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ABSTRACT It is challenging to apply depth maps generated from sparse laser scan data to computer vision
tasks, such as robot vision and autonomous driving, because of the sparsity and noise in the data. To overcome
this problem, depth completion tasks have been proposed to produce a dense depth map from sparse LiDAR
data and a single RGB image. In this study, we developed a deep convolutional architecture with cross
guidance for multi-modal feature fusion to compensate for the lack of representation power of their modality.
Two encoders, which are part of the proposed architecture, receive different modalities as inputs. They
interact with each other by exchanging information in each stage through the attention mechanism during
encoding. We also propose a residual atrous spatial pyramid block, comprising multiple dilated convolutions
with different dilation rates, which are used to derive highly significant features. The experimental results
of the KITTI depth completion benchmark dataset demonstrate that the proposed architecture shows higher
performance than that of the other models trained in a two-dimensional space without pre-training or fine-
tuning other datasets.

INDEX TERMS Depth estimation, depth completion, LiDAR data, cross guidance, multi-scale dilated
convolutional block.

I. INTRODUCTION
An accurate depth map with an RGB image allows users to
utilize the information to solve complicated computer vision
tasks. However, as shown in Figure 1, depth maps acquired
from a LiDAR sensor have sparse structures. Therefore, they
cannot be applied to autonomous driving or robotics applica-
tions. To use LiDAR depth maps, the missing pixels must be
provided. To this end, depth completion tasks have been intro-
duced by [1], [2]. An RGB image acquired from a camera and
a sparse depth map acquired from a LiDAR sensor are used as
inputs, and the output is the corresponding dense depth map,
as shown in Figure 1. A precise depth map, which is useful
as the prior information for processing an RGB image (e.g.,
object classification, detection, and segmentation), is valu-
able in both academic and industrial research. However, for
obtaining high accuracy, dense depth data is very expensive.
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Therefore, to improve the performance of dense depth maps
produced from sparse data in the field of computer vision, the
depth completion task remains to be solved.

There are several challenges in generating dense depth
maps from sparse LiDAR data. The depth values of LiDAR
data are spaced irregularly and sparsely. Therefore, construct-
ing more accurate pixel-wise annotations of the ground truth
is complicated and expensive. Furthermore, the LiDAR depth
and RGB images that produce dense depth maps have dif-
ferent modalities, and the multi-modal feature fusion is still
in its early stages of development. To address these prob-
lems, many studies have attempted to train artificial neural
networks to be applied in depth completion tasks.

Recently, artificial neural network models with deep
learning have been used in state-of-the-art technologies
of pattern recognition and machine learning. In particu-
lar, convolutional neural networks (CNNs) exhibit excellent
performance in many computer vision tasks. While conven-
tional CNNs [3]–[5] comprise blocks of stacking convolution
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FIGURE 1. Illustration of proposed cross guidance. Two encoders that
take different inputs, a single RGB image and a sparse LiDAR map,
interact with their information in each stage to complement
representation power.

layers, recent studies suggest specific techniques suitable for
target tasks. For example, He et al. [6] proposed residual
blocks with skip connection to construct a deeper archi-
tecture. GoogleNet [7] stacks the inception module, which
comprises convolutional layers of different kernel sizes, to
improve the representation power. For the segmentation task,
many studies used atrous convolution, or dilated convolu-
tion [8]–[10]. Dilated convolution allows a convolution to
increase its receptive field size without additional parameters
or computation, while improving the performance. Another
specifically designed technique is the attention mechanism.
Its effectiveness has been extensively investigated in previous
studies [11]–[17]. The attention mechanism derives specific
areas that networks should focus on to improve the represen-
tation of feature maps.

Recent works [18]–[21] on depth completion tasks based
on CNNs have utilized both RGB images and sparse LiDAR
maps. These methods use simple operations, such as con-
catenation and element-wise sums to address multi-modal
feature fusion. Most of these operations are performed at
the beginning and end of the encoding or while decoding.
In other words, there is no interaction between multi-modal
features while encoding. Rather than using simple operations
to fuse multiple modalities, our study focuses on managing
the fusion of multiple modality features and suggests a more
sophisticated fusion module that enables complex mapping
for the depth completion task.

The present work is inspired by the abovementioned tech-
niques to solve the depth completion task in outdoor scenar-
ios. The contribution of this paper is threefold:
• We propose a cross-guidance method for combining
features that have different modalities to compensate for

the lack of representation power. At each stage in the
encoder, the guidance module that employs the atten-
tion mechanism receives information from the feature
maps of other modalities and merges it with their own
information.We then evaluate the effectiveness of cross-
guidance through ablation studies.

• A residual atrous spatial pyramid (RASP) block is
proposed to analyze the large input dataset. This com-
prises multiple dilated convolutional layers with dif-
ferent dilation rates that work in parallel to create a
wider receptive field and derive more significant fea-
tures. In ImageNet-1K experiments, the RASP block
shows improved performance against the widely used
models in terms of the depth and the number of
parameters.

• We verify the performance of the proposed architecture
by achieving state-of-the-art results on the KITTI depth
completion benchmark dataset in two-dimensional (2D)
space without pre-training or fine-tuning.

II. RELATED WORK
A. DEPTH COMPLETION
The depth completion task is related to the sparse patterns of
inputs. Depth maps acquired from LiDAR sensors have non-
uniformly structured sparsity owing to their discrete polar
scanning behavior. There are no depth data for most pixels
when the LiDAR map is transformed to be aligned with an
RGB camera [1]. Previous studies considered sparse inputs as
an inpainting problem using classical image processingmeth-
ods such as hand-crafted kernels or interpolation [22]–[25].
Recently, many approaches that employ deep learning and
CNNs have shown successful results. To manage sparse
inputs, Uhrig et al. [2] proposed a sparse convolution layer
that explicitly considers the location of missing data by eval-
uating only the observed pixels and then normalizing the
output appropriately. Cheng et al. [18] proposed a convolu-
tional spatial propagation network that performs a recurrent
convolution operation with an affinity matrix for interpo-
lation with neighboring pixels. In [19], with a normalized
convolution layer similar to the sparse convolution layer, the
confidence of the convolution operation was also considered.
Ma et al. [20] developed a deep regression model with an
early fusion method for direct mapping from the sparse depth
to the dense depth and a self-supervised training framework.
The surface normal was introduced by [26], [27] to obtain
more accurate three-dimensional (3D) geometric information
for the depth completion task. The confidence mask for refin-
ing the results from the network was the same as in [19].
Van Gansbeke et al. [21] introduced a framework with global
and local networks. A guidance map with the information
extracted from the global network was used as the input to
the local network, which improved the performance. A con-
ditional prior network proposed by [28] calculated the depth
posterior probability of the images of a large-scale synthetic
dataset. Chen et al. [29] used projected 2D LiDAR maps
and 3D point clouds to learn the 2D and 3D representations
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FIGURE 2. Illustration of the proposed architecture. The proposed architecture is an end-to-end framework that has two sub-networks, namely, the
global (top) and local (bottom) networks. The final prediction of the dense depth map is the weighted sum of the two dense depth maps from the
networks with score weights input to the softmax layer.

simultaneously through 2D-3D fusion blocks. These blocks
use the information in 2D and 3D spaces at the same stage.

B. ATTENTION MECHANISM
Several attention methods have been proposed to improve the
performance of CNNs in computer vision tasks by amplify-
ing the important features and attenuating unnecessary ones.
Hu et al. [12] introduced a squeeze-and-excitation block that
adaptively recalibrates channel-wise feature responses with
channel-wise attention from the global average-pooled fea-
tures. Besides channel-wise attention, a convolutional block
attention module (CBAM) [16] sequentially infers attention
maps along both channel and spatial dimensions. Then, the
attention maps are multiplied by the input feature map for
adaptive feature refinement. CBAM also uses average-pooled
and max-pooled features to obtain attention coefficients.
Fu et al. [11] proposed a dual attention network for scene
segmentation. It consists of two types of attention modules,
which model the semantic interdependencies in spatial and
channel dimensions using attention matrices.Wang et al. [15]
presented a non-local block for capturing long-range depen-
dencies, which computes the response at a position as a
weighted sum of features at all positions. To achieve state-of-
the-art results in image classification tasks using very deep
networks, a residual attention network [30] comprising mul-
tiple attention modules and skip connections was proposed.

C. DILATED CONVOLUTION
An atrous convolution, or a dilated convolution, has recently
been introduced for semantic segmentation [10]. This allows
a convolution to increase its receptive field size without

additional parameters or computation steps. As the sizes of
the input and output images are considerably larger than those
processed in a classification task, a network with atrous con-
volutions can process themmore effectivelywith a reasonable
amount of memory and within a certain amount of time.
Chen et al. [8] proposed a specific architecture called the
atrous spatial pyramid pooling (ASPP) block, which consists
of multiple convolutions with different dilation rates arranged
in parallel, thereby summing all the outputs, similar to an
inception architecture [7]. The ASPP block can provide fea-
tures with a range of scales from a single-feature map without
any changes in the spatial size or an increase in the filter size.
The ASPP is applicable to various semantic segmentation
datasets; e.g., an ASPP block can be added to the top of VGG-
16 [7] and ResNet-101 [6] in [8]. Mehta et al. [31] proposed
ESPNet, which is a fast and efficient lightweight CNN for
semantic segmentation.

III. METHODS
A. GUIDANCE MODULE
We propose a cross-guidance module, which is an attention
method that combines the features of different modalities
to compensate for the lack of representation power. While
most attention methods are self-attention methods, our cross-
guidance module refines a feature with attention weights
obtained from its own feature and from other features.

As shown in Figure 3, the overall structure of our guidance
module is similar to CBAM [16]. However, to refine an input
feature FI , e.g., a feature from an RGB image, we also use
a corresponding guidance feature FG, e.g., a feature from a
LiDAR map, to compensate for the information not available
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FIGURE 3. Guidance module. It refines an input feature with attention weights obtained from its own features and from other guidance features.

in FI . We first perform channel-wise attention and then
another step of attention-over spatial dimensions sequentially.

For the channel-wise attention, the spatial information
of each feature is aggregated by average-pooling and
max-pooling over spatial dimensions. Then, the average-
pooled and max-pooled features are concatenated and passed
through a multi-layer perceptron (MLP) with one hidden
layer and ReLU activation to produce a channel feature
vector.

FI ,C = MLPI (MaxAndAvgPoolSpatial(FI )) (1)

FG,C = MLPG(MaxAndAvgPoolSpatial(FG)) (2)

A fully connected layer MLPC takes the channel feature
vectorsFI ,C andFG,C as inputs to produce a channel attention
vector AC , with the activation of the sigmoid function σ .

AC = σ (MLPC (FI ,C ,FG,C )) (3)

AC is expanded over the spatial dimensions and multiplied
by the original input feature FI to obtain a channel refined
feature F ′I .
In the second stage, i.e., for the attention over spatial

dimensions, a procedure similar to the one for channel-wise
attention is performed. However, the roles of the spatial and
channel axes are interchanged. To model a spatial feature
map, each feature is average-pooled and max-pooled over
channel dimensions and then passed through a BN-ReLU-
Conv block with a kernel size of 7× 7.

FI ,S = ConvI (MaxAndAvgPoolChannel(F
′
I )) (4)

FG,S = ConvG(MaxAndAvgPoolChannel(FG)) (5)

A convolutional layer ConvS aggregates the spatial feature
maps FI ,S and FG,S with sigmoid activation to produce a
spatial attention map AS .

AS = σ (ConvS (FI ,S ,FG,S )) (6)

AS is expanded over the channel dimension and multiplied
by the channel refined feature F ′I to obtain a spatial refined
feature F ′′I . Finally, F

′′
I is added to the original input feature

FI by a skip connection, and the final output feature is
obtained.

A cross-guidance module for RGB and LiDAR features
was constructed by using the proposed guidance module
twice with different roles (Figure 1). The first one takes
the LiDAR feature as the input and the RGB feature as the
guidance feature, while the second one takes the RGB feature
as the input and the LiDAR feature as the guidance feature.
Through this cross-attention method, each feature can receive
information from the features of the other modalities and
merge it with its own information.

B. RESIDUAL ATROUS SPATIAL PYRAMID BLOCK
Previous studies used general convolution blocks or residual
blocks [6] to extract features from the input data. In this
study, we used the RASP blocks to derive more significant
features and enhance the performance of our model. The
RASP block has several branches composed of dilated con-
volutional layers, similar to GoogleNet [7] and ResNext [32]
(Figure 4). If a large receptive field is used, the area visible
in the image becomes larger. Conventional CNNs use pool-
ing operations to prevent overfitting after a large receptive
field, which is used to capture the overall characteristics of
an image. However, this can lead to loss of information.
We used a dilated convolution that employs an extended
receptive field containing several zero values to overcome the
disadvantages. The processed input features with C channels
generate dn consecutive dilated convolution blocks, such as
an ASPP block [8]. After all the dilated convolutional layers,
the generated features are concatenated as one feature map.
In this block, a residual connection [6] is added between
the input feature and the feature that has passed the final
convolution to enable efficient learning and a higher level of
performance. If a downsampling operation is added, similar
to a general residual block [6], the first dilated convolutional
layers in the RASP block have a stride of 2. To demonstrate
the effectiveness of the RASP block, we discuss the results of
ImageNet-1K experiments in Section IV-A.
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FIGURE 4. Proposed RASP block. d and c denote the dilation rate and the
number of output channels of the convolution layer, respectively. r is the
reduction ratio of channels to reduce the number of parameters.

C. NETWORK
Figure 2 shows the architecture. We used a framework that
consists of global and local networks, as proposed by [21].
The top and bottom of Figure 2 show the global and local
networks, respectively. We changed the global and local net-
works to our proposed networks using the RASP block. The
detailed structure of the global network is summarized in
Table 1.

The global network has two encoders that take differ-
ent modalities as inputs. Two inputs, an RGB image and
a sparse LiDAR map, passed through each stage of the
encoder and exchanged their information with each other
through proposed cross-guidance modules. At the end of the
two encoders, we performed an element-wise sum of the
two feature maps. Then, it was passed through a decoder
consisting of transposed convolutional layers using the skip
connection between the encoder and the decoder [33]. After
passing through the encoders and the decoder, the global
network output three components, namely, a prediction
map of the global network, a confidence weight, and a
guidance map.

The local network comprises an encoder and a decoder.
Unlike the global network, each stage of the encoder in the
local network has one RASP block. The concatenation of the
sparse LiDAR map and the guidance map from the global
network was used as the input to the local network, in order to
utilize the information that includes an attribute of the RGB
image. The skip connections were also performed between

TABLE 1. Architectures for the depth completion task. The numbers in
the brackets are the input and output channels of the RASP block. Dn
denotes the dilation rate for RASP blocks of stage n.

the encoder and the decoder, as in the global network. Four
guidance modules connect the global and local networks. The
features of the guidance modules correspond to the decoder
in the global network. Two outputs were generated from the
local network: the prediction of the local networks and the
confidence weight. Then, the two confidence weights from
the global and local networks were input into the softmax
layer to generate score maps.

Finally, the predictions from the two networks were inte-
grated by a weighted sum with score maps to predict the
desired dense depth map. The final predicted dense depth is
calculated as follows:

D = wg · Dg + wl · Dl, (7)

where Dg and Dl are the estimated depth values from the
global and local networks, and wg and wl are the score maps
of the global and local networks, respectively.

D. LOSS FUNCTION
The network updates the model by calculating the error
between the predicted value and the ground truth value. We
use the mean squared error (MSE) to calculate the loss. The
loss function is expressed as follows:

Ld (p) = ‖1{yi>0} · (pi − yi)‖
2
2, (8)

where pi and yi are the estimated value and ground truth value
for the i-th point in an input image, respectively.
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The overall loss function of our framework can be
expressed as follows:

L = λ1 · Ld (pout )+ λ2 · Ld (pglobal)+ λ3 · Ld (plocal), (9)

where Ld (pout ), Ld (pglobal), and Ld (plocal) are the loss of the
final predicted depth map, the predicted depth map of the
global network, and the predicted depth map of the local
network, respectively. λ1, λ2, and λ3 are the weights of the
loss functions. We set λ1 = 1, λ2 = 0.1, and λ3 = 0.1.

IV. EXPERIMENTS
We conducted comprehensive experiments to demonstrate
the RASP block on ImageNet-1K [34] and test the proposed
architecture using RASP blocks and guidance modules on the
KITTI depth completion benchmark dataset [2]. All experi-
ments were implemented in the Pytorch framework [35].

A. ImageNet-1K
ImageNet-1K [34] is the most widely used dataset for evalu-
ating network performance. It includes 1.2M training images
and 50k validation images with 1,000 classes. We followed
common data augmentation rules: 224 × 224 random crop,
horizontal flip, and normalization [6], [16]. The network
weights were initialized using He’s method [36]. We used
an SGD with a mini-batch size of 128 for 90 epochs. The
learning rate started at 0.05 and was divided by 10 every 30
epochs. During the test, we applied a 224 × 224 single-crop
evaluation.

1) NETWORK ARCHITECTURE FOR ImageNet-1K
The architecture for the ImageNet experiments is presented in
Table 2. The 7× 7 convolutional layer was used in the initial
stage. Stages 1–5 consist of two RASP blocks. To reduce
the size of the feature maps, the first RASP block of each
stage had a downsampling operation, and the first convolution
layers of blocks had a stride of 2. We set the reduction ratio of
all RASP blocks to 2. The network ends with a 7 × 7 global
average pooling operation and a 1,000-d fully connected layer
with softmax for classification. Except for stages 1–5, the rest
of the network is the same as ResNet architectures [6] for the
ImageNet-1k experiments, and the total number of layers and
parameters are 32 and 19.27M, respectively.

2) IMAGE CLASSIFICATION ON ImageNet-1K
The experimental results for the ImageNet dataset are sum-
marized in Table 3. We compared the proposed network to
the widely used ResNet [6] for the backbone network in
many computer vision tasks. The results show that our RASP
network has a top-1 error rate of 24.29%, outperforming
both ResNet-34 and ResNet-50. The error rates of our results
are 2.4% and 0.27% lower than those of ResNet-34 and
ResNet-50, respectively. These two ResNet networks have
more parameters than the proposed network. As a result, the
proposed RASP block has better representation power than
the general residual block.

TABLE 2. Architecture for ImageNet-1K experiments. The numbers in the
brackets represent the input and output channels of the RASP block. Dn
denotes the dilation rate for RASP blocks of stage n.

TABLE 3. Evaluation results on ImageNet-1K dataset. Except for our
architecture, all experimental results are reported in [16].

B. KITTI DEPTH COMPLETION
We evaluated the proposed architecture against the KITTI
depth completion dataset [2], which includes RGB images
and depth maps from projected LiDAR point clouds. The
depth maps are extremely sparse with approximately 5% of
the pixel values as shown in Figure 1. The semi-dense depth
maps created by aggregating the LiDAR scans are provided
as ground truth, as shown in Figure 1. The KITTI depth
dataset comprises 85,898 items of training data, 1,000 items
of validation data, and 1,000 items of test data without ground
truth.

1) IMPLEMENTATION DETAILS
We used a mini-batch size of 8 and adopted the ADAM
optimizer with an initial learning rate of 0.005 for 14 epochs.
The learning rate was halved at 8 and 12 epochs. Our network
was trained from scratch (without any pretrained weights)
with the training set of the KITTI depth dataset only. A hor-
izontal flip was used for data augmentation. Because of the
lack of valid pixels in the top of the sparse LiDAR map, we

79806 VOLUME 8, 2020



S. Lee et al.: Deep Architecture With Cross Guidance Between Single Image and Sparse LiDAR Data

FIGURE 5. Results of the proposed network on the selected validation set of KITTI depth completion.

inferred that irrelevant values in the feature maps affect batch
normalization and pooling operation. Therefore, we applied a
bottom crop of size 1216× 256, for both training and testing
procedures. Furthermore, we did not use data normalization
in our best model training.

2) EVALUATION METRICS
For the evaluation of the proposed architecture against the
KITTI depth completion benchmark, we used the official
error metric defined in [2], as follows:
• Root mean squared error (RMSE):√

1
n

∑
i

(
di − d∗i

)2
• Mean absolute error (MAE):

1
n

∑
i

∣∣di − d∗i ∣∣
• Root mean squared error of the inverse depth (iRMSE):√

1
n

∑
i

(
1
di
−

1
d∗i

)2

• Mean absolute error of the inverse depth (iMAE):

1
n

∑
i

∣∣∣∣ 1di − 1
d∗i

∣∣∣∣ ,
where di and d∗i are the estimated depth values and ground
truth, respectively. n is the collection of the valid pixels of the
ground truth. We mainly focused on the RMSE for compari-
son because the RMSE is more sensitive to large errors (e.g.,
outliers) and the base metric on the KITTI depth completion

TABLE 4. Comparison of the proposed architecture with state-of-the-art
methods using the test set of the KITTI depth completion benchmark.

benchmark. Note that the final result depends on the loss
function used, and each metric is not completely dependent
on other metrics because of the inverse operation.

3) COMPARISON TO STATE-OF-THE-ART METHODS
We evaluated our architecture on the KITTI depth completion
dataset [2]. We set the reduction ratio of all RASP blocks to
2. Table 4 shows the comparisons with other state-of-the-art
models on the KITTI depth completion leaderboard. For a fair
comparison, we divided the state-of-the-art models into three
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FIGURE 6. Qualitative comparison with other methods. Our results were compared with sparse-to-dense [20] and NConv-CNN [19]. Our results
reconstructed the 3D objects well and provided cleaner boundaries.

categories. First, UberATG-Fusenet [29] was divided because
it exploits the 3D point cloud of LiDAR data. DeepLidar [26]
and PwP [27] use the surface normal information to deter-
mine the representation power for the depth completion task.
Then, we divided the model trained with only the official
dataset and the model trained with the official dataset and
additional data. RGB&certainty [21] and DDP [28] use a pre-
trained model on the Cityscapes dataset [38] and the virtual
KITTI dataset [39], which is similar to the real world KITTI
dataset [1]. The proposed architecture outperformed all the
other methods trained with only the official dataset in terms
of RMSE, which is the main metric of the benchmark. Our
model showed lower RMSE than the sparse-to-dense [20]
method, which includes a residual block [6] with twice the
number of parameters.

4) ABLATION STUDIES
We conducted extensive ablation studies to verify the effec-
tiveness of the proposed guidance module and learning
parameters in training the architecture. Table 5 shows that the
proposed guidance module is effective in improving the per-
formance. The first row means that the global network in our

TABLE 5. Ablation study for each component on selected validation set
of KITTI depth completion. The model with the entire guidance module
achieves the best result.

architecture does not include the guidance module; i.e., the
two encoders do not share a connection. The global network
with the cross-guidance modules is represented in the second
row. The globalmodel with cross-guidancemodules shows an
RMSE that is lower by 24.04mm than the RMSE of themodel
without the cross-guidancemodules. Furthermore, this model
performs better than the model that adds the local network
to the global network and connects the global network and
the local network by element-wise sum without the guidance
module. Finally, the architecture running all the guidance
modules showed the highest performance, demonstrating the
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TABLE 6. Ablation study for the network size and an initial learning rate
on selected validation set of KITTI depth completion. Our full architecture
with guidance modules was used in the experiment. The first column
represents the output channels of stages 2–5 in all encoders. r is the
reduction ratio of RASP blocks in the architecture.

efficiency of the guidance module in the depth completion
task (the last row of Table 5).

Table 6 presents the performance of the overall architec-
ture, depending on learning parameters and network sizes.
The results show that theKITTI depth dataset does not require
a large network to train, as mentioned in [21].

V. CONCLUSION
In this study, we developed a deep architecture comprising
multiple cross-guidance modules and residual atrous spatial
pyramid (RASP) blocks to complete a dense depth map with
an RGB image and a sparse LiDAR map as inputs. We
proposed the cross-guidance method, which is an attention
method combining the features of different modalities to
compensate for the lack of their representation power. The
RASP block comprises multiple dilated convolutions using
different dilation rates in parallel with skip connections. This
allows us to derive more significant features and have a large
receptive field. Extensive experiments on ImageNet-1K and
KITTI depth completion showed that the proposed cross-
guidance method and the RASP block effectively improved
performance. The proposed architecture attained a state-of-
the-art performance score against the KITTI depth comple-
tion benchmark models in 2D space without pre-training or
fine-tuning the other datasets. In future, we plan to pre-train
our architecture using a large-scale dataset and extend the
model from 2D space to 3D space.
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