in NPE, because NPE keeps the local structure
of the sample and its k nearest neighbors.
(4). The fault detection rate will be different every time

GMM is applied, because the results of each iteration of
GMMwill be slightly different. In order to solve the problem
that the fault detection rate is inconsistent in each experiment,
the average of the fault detection rate of several experiments
in this paper is taken as the final fault detection rate.

C. ANALYSIS
In order to reduce the computational complexity, it is neces-
sary to reduce data dimension. Meanwhile, some character-
istics of batch process data, such as multimodel and multi-
phase, need to be preserved when dimensionality is reduced.
As a linear dimensionality reduction algorithm, NPE aims to
preserve the local neighborhood structure of data set. Hence,
some characteristics of industrial data can be retained in the
FS of NPE.
The advantage of GMM is that GMM could monitor pro-

cess changes without knowing the abnormal pattern [25].
But, in cases for which the data dimension is large, the data
are sparse occasionally, so it is difficult to determine GMM
model [26]. It is noted that NPE could alleviate these dif-
ficulties. Therefore, NPE-GMM is proposed in this paper,
which combines the advantages that NPE can contain the
local structure of the data in FS and GMM can effectively
classify data.
At the same time, NPE-GMM adopts Mahalanobis dis-

tance as the statistic which can eliminate themultimodel char-
acteristic of the statistical value. Therefore, compared with
some traditional methods, NPE-GMM method has higher
fault detection rate in industrial processes with multimodel
characteristics.

IV. CASE STUDY
In this section, we use an improved dynamic process based
on Ref [27] to test the performance of NPE-GMMmethod in
fault detection. The model is given by

x (t) =
[
0.118 −0.191
0.847 0.264

]
x (t − 1)+

[
1.0 2.0
3.0 −4.0

]
u (t − 1)

(19)

y (t) = x (t)+ v (t) (20)
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TABLE 1. Parameter settings of w .

TABLE 2. Parameter settings of different fault detection methods.

where u is the correlated input

u (t) =
[
0.811 −0.266
0.477 0.415

]
u (t − 1)

+

[
0.193 0.689
−0.320 −0.749

]
w (t − 1) (21)

where u(0)= w(0)=[0 0]T. The normal data have 100 batches
and each batch has 1020 sampling instants. The last
1000 samples of each batch are used for analysis because
the first 20 samples change greatly. The data vector for
modeling consists of

[
yT (k) yT (k − 1) uT (k) uT (k − 1)

]
,

because input u and output y are measured but x and w are
not. v(k) is the random noise with zero mean and
variance 0.1. These phases are determined by the input w
whose parameter settings are shown in Tab.1

Faults are generated by adding small change in the mean
of w in model 1 after the 501th sample. The 4 normal batches
data are selected as the calibration data randomly, and the test
batch data are composed of the calibration batch and the fault
batch. The plots of monitored variables are shown in Fig.4,
where the blue part represents the normal data, while the
red line represents the fault data. It can be seen that faults
occurred at the 501th time. In this section, we apply MPCA,
MNPE and NPE-GMM in this case and then compare their
performance. The parameter settings of different methods are
listed in Tab.2.

Fault detection results of the calibration data set in MPCA
are shown in Fig.5, where there is a significant difference
in the statistical values between model 1 and 2. The value
of the control limit is completely determined by model 2.
At the same time, it can be seen that the statistical values also
differ between different stages of the same model, so their
control limit centers are different. Its fault detection rate using
MPCA are shown in Fig.6. Meanwhile, fault detection rate is
0, because process data with multimodel characteristics do
not follow Gaussian distribution. It can be seen that the fault
detection rate of MNPE is 0. The main reason that MNPE has
the poor performance is the same as MPCA.

The results of GMM classification in FS are shown
in Fig.8. It can be found that the data are divided into two
models which have different means and covariances. Fault

FIGURE 4. The plot of batch data variables.

FIGURE 5. Fault detection results of the calibration data set in MPCA.

FIGURE 6. Fault detection results using MPCA.

detection results of the calibration data set in NPE-GMM are
shown in Fig.9. It can be found that the statistical values and
control limits are basically at the same level, which indicates

VOLUME 8, 2020 82993



C. Zhang et al.: Novel Monitoring Strategy Combining the Advantages of NPE and GMM

FIGURE 7. Fault detection results using MNPE.

FIGURE 8. The plot of GMM classification results in FS.

that NPE-GMM method eliminates the differences in means
and covariances between two models. Fig.10 gives the results
of NPE-GMM online fault detection. It can be found that
NPE-GMM can timely detects faults. Fig.11 shows the fault
detection chromatogram of the test batch, where the black
part indicates the fault. We can see that NPE-GMM has a
higher fault detection rate and a lower fault alarm rate than
other methods. Above all, compared with other methods,
we can find that NPE-GMM has the best performance in fault
detection.

V. SEMICONDUCTOR MANUFACTURING PROCESS
With the rapid development of high-tech industry, semi-
conductors have been paid more and more attention as an
important part of technology products. Therefore, online
monitoring of semiconductor production processes has
become a research hotspot. In this section, the data set is
derived from a semiconductor etching process at Texas instru-
ments [11], [28]. The multiphase is the most important char-
acteristic of this process, which brings some challenges for

FIGURE 9. Fault detection results of the calibration data set using
NPE-GMM.

FIGURE 10. Fault detection results using NPE-GMM.

FIGURE 11. The chromatogram of fault detection using NPE-GMM.

fault detection [4]. The semiconductor data set is generated by
three experiments, so data have different means and covari-
ances [10]. The process produced 108 normal wafers and
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TABLE 3. Monitoring variables in the semiconductor etching process.

FIGURE 12. The plot of GMM classification results in FS.

FIGURE 13. Fault detection results of the calibration data set using
NPE-GMM.

21 fault wafers. Due to lack of data in some wafers, this paper
uses 107 normal wafers and 20 fault wafers for modeling and
testing [28]. According to the Ref [29], a total of 17 variable
which are shown in Tab.3 are used to monitor the process.

In the data set, different batches have different durations.
Therefore, 6-85 sampling instants of semiconductor data are
selected for modeling. Test data consist of 3 normal batch
data and 20 fault batch data. In this section, a total of 104

FIGURE 14. Fault detection results of the NPE-GMM in fault10.

TABLE 4. Fault detection rate of different methods.

training batches and 23 test batches are used for modeling and
monitoring. By cross-validation [30], the parameter settings
as follows: (1).in MPCA, PCs=5; (2) in MNPE, PCs=9, k =
9; (3) in NPE-GMM, w = 3, PCs=20, k = 9, kk=5.
Fig.12 shows the results of GMM classification of the

training data in FS. It can be seen that the data are divided
into three models with different means and covariances.
Therefore, traditional MPCA and MNPE show poor per-
formance in fault detection. Fault detection results of the
calibration data set in NPE-GMM are shown in Fig.13, it can
be found that the most of normal test samples are below
the control limit, which indicates that NPE-GMM model
has better stability. In order to illustrate the effectiveness
of the proposed method, traditional MPCA and MNPE are
tested. Tab.4 gives fault detection results of different methods,
it can be found that NPE-GMM has the higher detection rate
than others for most of faults. At the same time, the highest
fault detection rate of each test batch is marked in bold.
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FIGURE 15. Fault detection results of the NPE-GMM in fault19.

Fig.14 and 15 give monitoring results of fault 10 and 19
using NPE-GMM, respectively. From the Ref [31], we know
that fault 10 and 19 belong to experiment 30 and
31, respectively. Above all, it can be found that NPE-
GMM can effectively identify the faults generated in
different models.

VI. CONCLUSION
In view of the problem that the fault detection in multimodel
batch processes exists limitation, a novel monitoring strat-
egy combining the advantages of the neighborhood preserv-
ing embedding and Gaussian mixture model is proposed.
NPE-GMM can not only effectively eliminate multimodel
characteristic of the data throughGMM, but also significantly
improve fault detection rate by the proposed statistic. The
effectiveness of NPE-GMM is verified by a numerical case
and the semiconductor batch processes.
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