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ABSTRACT This paper presents an analysis of sea surface roughness from visible images based on fractals
features for the first time. We measure fractal dimensions of sea surface images by the methods of box
counting, fractional Brownian motion, and area measurement. The empirical values of sea surface roughness
are found from measured wind speed and an empirical relation. The correlations between wind speeds
(or sea surface roughness) and fractal dimensions are evaluated based on the data from a field experiment.
Further, four types of noises with different parameters are introduced to the sea surface images. Then noise
suppression performances of six methods are evaluated. Our experiments have demonstrated that our fractal
methods and empirical relation between wind speeds and fractal dimensions are effective for analyzing
roughness changes of sea surface from visible images.

INDEX TERMS Sea surface roughness, oil spill detection, fractal dimensions, box counting, fractional
Brownian motions, area measurements.

I. INTRODUCTION
Ocean surface waves significantly enhance the heat and
gas exchanges between ocean and atmosphere. Sea surface
roughness, a parameter of wavy surface in surface flux for-
mulations, has a strong dependency on wind speed, and can
also be modulated by large scale flow motions, such as,
internal waves, tidal flows, surface currents, and rains [1].
That rain reduces the roughness of the sea surface is a belief
commonly held among seafarers. Rain alters the surface
roughness through the production of wavelets by raindrops,
Rayleigh jets, and cavities, as well as by damping of high-
frequency waves [2]. Coupled atmosphere-ocean models will
potentially increase skills of the forecasts, and therefore, may
simulate the large circulations more faithfully depending on
the adequate surface parameterization schemes [3].

To represent the feedbacks to atmosphere which alters
the coupling between atmosphere and ocean, wave depen-
dency is introduced to the sea surface roughness parameter in
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surface flux parameterization [4]. Zhang et al. [5] have eval-
uated different surface roughness parameterization schemes
on numerical simulation of typhoon Vongfong. It is clearly
shown that sea surface roughness can change the distribution
of significant wave height. To direct measure sea surface
roughness at sea is challenging under harsh environment con-
ditions, the roughness is commonly computed through other
wind and sea variables based on various formulas that have
been proposed since Charnock (1955). Charnock’s formula is
based on a dimensional argument. No firm consensus has yet
been reached on which of the expression is superior to others
in general [6].

Over more than a half century, a number of methods
for analysis and extract sea surface roughness from obser-
vations have been proposed. During the Southern Ocean
Waves Experiment (SOWEX), images of sea surface were
recorded from a low flying aircraft with a downward-
looking video camera. Walsh et al. [7] developed a numer-
ical simulation to relate contrast of sea surface image to
the portion of sea-surface mean square slope (MSS) due
to gravity-capillary waves under light wind conditions.
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Crossingham et al. [8] described a laser slope gauge
that measures the deflection of a laser beam that is
refracted by wavy air-sea interface. Microwave radiome-
ter [9]–[20], scatterometer [12]–[14], [22], synthetic aperture
radar [15]–[17], sonar [18] and satellite altimeter [19], [21]
have also been used to measure and analyze sea surface
roughness.

Here we first introduce a novel concept of using fractal
dimension to quantifying roughness of wavy ocean surface.
The assumption for fractal modeling of sea surface roughness
is that the fractality of sea surface can be directly expressed in
the fractal spectrum, and vice versa, the fractal spectrum, in
turn, relies on the same parameters that used to characterize
the sea surface. Once these parameters are selected, represent-
ing measurements of the two-dimensional stochastic process,
i.e. sea surface, can be constructed. Therefore, characteristics
of sea surface, such as, MSS, significant sea height, rough-
ness, may be mapped.

Through examining the properties of the sea surface fractal
models at a great extend, as demonstrated from this study, it
is shown that a suitable estimator can be found to extract the
sea surface roughness from sea surface image. Our method
is quite intuitive, and it is demonstrated empirically that the
visible image of sea surface changes its fractal characteristics
as sea state changes. This has also been highlighted from early
studies of estimating the statistics of the sea clutter under
various sea states [23].

Our study focuses on three aspects: fractal dimension mea-
surements from visible images, estimations of wind speed
(or sea surface roughness) functional depedence on frac-
tal dimensions based on the extracted data, and effects of
four types of noises and four types of image differentiates.
The proposed box counting, fractional Brownian motion and
area measurement approaches can accurately calculate fractal
dimensions of sea surfaces from visible images, and the pro-
posed methods can correctly estimate roughness change of
sea surface from visible images by using six fractal methods
under light wind conditions.

Onemotivation of our research is oceanwave observations,
measurements, 3D reconstructions and property estimations
based on wave features extracted from 2D visible images.
These methodologies developed can also be applied to anal-
ysis of other transparent and opaque object surfaces as well.

This paper is organized as follows: Section 2 pro-
poses and constructs fractal dimension measurements of
sea surface from visible images by six fractal descriptors.
Section 3 outlines relations of sea surface roughness andwind
speed. Section 4 presents the experimental results of fractal
dimension measurements, empirical fittings, error analysis,
effects of noises, transformation analysis, oil spill detection
and so on.

II. FRACTAL DIMENSION MEASUREMENTS
In analysis of surface wave dynamics, it is sometimes con-
venient to describe the shape of sea surface in Fourier lin-
ear expansion. However, an ocean surface wave field is a

nonlinear and random process. For the purpose of extracting
wave field parameters, such as surface roughness, it can be
more efficient, we believe, to represent the surface image
directly by nonlinear descriptors, such as, to describe the
image complicity at different scales by fractal geometry,
attempted in this paper. The fractal dimension (FD) of a
bounded self-similarity set A in Euclidean n-dimensional
space, by definition, can be expressed as [24]:

D = lim
r→0

log(Nr )
log(1/r)

(1)

where Nr is the least number of distinct possible patterns in A
at the scale r . The union of Nr distinct patterns should be able
to cover the corresponding self-similarity set completely.

This section describes how to systematically construct
fractal dimensions for measuring sea surface roughness
from nearshore still images. Six fractal methods constructed
are respectively box counting (BC), improved box count-
ing (IBC), gray value statistic (GVS), histogram mean (HM),
power spectral density (PSD) and area measurement (AM).

A. BOX COUNTING APPROACHES
1) BOX COUNTING METHOD
Our calculation of box counting dimensions is extended
from [25] and described as follows. A grid sizeM ×M gray-
level image f (x, y) is partitioned into subimages of r × r size
(1 < r ≤ M/2, for integer r). r is associated with the size
of corresponding cubic box. Let the gray values of the four
corners of the subimage (i, j) be Ik (k = 1, 2, 3, 4), then we
have

nr (i, j) = int[
max(Ik )− min(Ik )

r
]+ 1 (2)

where nr (i, j) is the number of size r boxes that are needed
to fill up the covered volume of the subimage (i, j). Nr is the
total number of the boxes covering the whole image,

Nr =
∑
i,j

nr (i, j) (3)

If we rewrite (1) for D in an equivalent form of Nr · rD=
Const, the box-counting dimension D can be found by the
tangent of the function curve, (log(Nr ),−log(r)). It can be
estimated by the least square linear fitting of log(Nr ) against
−log(r). There definitely exists a fractal scale in the space
scale range of [r1, r2] in which the FD estimate of the ideal
fractal image can be computed through

D = −
log(Nr1 )− log(Nr2 )
log(r1)− log(r2)

(4)

where Nr1 and Nr2 are the numbers of boxes needed to
cover the ideal fractal surface at the box scales r1 and r2
respectively [25]. For example, a flat surface, or, a constant
gradient image, D should ideally be equal to 1 from BC. D is
independent on orientation of images by its definition.
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2) IMPROVED BOX COUNTING METHOD
FD estimate error by the above scheme will increase with
the increase of r . A parameter γ is introduced here to rep-
resent scale of actual volume and maximum volume. γ is
defined as [24]:

γ =

∑
A1 (Ii − Imin)

(Imax − Imin)× r × r
(5)

where Ii (i = 1, 2, · · · , r× r) is the gray value of i-th pixel in
the image window A1 of size r × r (See Fig. 1), Imax and Imin
are respectively the highest and lowest gray values in A1.

FIGURE 1. Schematic drawing of box counting method.

The larger the value of γ is, the closer the gray value of
each pixel is to Imax . This can cause that the boxes cannot
be filled into A1 and the value of nr (i, j) calculated from (2)
is too large. So with the increase of γ , the number of filled
boxes should be reduced. Through the experimental test and
analysis comparison, we conclude that γ = 0.8 is the critical
point. The computing procedure of the improved method
can be described as follows. First, Imax , Imin, γ of A1 are
calculated. If γ > 0.8, nr (i, j) is set to 1, if γ ≤ 0.8, nr (i, j) is
calculated using (2). This method overcomes the shortcoming
of the above method and improves the accuracy.

B. FRACTIONAL BROWNIAN MOTION APPROACHES
1) GRAY VALUE STATISTIC METHOD
FBM is constructed by the image gray scale increments in
x and y directions [26]. For our application, the intensity
variations of an image, i.e., surface slope variations of random
wavy water surface, in space is measured. This method is
simple and fast in computations. The algorithmic outline for
FD on FBM is given below:

1. The means of increments in the x, y directions are
calculated in the subwindow scale r= 1, 2, 3, 5 (r≥1) by the
following equations:

Ex(r) =
N−r−1∑
x=0

N−1∑
y=0

| I (x, y)− I (x + r, y) |
N (N − r)

(6)

Ey(r) =
N−1∑
x=0

N−r−1∑
y=0

| I (x, y)− I (x, y+ r) |
N (N − r)

(7)

where I (x, y) is the pixel gray value at (x, y) in the image
window of N×N size. We randomly set N= 140.

2. The total mean increment is:

E(r) = Ex(r)+ Ey(r) (8)

3. Hurst exponent H satisfies the equation

E(r) = CrH (9)

where C is an arbitrary constant.
H can be calculated by regression fitting the following

system of equations [26]:{
logEr1 = Hlog(r1)+ log(C)
logEr2 = Hlog(r2)+ log(C)

(10)

Substituting three sets of parameters r1, r2, Er1 , Er2
into (10), we obtain three values of H and calculate average
value of these three values.

4. The fractal dimension, GVS, of FBM D can be related
to the Hurst exponent H by

D = d + 1− H (11)

where d denotes the space dimension. We set d= 2.

2) HISTOGRAM MEAN METHOD
A random function I (x) is said to be a fractional Brownian
function if for all x and 1x [27]:

Pr(
I (x +1x)− I (x)
‖ 1x ‖H

< y) = F(y) (12)

where F(y) is a cumulative distribution function and Pr is the
probability. Note that x can be interpreted as vector quantities,
thus can be extended to two or more topological dimensions
as we will do late in the section.

If I (x), in our case the image intensity, is a fractal Brownian
function, we can rewrite (12) by taking ensemble average and
found that second-order statistics of the image change with
scale r = 1x [27]:

E(| 1I1x |) ‖ 1x ‖−H= E(| 1I1x=1 |) (13)

where 1I1x = I (x+1x)-I (x), andE(|1I1x |) is the expected
value of the change in absolute value of intensity over space
increment1x.H is the Hurst exponent. (13) is a hypothesized
statistical property for image intensity changes; a hypothesis
that can be tested statistically.

Taking logarithm on both sides of (13), H is found as

H =
log(E(| 1I1x |))− log(E(| 1I1x=1 |))

log(1x)
(14)

Histogram mean based FD, HM, is constructed as follow-
ing: Four new image blocks gm(i, j) (we set m = 1, 2, 3, 5)
(see Fig. 2 (a)–(d)) are obtained from the original image block
f (i, j) by the following equation:

gm(i, j) =
∑

(k,l)∈U

| f (i, j)− f (k, l) | (15)

where U ={(k, l)|m− 1 <
√
(k − i)2 + (l − j)2 ≤ m}.
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FIGURE 2. HM method. First row: Four image blocks. Second row:
The histogram of four image blocks.

The histogram and histogram mean (HM) value E(|1I1x |)
(1x = m) of every image block gm(i, j)(m = 1, 2, 3, 5) are
calculated firstly. See Fig. 2 (e)–(h), the abscissas are gray
values I1x and the ordinates are frequencies of occurrence
(numbers of pixels). When m = 1, obtained histogram mean
value is E(|1I1x=1|). Then substituting E(|1I1x |) into (14),
we obtain three estimated values ofH :H2,H3 andH5, and our
final estimated H is the average value of these three values.
Finally the fractal dimension D is computed as D = 3− H .

3) POWER SPECTRAL DENSITY METHOD
A fractal in spectral domain can be defined by the property
that power spectral density [28] has a function form of

ρ(r) =
1

r1−2H
(16)

where ρ is power spectral density in a region within power
spectral radius r (see Fig. 3 and Fig. 4).

FIGURE 3. Discrete Fourier transform.

FIGURE 4. Schematic drawing of power spectral density.

Taking logarithm on both sides of (16), then we have

logρ(r) = (2H − 1)log(r)+ C (17)

where C is a constant.

In a log-log plot, it is assumed to be a linear function of
spatial scale, with slope 2H − 1. The corresponding PSD
fractal dimension D can then be found from the fitting slope.

FIGURE 5. Area measurement method (a) 3D bar graph of a gray-level
image (b) Schematic drawing.

C. AREA MEASUREMENT APPROACH
The area fractal here is associated with a property of bar graph
(see Fig. 5). The AM FD estimate of the ideal fractal surface
can be calculated by selecting two scales r1 and r2 as

D = 2−
logA(r1)− logA(r2)
log(r2)− log(r1)

(18)

where A(r) is visible surface area of all adjunct rectangular
boxes with scale r , and D is fractal dimension [24].
The surface of each rectangular box includes a top and four

sides. In order to avoid repeated computation, we only need
to calculate vertical surface areas of two sides (see Fig. 5(b)).
A(r) can be calculated as

A(r) =
M∑
i=1

N∑
j=1

AH (i, j)+
M∑
i=1

N∑
j=1

Av1(i, j)

+

M∑
i=1

N∑
j=1

Av2(i, j) = N × N × r × r

+r ×
M−1∑
i=1

N∑
j=1

| f (i, j)− f (i+ 1, j) |

+r ×
M∑
i=1

N−1∑
j=1

| f (i, j)− f (i, j+ 1) | (19)

where AH , Av1 and Av2 are the areas of top, right and front
sides. f (i, j) is the height (gray level) of a rectangular boxwith
a scale r .M and N are the box numbers in the x, y directions.

III. ROUGHNESS PARAMETERIZATION
In fluid dynamics, the law of the wall states that the average
velocity of a turbulent flow at a certain point is proportional
to the logarithm of the distance from wall, or the boundary of
the fluid region. The concept of an ‘‘equivalent surface rough-
ness’’ or dynamical roughness over the ocean is to extend the
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‘‘law of the wall’’ to air-sea interface for the empirical rela-
tion between wind speed (at some reference height) and the
net air-sea momentum flux. There are different approaches
of modeling roughness length by scaling beginning with
Charnock [29] in that roughness length is scaled by the fric-
tion velocity. To account for sea state dependency, wave-age
scaling (Kitaigorodskii and Volkov 1965, Donelan 1990) and
the steepness of the dominant wave scaling (Hsu 1974, and
Taylor and Yelland 2001) have been proposed. The steepness
of the dominant wave here is commonly defined as the ratio
of significant wave height to peak wavelength and wave-age
is defined as the ratio of wave phase speed to the friction
velocity. For modeling the roughness length changes due to
wind fetch or duration, the variations modeled by the wave
steepness scaling are smaller, an order of 10%, than by the
method of wave-age scaling. Under mixed sea conditions,
the wave steepness scaling method is preferred over wave-
age scaling, while under ‘‘young’’ sea conditions, the wave-
age method is the best performer. Sea-state dependent models
(steepness or wave age) are seen to not perform as well as the
steepness scaling model in swell-dominated conditions [30].

In the bulk parameterization, the surface fluxes are propor-
tional to the measured mean variables with transfer coeffi-
cients to be determined [31], i.e.,

τ = ρCD(U − Us)2

H = cρCH (U − Us)(Ts − T )

E = ρCE (U − Us)(Qs − Q) (20)

where ρ and c are the density and isobaric specific heat of
air; τ , H and E are the stress, heat and moisture fluxes;
U , T and Q are the wind speed, potential temperature and
specific humidity at a reference height above sea surface and
Us, Ts and Qs are the wind speed, temperature and specific
humidity at the surface. The momentum transfer coefficient,
CD, is also known as the surface drag coefficient.

The approximate relationship between CD and u10 (wind
speed at 10m height) has the equation form of:

103CD = p+ qur10 (21)

where the values of p, q, r for different ranges of wind speed
are different.

In COARE algorithm’s parameterization, the roughness
length is separated into two parts [6]:

z0 = zsmooth0 + zrough0 (22)

where zsmooth0 accounts for roughness of the ocean surface
when the surface is aerodynamically smooth, when the sur-
face stress is supported only by viscous stress at surface.
The second part zrough0 accounts for the portion of roughness
elements that caused by wave stress due to wind action on the
surface gravity waves.

Visible image method only measure small-scale waves due
to the limitation on image size and resolution of cameras.
It has been found that, at the first order, sea-state parameteri-
zations that based on swell components do not improve much

up in estimating surface fluxes [30]. This is because that the
large-scale swells may dominate in surface elevation changes,
however, to the first-order, it is still the shorter sea waves
carry the major part of wind stress. Indeed, the deficiency in
roughness length estimations under limited duration or fetch
are found to be on an order 10% or less. Thus for open ocean
deep water, or pure wind and seas, the momentum transferred
from the air to water is at a rate close to that predicted for a
fully developed sea regardless of fetch or duration. This has
been confirmed by an early study [32].

In general, sea surface roughness and wind speed scaling
have mutually dependent relations from various parameteri-
zation approaches that have to be solved interactively. Prac-
tically, wind speed and sea surface roughness is often fitted
into an empirical relationship:

z0 = a(u10 + b)2 + c (23)

For example, from [33], a = 0.15, b = −1.6 and
c = 0.366. Here u10 is the wind speed at 10m height above
water level. The particular values of a, b and cmay all depend
on sea states and is beyond subject of this work. The choice
of a particular set of values is not critical in demonstration
of our new methodology of measuring sea surface roughness
from imagery.

The actual vertical height between our anemometer and sea
surface is 5.28m. Conversion the 10m wind from 5.28m wind
is by [34]:

u10 = 1.08u5.28 (24)

For this experiment, the actual expression of roughness in
term of wind speed becomes:

z0 = 0.15(1.08u5.28 − 1.6)2 + 0.366 (25)

where the unit of z0 is 10−4m.
In reality, there is not a single wind speed-dependent

parameterization scheme that can work perfectly well under
all conditions for the complicity of the interface coupling sys-
tems. For example, the majority of the surface stress is sup-
ported by wind-driven waves, while these wind-driven waves
are modulated by long waves and water currents. The slopes
and amplitudes of wind-driven waves, and therefore the wind
stress is modulated by longer surface waves. In practice, the
inclusion of additional parameters for coupling mechanisms
with their own measurement uncertainties in the bulk flux
algorithm tends to increase the uncertainties in estimating
fluxes due to difficulties in oceanic observations. Therefore,
the potential improvements from the wave age- and wave
slope-dependent parameterizations may be better utilized in
applications where higher quality wave measurements are
available.

IV. EXPERIMENT RESULTS
In this section we present the experimental results on the
relationship between wind speeds (or surface roughness) and
fractal dimensions, error analysis of the six fractal methods,
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effects of four noises (Gaussian, salt and pepper, random and
multiplicative noises), and transformation analysis.

A. ROUGHNESS ANALYSIS
The data are acquired at a site in Lian island coast of Lianyun-
gang city (China). The site is chosen for the advantages of
high fluctuations of both winds and waves, less impurity in
seawater and easy access for observation. The observation
setup is illustrated by Fig. 6. Cameras on shore and on an

FIGURE 6. Schematic drawing of the observation experiment.

unmanned aerial vehicle are used to collect images. A total
of 3635 sets of data were collected in this experiment. Each
set of data includes one image of sea surface and its cor-
responding wind speed value at 5.28 meter height. Image
data are collected using single camera with a resolution
of 3264 × 2468 pixels and wind speed data are obtained by
a SMART SENSOR anemometer (AR-816) with an accu-
racy of 0.1m/s. The measured values of wind speed are
between 0∼3.9m/s. The measured vertical distance between
the anemometer and the sea level is 5.28 meters. The hori-
zontal length of the field of view is approximately 6 meters
and the vertical width is about 5 meters. The aperture of the
camera’s lens is F1.8 at 2.0× optical magnification.

In the experiments of roughness analysis of sea surface
by the six fractal methods (See Fig. 7), the values of fractal
dimension are extracted from sea surface images first. Then
relations between wind speeds (or sea surface roughness) and
fractal dimensions are constructed by using Whisker charts
based on the extracted data and equation (25). The maximum
value of the upper whisker line is the point at which there are

FIGURE 7. The relation schemas of six fractal methods.
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25% data points whose values lie above the maximum value.
The minimum value of the lower whisker line is the point at
which there are 75% data points whose values lie above the
minimum value. The red solid point is the average value of
each set of data. Most FD values of IBC, GVS, HM, PSD and
AMmethods are between 2 and 3, while only a few FD values
of IBC method are between 3 and 6 (See Fig. 7(b)).

As shown in Fig. 7, the mean value of wind speed
(or sea surface roughness) increases monotonically with all
six extracted fractal dimensions. Mean square error (MSE)
and relative error (RE) are used as algorithm evaluation cri-
terion. As shown in TABLE 1, the fitting accuracy of the
GVS method is the highest. The above analysis showed that
the fractal dimension of visible sea image is proportional to
the sea surface roughness in shallow water and the fractal
dimension are capable for identifying sea surface roughness
changes caused by the wind changes.

TABLE 1. The fitting errors of six fractal methods.

B. EFFECTS OF NOISES
The noises of different types and parameters of adjusting
values are added to the sea surface images to evaluate the
noise suppression performances of the six fractal methods.
The noises added are Gauss, salt and pepper, random and
multiplicative noises respectively. The noise mean values are
all set to 0 and variance δ, density ρ and variance var values
are 0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09 and
0.10 respectively. Examples of images with different δ, ρ
and var values of four types of noises are shown in Fig. 8.
The corresponding fractal dimensions extracted are listed
in TABLE 2 and shown in Fig. 9.

Experimental results show that fractal dimensions change
with the changes of noise parameters. The changes of fractal
dimensions in TABLE 2 and Fig. 9 show that the histogram
mean, the improved box counting and the area measurement
methods are less affected by noises and the box counting
method is more affected by noises. The fractal dimension of
the box counting method is calculated only according to the
gray values of the four corners of all sub-images so that this
method is easily affected by noises.

C. TRANSFORMATION ANALYSIS
Similar images have similar FD values, but images with same
FD value may not be exactly the same. In order to distinguish
different images of similar FD’s, we can check FD of trans-
formed images. We tested on different images constructed by
the following four image transformations:

I1(x, y) =

{
I (x, y)− L1 if I (x, y) > L1
0 Others

(26)

FIGURE 8. Images affected by four noises with different values.

I2(x, y) =

{
255− L2 if I (x, y) > (255− L2)
I (x, y) Others

(27)

I3(x, y) =
1

2w+ 1

w∑
k=−w

I (x, y+ k) (28)

I4(x, y) =
1

2w+ 1

w∑
k=−w

I (x + k, y) (29)

where I (x, y) is original image, I1(x, y), I2(x, y), I3(x, y) and
I4(x, y) are the images after the transformations, L1 = Imin +
Im/2, L2 = Imax − Im/2, Imax , Imin and Im are the highest,
lowest and average gray values in I (x, y), (2w+ 1) is a scalar
and is set to 3.
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TABLE 2. Fractal dimensions affected by four noises.

An original image and the corresponding four transformed
images are shown in Fig. 10. FD values of seven sets of
data (See TABLE 3) are obtained by using the PSD method.
As seen in TABLE 3, each set of data has two images with
the same FD value, while the FD values are different among
data sets. In addition to I1, the FD values of I2, I3 and I4
change distinctly with each other because their pixel gray
values have changed and differ from one another after the

FIGURE 9. The calculated curves of fractal dimensions affected by four
noises.

transformations. So image transformations can be used to
distinguish different images with same FD values.

D. OIL SPILL DETECTION
Oil is one of the major pollutants of the marine environment.
It may be introduced in diverse ways, such as natural sources,
offshore production, sea traffic, tanker accidents, atmospheric
deposition, river run off and dumping. Oil spills can seriously
affect the marine ecosystem and cause social and scientific
concerns since they seriously effect fragile marine and coastal
ecosystem. The amount of pollutant discharges and associ-
ated effects on the marine environment are important param-
eters in evaluating sea water quality. Oil spills can easily be
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FIGURE 10. Image transformations. (a) Original sea surface images,
(b) Extracted sub-images I(x, y ), (c) I1(x, y ), (d) I2(x, y ), (e) I3(x, y ),
(f) I4(x, y ).

TABLE 3. Comparisons of fractal dimensions.

seen but it is difficult, even for an expert, to specify the scope
of oil spill at sea [35].

To investigate kinetic characteristics of an oil film at
sea, we conducted an experiment west of Point Concep-
tion, California on November 3, 2015. We dropped frozen
canola oil from a plane flying at an altitude of 500m. The
aircraft then flew upwind and downwind over the oil patches
at 4 to 5 minute intervals, varying the altitude. We recorded
sea surface images with cameras of various angles of view
(See Fig. 11). The oil patches formed by the oil are elongated
in the direction of the wind, indicating different diffusivities
along and across the wind direction.

The wind direction was NWN and the speed was fore-
cast by the National Oceanic and Atmospheric Admin-
istration (NOAA) to be 9m/s during our experiment.
The closest NOAA windspeed data are from buoys
(NDBC 46053 and 46054) located at 34.252N 119.853W
and 34.265N 120.477W, which measured winds of average

FIGURE 11. Two aerial images with several oil spills for an aerial
observation of an oil patch drifting at sea.

9.5 m/s with guest 11.5 m/s. We recorded GPS coordinates
of the aircraft when it flew directly over the patches used
this to estimate the position of the patches. The patches
drifted downwind during the experiment. The drift velocity
components were 0.34 m/s southward and 0.21 m/s eastward.
We then calculated that the drifting speed of the oil patches
was 4% of wind.

TABLE 4. The roughness values of oil parts and no-oil parts.

The six fractal methods are examined in order to evaluate
their performance in surface oil film detection. Fig. 11 con-
tains two aerial images with several oil patches. Six regions
in Fig. 11(a) and six in Fig. 11(b) are selected for analysis.
In Fig. 11(a), Part 4, 5 and 6 are areas with oil and Parts 1, 2
and 3 are areas without oil. In Fig. 11(b), Part 5 and 6 are areas
with oil and Parts 1, 2, 3 and 4 are areas without oil. TABLE 4
shows that the GVS, IBC and PSD methods have the most
discriminating ability because their roughness values of oil
contaminated parts are quite different from that without oil.
The discriminating abilities of the HM method are the worst
because their roughness values are not very different. From
the above it can be concluded that the GVS, IBC and PSD
methods have better performance in oil spill detection than
others.

V. CONCLUSION
We have established a new robotic technique for extracting
sea surface roughness measurements from visible images.
It is based on a novel concept that sea surface random field
can be represented by fractal geometry. Specifically, the com-
plicity of random wave image can be represented by the
fractal dimension. Our fundamental assumption is that the
complicity of the sea surface geometry is linked to the surface
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drag, and therefore surface roughness. By this connection, a
suits of well developed methods, such methods from frac-
tal geometry, are successfully attempted here. Through this
study, we have shown: how to construct fractal dimension
measurements from sea surface images, what are the empir-
ical relations between wind speeds and fractal dimensions,
and how effective of these methods under noises. The algo-
rithms presented in this paper include box counting, fractional
Brownian motion and area measurement approaches. Our
experiments have demonstrated that our fractal methods can
analyze roughness change of sea surface from visible images
properly, and the HM and the PSD methods are less affected
by noises and the AM and the BC methods are more sensitive
to the noises. The GVS, IBC and PSD methods have a better
performance in oil spill detection. In future, we are working
towards to reconstruct 3D sea surfaces and transparent objects
from 2D images [36].
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