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ABSTRACT In this paper, a wideband 3 dB hybrid 180° rat-race coupler is introduced in the printed ridge
gap waveguide technology. It has simultaneous wide matching and isolation bandwidth with low output
amplitude imbalance. It operates in the millimeter wave band from 25.8 to 34.2 GHz (27.96%) with 15 dB
return loss and isolation, and +0.5 dB output amplitude imbalance. The proposed design employing an
open stub at the middle of the 34 /4 branch line and quarter wavelength lines at all the ports of the coupler.
The objective of the added open stub is to separate the output ports amplitudes around the -3 dB level
by certain values depending on the required amplitude imbalance. The analytical derivation for the role
of the added open stub is presented along with a parametric study on its effect on amplitude imbalance,
matching, and isolation. This results in having two intersection points for the output ports instead of one
of the conventional coupler and hence the amplitude imbalance bandwidth increases. The objective of the
added quarter wavelength lines is to improve the matching and isolation bandwidths. First, the conventional
rat-race coupler is presented and a bandwidth of 14.25% at 30 GHz is achieved. After that the rat-race with
the added quarter wavelength lines is presented to illustrate the objective of the added quarter wavelength
lines and a bandwidth of 19.44% is achieved. Finally, the rat-race with the quarter wavelength lines and the
added stub is presented and a prototype is fabricated and measured. The s-parameters measurements are in

a good agreement with the simulated ones.

INDEX TERMS Printed ridge gap, rat race coupler, millimeter wave components.

I. INTRODUCTION

The Millimeter wave (mmw) band has gained a great atten-
tion in the research society. It opens up a broadband spectrum
for a wide range of applications such as the next generation
(5G) communication, automotive radar, remote sensing and
security imaging [1]-[4]. Therefore, there is a need for new
mmw devices to meet such huge spectrum. It is well-known
that the conventional microstrip components is lossy at this
frequency band. Thus, other waveguide structures become
mandatory. One of the promising prototyping technologies
is the ridge gap waveguide (RGW), where the propagating
mode is the QTEM mode that has a small signal distortion.
Another advantage of the RGW structure is that the wave
propagates in air. Therefore, dielectric losses are eliminated.
Moreover, the structure is closed which eliminates the radi-
ation losses. There are two types of the ridge gap waveg-
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uide based on the fabrication technology. The first is the
metal RGW introduced by Zaman et al. [5], Kildal [6], and
Kildal et al. [7] where the computer numerical control (CNC)
machining is used in the fabrication. The second is the printed
RGW (PRGW) [8] where the printed circuit board (PCB)
technology is used. RGW and PRGW technologies have
been used in the design and implementation of several com-
ponents such as couplers and antennas at different frequencies
including 15 GHz [9], [10], 30 GHz [11]-[15], and 60 GHz
[16]. In this paper, PRGW is used to implement a wideband,
low cost, and light-weight rat-race coupler compared to the
metallic one. More importantly, it is easily integrated with
other devices and chips on PCB boards.

Rat-race coupler has important role in many microwave
circuits. It provides equal power division with in-phase and
out of phase characteristics, depending on the feeding port. It
is used in mixers and differential feeding network. It has been
implemented in different technologies such as microstrip
line, substrate integrated waveguide (SIW), and ridge gap
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waveguide (RGW). Several techniques to improve the band-
width and reduce the size are used. In [17], a full optimized
rat-race coupler with quarter wavelength transformers at all
ports is presented where a maximum bandwidth of 50.6% is
achieved. However the impedance ratio is high (1:8.75) which
leads to fabrication challenges. A technique to decrease the
size and increase the bandwidth is implemented by using a
180° phase inverter with only one quarter wavelength section
instead of the 3A/4 branch, using short lines reduces the
frequency dependency of the rat-race coupler. This technique
was first introduced theoretically by S. March in 1968 [18],
where a shorted coupled line coupler section with A /4 length
is used instead of the 31/4 section. In [19], two quarter
wavelength coupled line coupler are added to the structure in
[18] to have different impedances at two ports of the rat-race
coupler with wide bandwidth. The same technique is imple-
mented in the coplanar waveguide [20], [21], finite-ground-
plane coplanar waveguide (FGCPW) [22], and inter digit
coplanar waveguide [23]. This technique needs uniplanar
waveguide structure that facilitates making the phase inverter
either by using bonding wires or conductive tape without
increasing the size of the structure. In [24], this technique
is combined with adding quarter wavelength transformers at
all ports to further increase the bandwidth. Also, replacing the
3)1/4 by a 1/4 left handed transmission line gives the same
effect [25]-[27]. Moreover, lumped elements are used for size
reduction by replacing the transmission lines [28]-[30] or
loading the transmission lines and reduce its electrical length
[31]. Also, slow wave waveguides have been used to reduce
the size as in [32], [33]. Finally, cascading of rat-race couplers
is used to have a wideband as in [34]. These techniques are
valid for low operating frequencies as there is enough area
to build left handed transmission line, slow wave structures,
or to use lumped elements. However, at high frequencies, the
devices become very small and there is no enough area to
build artificial transmission lines or to use lumped elements
with the current PCB technology.

For high frequency devices, new guiding structure tech-
nologies such as substrate integrated waveguide (SIW) and
ridge gap waveguide are considered good candidates. The
SIW has been used to build rat-race coupler [35]. However, as
the propagating mode is TE o and the width of the waveguide
is large, the A/4 section can not be realized and 51/4 is
used instead. This increases the frequency dependency of
the structure and the bandwidth is only 10%. Then it has
been optimized in [36] to reach 30%. Several techniques
has been used to reduce the over all size of the SIW rat-
race such as using half mode SIW [37], folded SIW [38] or
ridge SIW with slow wave [39]. All of these works suffer
from the dielectric losses in SIW technology. Considering the
ridge gap waveguide, to the authors’ best knowledge, only
one article has been found [40] in metal RGW technology
and using conventional rat-race with only 12.1% bandwidth
around 16.5 GHz.

In this paper, a wideband rat-race coupler is designed at
the millimeter wave band using the PRGW technology. The
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FIGURE 1. Geometry of the proposed Rat race coupler.
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FIGURE 2. Equivalent even and odd circuits of the proposed rat race.
(a) Even mode circuit model. (b) 0dd mode circuit model.

addition of open stub and quarter wavelength transformers
has greatly improved the impedance, isolation, and ampli-
tude imbalance bandwidths. First, the general equations of
the proposed coupler are presented along with a parametric
study to show the effect of the added stub on the amplitude
imbalance, and matching and isolation bandwidths. Second,
the conventional rat-race coupler is designed in the PRGW
to show its performance in this new technology. Third, the
rat-race with the added quarter wavelengths is presented as
a first step for a wide bandwidth (increasing the matching
and isolation bandwidths). Also, multiple quarter wavelength
transforms can be used to have different input and output
impedances as in [19]. Finally, rat-race with the quarter wave-
lengths and the open stub at the middle of the 34 /4 branch
line is presented. The operating bandwidth is determined by
having the return loss and the isolation better than 15 dB, and
a coupling imbalance less than 1 dB (peak-to-peak).

Il. THEORY

In this section, the general geometry of the rat race coupler
with quarter wave transformers and a stub at the middle of
the 3)/4 branch line is analyzed using odd and even mode
analysis. The geometry of the proposed rat race is shown in
Fig. 1 and the even and odd equivalent circuits are shown in
Fig. 2. The s-parameters of the rat race is calculated from the
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even and odd analysis as follows [42].

1y = 2Me TS ()
Sy = et @
Sy = e 3
sqy = e = e 4

where S11¢,521¢,> S110, and S21, are calculated by applying the
even and odd symmetry respectively on the rat race. The even
symmetry leaves open stubs while the odd symmetry leaves
short stubs. The ABCD matrices of different sections of the
rat race for even symmetry are

_[ cos(BL))  jZgsin(BL1)
ABCD1 = | jYgsin(BL))  cos(BLy) )
i 1 0
ABCD;, = Z1+2Z s cOt(B Listupr) tan(3ﬁLl/2))
| Z1(=2jZstup cot(BLsub)+jZ1 tan(3BL1 /2))
(6)
_[ cos(BL1)  jZisin(BLy)
ABCD3e=| jy sin(BL1) ~ cos(BL1) @
[ 1 0
ABCD4. = | jYitan(BLi/2) 1 ] ®)
the total ABCD matrix for the even mode is given by
ABCDeven total

— ABCD,, ABCD,, ABCD3, ABCD4, ABCD1,  (9)

For the odd mode analysis, the second and forth ABCD
matrix are

1 0
ABCD;y = [—le cot(3BL1/2) 1} (10)
1 0
ABCDy, = [ —jYi cot(BL1/2) 1 i| (11
The total ABCD matrices for the odd case is
ABCDodd total

= ABCD;, ABCD,, ABCD3, ABCD4, ABCD;,  (12)

From these general equations for the proposed rat race,
the conventional rat race is obtained by making Z, = Z,
Z1 = ~/2Zy, and Ly, =~ 0. The rat race with quarter wave
transformers is obtained by making Z, = Zy/~/2, Z1 = Z
and L, > 0.

In order to illustrate the effect of the added stub on the
amplitude imbalance, we take Zg,,, = \%Zg,and Zy = Zp.
Therefore the ABCD», can be written as

1 0
ABCDy, = | . 3L 13
2 JYI tan (,3 (71 + Lsmb)) 1 ( )

For small value of Ly, and at the center frequency,

tan (ﬂ <3% +Lstub>> = tan (3% + A@) (14)

78230

where A0 = BLgyup, and using the trigonometric Identity
that

tan(a + b) tana + tan b (15)
an(a = —
1 —tanatanb
then
3 AO —1
t — + A0 |~ 16
an<4 + ) A+ 1 (16)

After that we substitute in the ABCD matrix and get the
s-parameters as follows

1 .
LA6(1 + 272
5 = 2 (1+j2v2) a7
—2A0 + j2(A6 +2)

3 - 1
24 QAQ +]7§A9

Sy = (18)
2T oA 4 jV2(6 +2)
_ 3800 -jv2)
S31 = - (19)
—2A0 + jv2(A0 +2)
—2— 10
Sq1 = (20)

—2A0 + j2(A0 +2)

By taking the absolute values, Equations (21) to (24) are
obtained.

1S1117 = AR 22 1)
M= 2 6A02 1 8A0 + 8
2—0.25A0
SulPP—1/2=A——"" 22
S2ul” =1/ 6A6% + 8AO + 8 22)
0.75
Syl = AP——— 2 23
1531l 6A62 + 8A6 + 8 (23)
2.75M60 +2
1S4 —1/2 = _Ag=PAv T2 (24)

6A62 +8A0 + 8

These equations illustrate that the amplitude of Sp; is
greater than «/LE and increase with proportion to the added stub

length. Also, the amplitude of S4; becomes less than L and
decrease with proportion to the stub length. From the iglown
behavior of the S>; and S41 (makes ~ shape and — shape
around the center frequency, respectively), they will intersect
at two different points around the center frequency and hence
increase the amplitude imbalance bandwidth. Moreover, it is
observed that the change of the matching and isolation is very
small and proportional to A§2.

In order to prove the concept that adding a stub and quarter
wave transformers improves the bandwidth for the general
case, a parametric study on the effect of the stub is carried
out using the ABCD matrix circuit model with Z, = Zy/ J2,
Z1 = Zy. Figure 3 shows the effect of the stub length on the
amplitude imbalance of the output ports, while its effect on
the matching and isolation levels is depicted in Fig. 4. Unlike
the conventional rat race, which has one intersection point
between the output ports, the addition of the stub provides
a wide amplitude imbalance bandwidth. This is achieved by
having the outputs intersect at two points instead of one. On
the other hand, as the stub length increases, the separation
between the intersection points increases resulting in dete-
rioration of the output amplitude imbalance, the matching,
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FIGURE 3. S,; and S;; of the proposed rat race with different values of

Lgg,p while the other parameters are fixed (Zg = Z;/ V2, Z; =Zy, and
Zgyp = 309).
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FIGURE 4. S;; and Sy, of the proposed rat race with different values of

Lgs,p while the other parameters are fixed (Zg = Z;/ 2, Z, =Zy, and
Zgup = 309).

and the isolation. Therefore, optimization is needed to have
a wide bandwidth with an acceptable amplitude imbalance,
matching, and isolation. In this work, return loss and isola-
tion are better than 15 dB with output ports imbalance less
than 1 dB.

Ill. COAXIAL TO RIDGE GAP FEEDING DESIGN

The proposed device is fed by a coaxial connector. Therefore,
a transition from coaxial to PRGW is designed.The unit
cell of PRGW of [41] is used, where the material is Roger
RT6002 (¢, = 2.94 and tané = 0.0012) and the resulted
band gap is from 22.307 to 43.095 GHz. In this work, a
simplified version of the previous work [41] is introduced
where the matching pins have been removed to simplify the
fabrication procedure, as a moderate bandwidth (from 25 to
35 GHz) is needed. The geometry of the back-to-back con-
figuration is shown on Fig. 5 and the associated s-parameters
are shown in Fig. 6. Dimensions of the transition are in
Table 1. The return loss is better than 15 dB from 25.4 GHz
till 36 GHz and the associated insertion loss is higher than
0.4 dB.
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FIGURE 5. Geometry of the back-to-back configuration for a coaxial to
printed ridge gap transition. (a) The whole structure. (b) details of the
transition section.
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FIGURE 6. S-parameters of the back-to-back configuration for a coaxial
to printed ridge gap transition.

TABLE 1. The dimensions of the coaxial to printed ridge gap transition.

Parameter | Wy | Lm | Rin | Rout | Wiine
Value(mm) 1.8 2.2 | 0.59 0.85 1.38

IV. CONVENTIONAL RAT-RACE COUPLER

In this section, the conventional rat-race coupler is pre-
sented. The geometry of the structure is shown in Fig. 7,
where the ring line impedance is /2 Zy. The lengths of
the short branches are Az/4, and the long branch has 34,/4
length. The line width is 1.38 mm and the inner and
outer radius of the ring coupler are Ry = 2.475 mm,
R> =3.325 mm respectively. The s-parameters are shown
in Fig. 8 where the bandwidth is from 28.09 to 32.4 GHz
based on the previously mentioned criteria. It is clear that
the bandwidth is narrow (14.25%) and also the phase differ-
ence between the differential out put ports changes rapidly,
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FIGURE 7. Geometry of the conventional printed ridge gap rat-race
coupler.
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FIGURE 8. S-parameters of the conventional printed ridge gap rat-race
coupler.

FIGURE 9. Geometry of the printed ridge gap rat-race coupler with
quarter wave transformers.

when moving away from the center frequency as shown
in Fig. 13.

V. RAT-RACE COUPLER WITH QUARTER WAVE
TRANSFORMER

In order to improve the bandwidth of the rat race, quar-
ter wave transformers are used while maintaining a 50 Q
input line impedance. The structure is shown in Fig. 9
where W, =19 mm, L, = 2.6 mm, R; = 1.8 mm, and
Ry = 3.4 mm. The s-parameters are shown in Fig. 10 where
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FIGURE 10. S-parameters of the printed ridge gap rat-race coupler with
quarter wave transformers.
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FIGURE 11. Geometry of the printed ridge gap rat-race coupler with a
quarter wave transformer and a stub in the 31/4 branch.
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FIGURE 12. S-parameters of the printed ridge gap rat-race coupler with a
quarter wave transformer and a stub.

the bandwidth is from 27.17 to 33.02 GHz (19.44%). It
is clear that there are enhancements in both the amplitude
imbalance bandwidth and the phase response (Fig. 13).

VI. RAT-RACE COUPLER WITH QUARTER WAVE
TRANSFORMER AND STUB

For further improvement in the output amplitude imbalance,
a stub is used in the 3/4) branch line as perturbation to
have the S»;1 and S3;1 equal to each other at two intersection
points and hence a wider amplitude imbalance bandwidth.
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FIGURE 13. Comparison between the phase response of the rat-race
coupler in the three cases: normal, with quarter wave transformer, and
quarter wave transformer with stub.

FIGURE 14. Fabricated parts. (a) ridge line layer. (b) upper copper layer.
(c) Spacer layer. (d) Aluminum base with coaxial connectors.
(e) Assembled 3D view.

The geometry of the coupler with the stub is shown in Fig. 11
where W, = 1.7 mm, L; = 2.5 mm, Ry = 1.85 mm,
Ry = 3.35 mm, Wy, = 0.8 mm, and Ly, = 2.4 mm. The
resulted s-parameters are shown in Fig. 12. The bandwidth is
from 25.84 to 34.24 GHz (27.96%) which is larger than the
two previous configurations. Figure 13 shows a comparison
between the differential output phase response in the previous
three cases. The use of quarter wavelength transformers has
increased the bandwidth as well as the stability of the output
phase difference.

VIl. MEASUREMENT AND DISCUSSION

The fabricated prototype of the rat-race with quarter wave-
length transformers and a stub is shown in Fig. 14, where
the ridge line layer, the upper copper layer, and the spacer
are manufactured using the conventional printed circuit board
technology (PCB). The metal base (Fig. 14 (d)) has been
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FIGURE 16. Simulated and measured output phase difference.
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FIGURE 17. Simulated and measured output amplitude imbalance.

drilled also with the PCB machining and used to hold the
2.4 coaxial connectors. The whole structure is assembled
with plastic screws as shown in Fig. 14 (e). The (N52271A)
PNA network analyzer has been used in measuring the
s-parameters. The measured results along with the simulated
ones are shown in Fig. 15 and Fig. 16 for the s-parameters
amplitude and output phase difference, receptively. The
behavior of the measured results matches very well with
simulation results as there are two intersection points in the
output ports which improve the output amplitude imbalance
bandwidth, as can be seen from Fig. 17. The deviation of the
measured results with the simulated ones may comes from
the fabrication tolerance and the alignment mismatch.
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TABLE 2. Comparison between the proposed rat-race and other works.

Technology | Center frequency | Bandwidth | return loss | Isolation amplitude im- | Size (ring radius+ | Phase imbalance band-
(GHz) (dB) (dB) balance (dB) matching) width (180° &£ 10°)
[36] SIW 13 30% 18 20 -3.35 £1.35 15.5 mm (1.02 Ay) 30%
[37] HMSIW 10.15 24.6 % 12 15 -3.8 £0.5 13.2 mm (0.4962 \g) | 24.6%
[38] TFSIW 25.7 12.7% 20 20 43 +— 3.75 mm (0.3647 \y) | 12.45%
[39] RSIW 8 125 % 12 20 -3.79 £0.5 9.1 mm (0.242 \o) -
[40] RGW 16.5 12.1% 10 20 - 5.75 mm (0.316 A\g) |12.1%
This work | PRGW 30 27.9% 15 16.5 -3.39 £0.5 5.1 mm (0.51 Ag) 26.6%

On Table 2, a brief comparison between the proposed cou-
pler and other couplers is presented where the focused is on
the SIW and RGW structures, as they are the promising tech-
nologies for the millimeter wave band. The proposed coupler
has simultaneous both wide bandwidth and small amplitude
imbalance compared to the referenced work. Moreover, it has
low insertion loss as the wave propagates in an air gap region
(no dielectric losses) and the structure is closed (no radiation
losses). Most of the designed conventional rat-race coupler
has a narrow bandwidth less than 13% [38]—-[40] while the
proposed one has 27.96%. In addition, SIW-based structures
have higher losses compared to the proposed PRGW struc-
ture. This is due to the dielectric losses as the wave propagates
in a dielectric medium while in the proposed structure, the
wave propagates mainly in an air gap region. The SIW-based
work in [36] and [37] are implemented in the microwave band
with either a low return loss (12 dB) as in [37] or a large
amplitude imbalance (£1.35 dB) as in [36].

VIil. CONCLUSION

A wideband rat-race coupler built in the PRGW technology
with low amplitude imbalance and 15 dB matching and iso-
lation levels is presented. A circuit model of the proposed
rat race is presented to establish the bases for the proposed
design. Then, the conventional rat-race is presented. After
that, quarter wavelength transformers are used to improve the
impedance matching bandwidth and the output phase differ-
ence stability. Finally, a stub is added to the 31¢/4 branch to
improve the amplitude imbalance between the output ports
and to further increase the bandwidth. Moreover, a study of
the effect of the added stub on both amplitude imbalance, and
matching and isolation bandwidths is presented. A prototype
of the last configuration is fabricated and measured. The pro-
posed configuration has 27.96% bandwidth around 30 GHz
with return loss and isolation better than 15 dB with less than
1 dB output coupling imbalance.

REFERENCES

[1] D. M. Sheen, D. L. Mcmakin, and T. E. Hall, “Three-dimensional
millimeter-wave imaging for concealed weapon detection,” IEEE Trans.
Microw. Theory Techn., vol. 49, no. 9, pp. 1581-1592, Sep. 2001.

H. Zamani and M. Fakharzadeh, “1.5-D sparse array for millimeter-wave
imaging based on compressive sensing techniques,” IEEE Trans. Antennas
Propag., vol. 66, no. 4, pp. 2008-2015, Apr. 2018.

Z. Brigech and A.-R. Sebak, “Millimeter-wave imaging system using a
60 GHz dual-polarized AFTSA-SC probe,” in Proc. 33rd Nat. Radio Sci.
Conf. (NRSC), Aswan, Egypt, Feb. 2016, pp. 325-332.

[2]

[3]

78234

[4]

[51

[6

—

[71

[8

—

[9

—

(10]

(11]

[12]

[13]

(14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

D. M. Sheen, J. L. Fernandes, J. R. Tedeschi, D. L. Mcmakin, A. M. Jones,
W. M. Lechelt, and R. H. Severtsen, ‘“Wide-bandwidth, wide-beamwidth,
high-resolution, millimeter-wave imaging for concealed weapon detec-
tion,” Proc. SPIE, vol. 87150, pp. 871509-1-871509-11, May 2013.

A. U. Zaman, E. Rajo-Iglesias, E. Alfonso, and P.-S. Kildal, “Design of
transition from coaxial line to ridge gap waveguide,” in Proc. IEEE Anten-
nas Propag. Soc. Int. Symp., Charleston, SC, USA, Jun. 2009, pp. 1-4.

P. S. Kildal, “Three metamaterial-based gap waveguides between parallel
metal plates for mm/submm waves,” in Proc. 3rd Eur. Conf. Antennas
Propag., Berlin, Germany, 2009, pp. 28-32.

P-S. Kildal, A. U. Zaman, E. Rajo-Iglesias, E. Alfonso, and
A. Valero-Nogueira, “Design and experimental verification of ridge
gap waveguide in bed of nails for parallel-plate mode suppression,” IET
Microw., Antennas Propag., vol. 5, no. 3, pp. 262-270, 2011.

H. Raza, J. Yang, P-S. Kildal, and E. A. Alos, “Microstrip-ridge gap
waveguide—study of losses, bends, and transition to WR-15,” IEEE Trans.
Microw. Theory Techn., vol. 62, no. 9, pp. 1943-1952, Sep. 2014.

A. Beltayib and A.-R. Sebak, “Analytical design procedure for forward
wave couplers in RGW technology based on hybrid PEC/PMC waveguide
model,” IEEE Access, vol. 7, pp. 119319-119331, 2019.

S. Birgermajer, N. Jankovic, V. Radonic, V. Crnojevic-Bengin, and
M. Bozzi, “Microstrip-ridge gap waveguide filter based on cavity res-
onators with mushroom inclusions,” IEEE Trans. Microw. Theory Techn.,
vol. 66, no. 1, pp. 136-146, Jan. 2018.

A. Beltayib, I. Afifi, and A.-R. Sebak, “4x4-element cavity slot antenna
differentially-fed by odd mode ridge gap waveguide,” IEEE Access, vol. 7,
pp. 4818548195, 2019.

I. Afifi, M. M. M. Ali, and A. R. Sebak, “Analysis and design of a
30 GHz printed ridge gap Ring-crossover,” in Proc. USNC-URSI Radio
Sci. Meeting (Joint AP-S Symp.), Atlanta, GA, USA, 2019, pp. 65-66.

M. M. M. Alj, S. I. Shams, and A.-R. Sebak, “Printed ridge gap waveg-
uide 3-dB coupler: Analysis and design procedure,” IEEE Access, vol. 6,
pp. 8501-8509, 2018.

M. M. M. Ali and A.-R. Sebak, “2-D scanning magnetoelectric dipole
antenna array fed by RGW butler matrix,” IEEE Trans. Antennas Propag.,
vol. 66, no. 11, pp. 6313-6321, Nov. 2018.

S. M. Sifat, M. M. M. Alj, S. I. Shams, and A.-R. Sebak, “High gain
bow-tie slot antenna array loaded with grooves based on printed ridge gap
waveguide technology,” IEEE Access, vol. 7, pp. 36177-36185, 2019.

A. T. Hassan and A. A. Kishk, “Efficient procedure to design large finite
array and its feeding network with examples of ME-dipole array and
microstrip ridge gap waveguide feed,” IEEE Trans. Antennas Propag., to
be published.

D. Il Kim and Y. Naito, “Broad-band design of improved hybrid-ring 3-dB
directional couplers,” IEEE Trans. Microw. Theory Techn., vol. MTT-30,
no. 11, pp. 2040-2046, Nov. 1982.

S. March, “A wideband stripline hybrid ring (Correspondence),” IEEE
Trans. Microw. Theory Techn., vol. MTT-16, no. 6, p. 361, Jun. 1968.

R. Smolarz, K. Wincza, and S. Gruszczynski, ‘“Impedance
transforming rat-race couplers with modified lange section,”
J. Electromagn. Waves Appl., vol. 32, no. 8, pp. 972-983, 2018, doi:
10.1080/09205071.2017.1411836.

M.-H. Murgulescu, P. Legaud, E. Moisan, E. Penard, M. Goloubkoff, and
1. Zaquine, “New small size, wideband 180° ring couplers: Theory and
experiment,” in Proc. 24th Eur. Microw. Conf., Cannes, France, Sep. 1994,
pp. 670-674.

C.-W. Kao and C. Hsiung Chen, “Novel uniplanar 180° hybrid-ring cou-
plers with spiral-type phase inverters,” IEEE Microw. Guided Wave Lett.,
vol. 10, no. 10, pp. 412-414, Oct. 2000.

VOLUME 8, 2020


http://dx.doi.org/10.1080/09205071.2017.1411836

1. Afifi, A. R. Sebak: Wideband Printed Ridge Gap Rat-Race Coupler for Differential Feeding Antenna

IEEE Access

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

C.-W. Kao and C. H. Chen, “Miniaturized uniplanar 180° hybrid-ring
couplers with 0.8 A, and 0.67 A, circumferences,” in Proc. Asia—Pacific
Microw. Conf., Sydney, NSW, Australia, 2000, pp. 217-220.

C.-H. Chi and C.-Y. Chang, “A compact wideband 180° hybrid ring
coupler using a novel interdigital CPS inverter,” in Proc. Eur. Microw.
Conf., Munich, Germany, 2007, pp. 548-551.

C.-Y. Chang and C.-C. Yang, “A novel broad-band chebyshev-response
rat-race ring coupler,” IEEE Trans. Microw. Theory Techn., vol. 47, no. 4,
pp. 455-462, Apr. 1999.

J. Sorocki, I. Piekarz, K. Wincza, and S. Gruszczynski, ‘“Bandwidth
improvement of rat-race couplers having left-handed transmission-line
sections,” Int. J. RF Microw. Comput.-Aided Eng., vol. 24, no. 3,
pp. 341-347, May 2014.

D. Kholodnyak, P. Kapitanova, S. Humbla, R. Perrone, J. Mueller,
M. A. Hein, and I. Vendik, “180° power dividers using metamaterial
transmission lines,” in Proc. 14th Conf. Microw. Techn., Prague, Czech
Republic, Apr. 2008, pp. 1-4.

K. Staszek, J. Kolodziej, K. Wincza, and S. Gruszczynski, ‘“Compact
broadband rat-race coupler in multilayer technology designed with the use
of artificial right- and left-handed transmission lines,” J. Telecommun. Inf.
Technol., no. 2 pp. 107-112, 2012.

J.-A.Hou and Y.-H. Wang, “Design of compact 90° and 180° couplers with
harmonic suppression using lumped-element bandstop resonators,” IEEE
Trans. Microw. Theory Techn., vol. 58, no. 11, pp. 2932-2939, Nov. 2010.
G. Brzezina and L. Roy, “Miniaturized 180° hybrid coupler in LTCC
for L-Band applications,” IEEE Microw. Wireless Compon. Lett., vol. 24,
no. 5, pp. 336-338, May 2014.

G. Slade, “Reduced-size octave-bandwidth microstrip/lumped-element
rat-race coupler,” Tech. Rep., Jun. 2008. [Online]. Available: https:/
www.researchgate.net/publication/229009635_Reduced-size_octave-
bandwidth_microstriplumped-element_rat-race_coupler

1. Haroun, Y. C. Hsu, D. C. Chang, and C. Plett, “A novel reduced-size
60-GHz 180° coupler using LG-CPW transmission lines,” in Proc. Asia—
Pacific Microw. Conf., Melbourne, VIC, Australia, 2011, pp. 1750-1753.
S. Koziel and P. Kurgan, “On elementary cell selection for miniaturized
microstrip rat-race coupler design,” in Proc. Int. Conf. Electromagn. Adv.
Appl. (ICEAA), Verona, Italy, Sep. 2017, pp. 836-839.

K. V. Phani Kumar, R. K. Barik, I. S. Krishna, and S. S. Karthikeyan,
“Design of compact 180° hybrid coupler for unequal power division ratio
using slow wave structures,” in Proc. 23rd Nat. Conf. Commun. (NCC),
Chennai, India, Mar. 2017, pp. 1-5.

K. Sen Ang, Y. Choy Leong, and C. How Lee, “A new class of multisection
180° hybrids based on cascadable hybrid-ring couplers,” IEEE Trans.
Microw. Theory Techn., vol. 50, no. 9, pp. 2147-2152, Sep. 2002.

W. Che, K. Deng, E. K. N. Yung, and K. Wu, ““H-plane 3-dB hybrid ring
of high isolation in substrate-integrated rectangular waveguide (SIRW),”
Microw. Opt. Technol. Lett., vol. 48, no. 3, pp. 502-505, Mar. 2006.

R. Dehdasht-Heydari, K. Forooraghi, and M. Naser-Moghadasi, “Efficient
and accurate analysis of a substrate integrated waveguide (SIW) rat-race
coupler excited by four U-shape slot-coupled transitions,” Appl. Comput.
Electromagn. Soc. J., vol. 30, no. 1, pp. 42-49, 2015.

X.Zou, C.-M. Tong, C.-Z. Li, and W.-J. Pang, “Wideband hybrid ring cou-
pler based on half-mode substrate integrated waveguide,” IEEE Microw.
Wireless Compon. Lett., vol. 24, no. 9, pp. 596-598, Sep. 2014.

Y. Ding and K. Wu, “Miniaturized hybrid ring circuits using T-type folded
substrate integrated waveguide (TFSIW),” in IEEE MTT-S Int. Microw.
Symp. Dig., Boston, MA, USA, Jun. 2009, pp. 705-708.

A. A. M. Ali, H. B. El-Shaarawy, and H. Aubert, “Miniaturized hybrid
ring coupler using electromagnetic bandgap loaded ridge substrate inte-
grated waveguide,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 9,
pp. 471-473, Sep. 2011.

VOLUME 8, 2020

[40] J. Yang and H. Raza, “Empirical formulas for designing gap-waveguide
hybrid ring coupler,” Microw. Opt. Technol. Lett., vol. 55, no. 8,
pp. 1917-1920, Aug. 2013.

[41] 1. Afifi, M. M. M. Ali, and A.-R. Sebak, “Analysis and design of a
wideband coaxial transition to metal and printed ridge gap waveguide,”
IEEE Access, vol. 6, pp. 70698-70706, 2018.

[42] M. D. Pozar, Microwave Engineering, 4th ed. Hoboken, NJ, USA: Wiley,
2011.

ISLAM AFIFI (Graduate Student Member, IEEE)
received the B.Sc. degree in electronics and com-
munication engineering and the M.Sc. degree in
engineering physics from Cairo University, Cairo,
Egypt, in 2009 and 2014, respectively. He is cur-
rently pursuing the Ph.D. degree in electrical and
computer engineering with Concordia University,
Montreal, QC, Canada. He was a Teaching and
a Research Assistant with the Engineering Math-
ematics and Physics Department, from 2009 to
2014, and a Senior Teaching Assistant, from 2014 to 2016. His research
interest includes millimeter-wave microwave components and antennas.

ABDEL RAZIK SEBAK (Life Fellow, IEEE)
received the B.Sc. degree (Hons.) in electrical
engineering from Cairo University, Cairo, Egypt,
in 1976, the B.Sc. degree in applied mathematics
from Ein Shams University, Cairo, in 1978, and the
M.Eng. and Ph.D. degrees in electrical engineer-
ing from the University of Manitoba, Winnipeg,
MB, Canada, in 1982 and 1984, respectively. From
1984 to 1986, he was with Canadian Marconi
Company involving in the design of microstrip
phased array antennas. From 1987 to 2002, he was a Professor with the
Department of Electronics and Communication Engineering, University of
Manitoba. He is currently a Professor with the Department of Electrical and
Computer Engineering, Concordia University, Montreal, QC, Canada. His
research interests include phased array antennas, millimeter-wave antennas
and imaging, computational electromagnetics, and interaction of EM waves
with engineered materials and bioelectromagnetics. He is a member of the
Canadian National Committee of International Union of Radio Science
Commission B. He was a recipient of the 2000 and 1992 University of
Manitoba Merit Award for outstanding Teaching and Research, the 1994 Rh
Award for Outstanding Contributions to Scholarship and Research, and the
1996 Faculty of Engineering Superior. He has served as the Chair of the
IEEE Canada Awards and Recognition Committee from 2002 to 2004, and
the Technical Program Chair of the 2002 IEEE CCECE Conference and the
2006 URSIANTEM Symposium. He is also the Technical Program Co-Chair
for the 2015 IEEE ICUWB Conference.

78235



