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ABSTRACT In this article, we analyze the signal-to-interference ratio (SIR) coverage probability of a
multi-cell downlink system with random traffic arrivals. Based on a theoretical model, in which the base
stations (BSs) and devices are deployed as independent Poisson point processes (PPPs), we first present
the sufficient and necessary conditions of the ε-stable region for the queueing system. Then, by taking into
account the impact of spatially queueing interactions among BSs, we focus on the steady status of the queues
and introduce a two-queue-length approximatedmodel for the system. Specifically, in the studied newmodel,
the BSs are separated into two sets in the steady state: the long-queue BS set and the short-queue BS set.
The locations of the former are modeled by a Neyman-Scott process and those of the latter are modeled as
a residual hole process. By applying the first-order statistic approximation, we further approximate the hole
process by a homogeneous PPP with the same density. To model the deployment of the BSs precisely, the
related parameters in the approximated model are fitted. Using tools from stochastic geometry and queueing
theory, we derive the SIR coverage probability in the steady state. An iterative algorithm is proposed to
calculate the active probability of the BSs. To reduce the computational complexity, Beta distribution is
applied to approximate the probability density function of the service rate in each iteration of the algorithm.
Finally, the effect of the fitting parameters and the accuracy of our analysis are presented via Monte Carlo
simulations.

INDEX TERMS Temporal traffic dynamics, spatially interacting queues, Poisson point process, Neyman-
Scott process, stochastic geometry.

I. INTRODUCTION
The massive connectivity of mobile devices, the demand for
high data rates, along with the scarce spectrum have imposed
complicated interference situations to modern wireless sys-
tems. To stipulate the quality-of-service for the devices in
the sophisticated wireless networks, coverage probability is
no doubt an important metric. To provide a unified mathe-
matical paradigm that characterizes the coverage probability,
stochastic geometry has been widely used in various wire-
less systems, e.g., the device-to-device networks [1]–[4], the
broadcast networks [5]–[8], and the heterogeneous networks
[9]–[12], etc..

The associate editor coordinating the review of this manuscript and

approving it for publication was Chien-Fu Cheng .

Nowadays, with the development of the multi-media and
the evolution of mobile applications, a large amount of data
from different sources with different traffic types are trans-
mitted simultaneously in the same communication systems.
In these systems, the impact of the data traffic on the net-
work services is no longer negligible. On the one hand, the
service requirements of different types of applications may
vary greatly. For instance, for latency-sensitive applications,
e.g., immersive virtual reality and automotive driving, the
delay is required to be less than 2 ms [13], whereas the
ones with a lower degree of sensitivity upon latency, e.g.,
video conference only requires the delay to be less than
100 ms [14]. On the other hand, the extremely increased
network throughput requires us to explore the potential of
the performance gains through the cross-layer designs. The
conventional approaches of network performance analysis
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[5]–[7] heavily rely on the full buffer assumption, i.e., each
base station (BS) is backlogged and keeps transmitting all
the time. In comparison, interacting queues are considered
in [15] with a simplified collision model, which allows one
to quantify the network performance with a combination of
the queueing theory and stochastic geometry. In the wireless
networks, the spatial distance and channel gain related inter-
ference affects the transmission success probability of the
packets (or the states of the interacting queues). Conversely,
the buffer states in the previous time slot also affect the activa-
tion of the interfering BSs and the interference of the devices.
In view of this, the interactions among the queues are depen-
dent on both the spatial and temporal factors. Considering the
random arrivals of the packets, a recent line of research has
introduced a spatiotemporal model to analyze the coverage
probability from a joint spatial-temporal aspect [16]–[18]. To
simplify the analysis, all the previous works assume that the
queueing evolution is independent and identically distributed
(i.i.d.) among all the BSs, which is commonly known asmean
field approximation.

However, in practical systems, multiple BSs sharing the
same spectrum inevitably interfere with each other due to
the broadcasting nature of wireless channels. As such, the
queueing status of the BSs are correlated in both the time
domain and space domain among all the BSs. In fact, even
the traffic arrival pattern at each BS is the same, the spatial
interaction of queues can lead to a very different queue length
after a sufficiently long time. Specifically, for the BSs located
in a crowded area, the severe mutual interference during the
transmissions slows down the rate of the services and results
in longer queue lengths. The long queue lengths increase
the active probability of the BSs and further strengthen the
mutual interference. On the contrary, for those BSs located
far away from their neighbors, the queue lengths are always
short, which further lighten the interference and improve
the service rate [18]. An example of such a phenomenon
is illustrated in Figure 1. As observed, when the queues
are stable, the BSs with long queue lengths are gathered in
three clusters, whereas the BSs with short queue lengths are
scattered in other uncrowded space. Note that the effect of
spatial interaction is stronger in the networks with denser
spatial deployment.

This paper aims to study the SIR coverage probability for
the multi-cell downlink system. Specifically, the spatiotem-
poral correlations amongst the queues are considered. The
temporal correlations of the queues are handled by analyzing
the dynamic interacting queues as in [18] whereas the spa-
tially queueing interactions are revealed by introducing a new
model of the BSs. Inspired by the observations of Figure 1, we
adopt a new framework that separates the BSs into the long-
queue BSs and short-queue BSs and considering the two sets
of the BSs separately.

A. RELATED WORKS
The coverage probability is widely analyzed in the downlink
multi-cell cellular systems [5]–[7]. In [5], the independent

FIGURE 1. A snapshot of the BS locations in the steady state with
network parameters λb = 0.1 BS/m2 and ξ = 0.05 packets/slot.

PPP placed BSs were considered and a tractable expression
for the coverage probability was derived under a new frame-
work for the multi-cell signal-to-interference-plus-noise ratio
(SINR). The work in [6] proposed a generic uniform density
plane-entity method to evaluate the inter-cell interference.
Based on the results, the lower bounds of the coverage
probability and the achievable throughput were respectively
derived under three different BS distribution models. Ref-
erence [7] considered the Poisson-Poisson cluster processes
model for the BS locations and presented a numerically com-
putable coverage probability of the system. All the previous
works assumed that the BSs are always in the full-buffer state.

To analyze the effect of the traffic, a variety of works
consider the wireless systems with a spatiotemporal model.
The work in [16] evaluated the delay performance of three
different scheduling methods in the heterogeneous cellular
networks. By leveraging properties from Geo/PH/1 queues,
[17] analyzed the signal-to-interference ratio (SIR) perfor-
mance under three different transmission strategies for uplink
Internet of things (IoT) embedded cellular networks. Based
on the SINR meta distribution, [18] derived the coverage
probability for users to achieve different SINR levels in the
downlink cellular networks. With the spatiotemporal model,
[19] characterized the link quality of the nodes and further
designed the uncoordinated multiple access strategies for
wireless networks with massive transmitters.

B. CONTRIBUTION
In this paper, we study the SIR coverage probability for a
multi-cell downlink system, in which the BSs and the devices
are scattered according to independent Poisson point pro-
cesses (PPPs). Similar to [18], we set a random arrival of
the traffic and a dynamic interacting queue at each BS. The
packet arrivals are assumed to follow independent Bernoulli
processes. However, different from [18] and [19] that apply
the mean field approximation, we develop a new model to
characterize the spatial correlation of the queueing states.
Specifically, we divide the BSs into two sets based on their
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steady queue states, i.e., the long-queue BS set and short-
queue BS set. As will be shown later, the locations of the
long-queueBSs are approximated by aNeyman-Scott process
(NSP), whereas that of the short-queue BSs form a residual
hole process.

The technical contributions are two folds. First, we approx-
imate the residual hole process with an independent PPP
based on the first-order statistical approximation [20] and
analyze the SIR coverage probability when the queues are
in the steady state. Using tools from stochastic geometry
and queueing theory, we derive a closed-form expression for
the conditioned Laplace transform of the long-queue BSs
interference. Regarding the conditioned Laplace transform of
the short-queue BSs interference, an algorithm is proposed to
update the active probability of the BSs iteratively. Second,
to obtain a tractable expression for the coverage probability,
Beta distribution is adopted to approximate the probability
density function (PDF) of the service rate in each iteration of
the algorithm. Simulation results are presented to validate the
accuracy of the approximated model, discuss the effect of the
fitting parameters and show the convergence of the algorithm.
Besides, the simulations also verify that the analytical result
by applying the proposed approachmatches well with the real
network deployment.

The remainder of the paper is organized as follows. Section
II describes the system model of the multi-cell downlink
system. Section III analyzes the stable region for the queues
and presents the two-queue-length model. In Section IV, we
derive the coverage probability on the condition of stable
queues. Numerical results are shown in Section V and the
conclusion is presented in Section VI.

II. SYSTEM MODEL
As illustrated in Figure 2, we consider the transmissions
in a multi-cell downlink system which consists of multiple
BSs and devices all equipped with a single antenna. The
spatial locations of the BSs follow a homogeneous PPP8b of
density λb. The devices are served by the nearest BS with a
constant transmission power P. In this network, the spectrum
is divided into orthogonal subchannels and reused in each cell
for improving the spectrum efficiency. Similar to the setting
in [21], we focus on a typical subchannel and assume that the
density of the devices is large enough such that each BS has
one associated device on the subchannel.1 Suppose the typical
device and its serving BS locate at the origin and position
z ∈ 8b, respectively. At time slot t , the SIR of the typical
device is expressed as

γz,t = hz‖z‖−α/I , (1)

where hz ∼ exp(1) is the small scale fading from the BS
located at z to the origin that follows the exponential distri-
bution with density one, ‖ · ‖ is the Euclidean norm, α is the
pass loss exponent, and I is the normalized interference power

1Following the idea in [18], our analysis can be easily extended to the case
that multiple devices share one subchannel for each BS.

FIGURE 2. The system model of the Poisson cellular network and an
example of the interacting queues with two BSs.

received at the typical device, which will be analyzed later in
Section IV.

In themedia access control (MAC) layer, we use a discrete-
time queueing system to model the traffic dynamics. Specifi-
cally, at any time slot t , each BS has a potential of the packet
arriving with probability (packet arrival rate) ξ ∈ [0, 1]. The
incoming packet is stored in an infinite-sized buffer. Then,
the packets in the buffer are scheduled by the first-in-first-out
(FIFO) policy, i.e., if the buffer is non-empty, the head-of-line
packet of the buffer is transmitted from the BS to the intended
device. The packet is successfully transmitted when the SIR
received at the intended device exceeds a decoding threshold
θ , i.e., γz,t ≥ θ . After a successful transmission, the target
packet is removed from the buffer and the transmission for
a new packet begins. Otherwise, the failed transmission will
resume in the next time slot until successful. We define the
conditional successful transmission probability of the serving
BS at time slot t as

µ
8b
z,t = P(γz,t ≥ θ | 8b). (2)

Similar to [16], we consider the BSs with empty buffers
entering into the inactive state to save energy and reduce
the interference. Here, we define a binary indicator ζz,t to
describe the transmission state of a generic BS located at
z ∈ 8b in time slot t as the following

ζz,t =

{
1, the BS located at z in time t is active,
0, otherwise.

(3)

In the next section, we will first analyze the conditions
under which the queues across the network can be stable.
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Then, under such conditions, we will consider the spatial
correlation among the queues and present an approximated
two-queue-length BS model.

III. STABLE CONDITION AND TWO-QUEUE-LENGTH
BS APPROXIMATION
A. STABLE CONDITION
Since different devices suffer different interference levels, the
number of the packets in the queue of each BS varies over dif-
ferent time slots. Based on Loyen’s Theorem [22], the queue
of an isolated system is stable if and only if the averaged
services rate is larger than the average packet arrival rate
over all the system operating time. Unfortunately, the strict
stability that all the queues are finite-length is not achievable
in the large scale Poisson network (except for the trivial case
ξ = 0). For instance, when some randomly deployed devices
locate at a poor SIR covered area, those devices will have
an infinite queue length in the long run. Thus, given packet
arrival rate ξ , successful transmission probability µ8b

z,t and
system operating time T , we follow [23] and introduce the
concept of ε-stability as follows
Definition 1: For any 0 ≤ ε ≤ 1, the ε-stable region Sε

and the critical arrival rate ξc,ε of the static Poisson network
are respectively defined as

Sε =
{
ξ ∈ R+ : P

{
lim
T→∞

1
T

T∑
t=1

µ
8b
z,t ≤ ξ

}
≤ ε

}
, (4)

ξc,ε = supSε. (5)

We remark that the system is ε-stable if and only if
ξ ≤ ξc,ε. In fact, it is non-trivial to obtain the exact expression
of ξc,ε. Instead, the sufficient and the necessary condition for
ε-stability are given by the following proposition
Proposition 1 [18]: The sufficient and necessary condi-

tion for the network stability is respectively given by

ξ ≤ sup
{
ξ ∈ R+ :

1
2
−

1
π

∫
∞

0

1
ω
Im
{
ξ−jω

[
1+

2
α

×

∞∑
k=1

(
jω
k

)
Z(k,

2
α
, θ)
]−1}

dω ≤ ε
}
, (6)

ξ ≤ sup
{
ξ ∈ R+ :

1
2
−

1
π

∫
∞

0

1
ω
Im
{
ξ−jω

[
1+

2
α

×

∞∑
k=1

(
jω
k

)
ξ kZ(k,

2
α
, θ)
]−1}

dω ≤ ε
}
, (7)

where Im{·} is the imaginary part of the complex number,
Z(k, 2

α
, θ) = (−1)k+1θk

k− 2
α

2F1(k, k − 2
α
; k − 2

α
+ 1;−θ), and

2F1(a, b; c, d) is the hypergeometry function [5].
The sufficient or necessary condition holds by letting all

the BSs keep transmitting signals or regarding all the packets
are successfully transmitted within the operating time. Com-
paring with the actual scenario, the interference suffered by
the devices is more severe in the former case whereas the
interference is more slight in the latter case. More details can
be found in [18].

TABLE 1. The percentage of ε-stability queues over different packet
arrival rates and decoding thresholds.

TABLE 2. Table of parameters.

Table 1 presents the percentage of the ε-stable queues in the
case ε = 0.01 by the numerical simulations. Table 2 shows
more details of the simulation parameters. As seen, the queue
becomes more unstable as the value of packet arrival rate ξ
or the decoding threshold θ goes up. In this paper, we always
focus on the cases that the queues are ε-stable.

B. TWO-QUEUE-LENGTH BS APPROXIMATION
Unlike the full-buffer case, where the BSs always keep trans-
mitting packets, the active states of the BSs in our work
are changed with the dynamic queues. Intuitively, in a static
Poisson network, a long-queue BS tends to have a long period
of time operating in the active state, which incurs a high inter-
ference to the nearby BSs and consequently decrease their
successful transmission probability. Accordingly, the queue
lengths of those nearby BSs are to be prolonged. In view of
this, instead of assuming the queues evolve independently
from each other in space domain [18], we consider that the
queues of the BSs are spatially correlated. As illustrated in
Figure 1, the spatial correlation in the buffer states result in a
cluster pattern of the long-queue BS locations.

Spatial factors aside, the traffic pattern also has a noticeable
effect on the correlation of queueing states. The correlation
of the queueing states can be easily verified by the follow-
ing simulation instance. Let at and bt respectively be the
queue lengths of two BSs at time slot t , a = (a1, . . . , aT )ᵀ,
b = (b1, . . . , bT )ᵀ, ā = 1

T ‖a‖ and b̄ =
1
T ‖b‖. We define the

correlation coefficient between a and b as follows:

Cov(a, b) =
∑T

t=1(at − ā)(bt − b̄)√∑T
t=1(at − ā)2

√∑T
t=1(bt − b̄)2

.

Suppose the BSs and the devices are deployed over a square
area of 1000 m2 with BSs density λb = 0.1 BS/m2, decoding
threshold θ = 0 dB and system operating time T = 1000.
Figure 3 depicts the correlation coefficient of the queue
lengths between the serving BS and its’ five nearest inter-
fering BSs. As shown, the correlation of all the interfering
BSs increases dramatically as the traffic load of the system
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FIGURE 3. The correlation coefficient of the queue length between the
typical BS and different interferers, under different deployment models.
The density of the BSs is λb = 0.1 BS/m2.

goes up. Specifically, in the randomly placed BSs scenario,
the correlation coefficient increases from 0.2 to 0.7 as the
packet arrival rate ξ changing from 0.5 packets/slot to 0.9
packets/slot. Besides, the correlation of the queues is more
evident in the randomly placed BSs scenario than the hexag-
onally placed BSs scenario. Nearly 75% increment of the
correlation between the serving BS and the interfering BS
occurs when the BS locations changing from hexagon into
random.

The above instance implies that the spatial correlation of
the queues between the serving BS and the interfering BSs in
its’ neighbor cannot be ignored. Note that directly deriving
the Laplace transforms in Section IV with spatial correlated
queues is not accessible. Instead, we approximate the system
with a two-queue-lengthmodel motivated by the observations
above. Specifically, the original PPP placed BSs are separated
into two sets based on their stable states of the queue lengths:
the long-queue BSs set and the short-queue BSs set. Then
two different point processes are respectively used to model
the locations of the two BS sets.

Denote 8l and 8s as the locations of the long-queue
and short-queue BSs, respectively. To be concrete, we have
8b = 8

l
∪8s. We approximate the locations of the long-

queue BSs by an NSP: a clustering process whose parent
process is a PPP 8l

c with intensity λp, whereas the offspring
point process 8l

x for each parent x ∈ 8l
c is the conditionally

independent bivariate Gaussian process with zero mean and
variance σ 2I ∈ R2. The number of the offsprings is a Poisson
random variable (r.v.) with mean m̄. On the other hand, the
locations of the short-queue BSs satisfy a residual hole pro-
cess with intensity λsb = λb− m̄λp. Mathematically, the exact
characterization of the hole process and its’ dependency with
NSP is not available. In order to obtain a tractable expression
of the coverage probability, we assume that the NSP and the
residual hole process are independent and apply the first-
order method to approximate the hole process [20]. That is,
the locations of the short-queue BSs are approximated by
a PPP with the same intensity λsb. The accuracy of these
approximations will be validated in Figure 4.

FIGURE 4. Ripley’s K Functions of the long-queue BSs and the
short-queue BSs in the case θ = 10 dB and ξ = 0.05 packets/slot.

IV. COVERAGE PROBABILITY
In this section, we present the main technical part of this
work, i.e., deriving the coverage probability of the employed
network in the steady state.2 To begin with, let us denote yx as
the index of the BS located in cluster 8l

x with x and y being
the cluster center of8l

x and the relative position from cluster
center x to BS yx , respectively. Suppose the typical device
is served by a long-queue BS located at y0x0 , the normalized
interference of the typical device at time slot t contains the
following three parts:
• Intra-cluster interference: the normalized interference
from other long-queue BSs in the same cluster

I l-intra =
∑

y∈8l
x0
\y0
ζyx0 ,t

hyx0 ‖x0 + y‖
−α, (8)

• Inter-cluster interference: the normalized interference
from the long-queue BSs in other clusters

I l-inter =
∑

x∈8l
c\x0, y∈8l

x
ζyx ,thyx‖x + y‖

−α, (9)

• short-queue BS interference: the normalized interfer-
ence from the short-queue BSs

I l-short =
∑

y∈8s
ζy,thy‖y‖−α. (10)

By plugging I = I l-intra + I l-inter + I l-short, (8), (9) and (10)
into (1), the coverage probability attained at the typical device
in the steady state is given by

P(γy0x0≥θ )= lim
t→∞

E
(
exp

(
− s(I l-intra+I l-inter+I l-short)

))
=

∫
∞

0

∫
∞

0
LI l-intra (s |v0, r)LI l-inter (s |r)LI l-short (s |r)

× fR(r | v0)fV0 (v0) dr dv0, (11)

where γy0x0 is the SIR of the device linked to BS y0x0 ∈ 8b
in the steady state, r = ‖x0 + y0‖ is the serving distance

2Coverage probability is a quality of service (QoS) metric, which char-
acterizes the probability of successful transmissions from the BS to the
device. In contrast, decoding threshold reflects the quality requirement of
the received signals, which represents quality of experience (QoE) for the
device.
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from the serving BS to the origin, v0 = ‖x0‖ is the distance
from cluster center x0 to the origin, s = θrα , Lz(s | r) is
the conditioned Laplace transform of r.v. z at point s in the
steady state, fR(r | v0) is the conditioned serving distance
distribution, and fV0 (v0) = exp(−λlpπv

2
0)2πλ

l
pv0 [5].

On the other hand, if the serving BS is a short-queue BS
y0, the normalized interference of the typical device contains
two parts:
• Interference from long-queue BSs: the normalized
interference from the long-queue BSs

I s-long =
∑

x∈8l
c, y∈8l

x
ζyx ,thyx‖x + y‖

−α, (12)

• Interference from short-queue BSs: the normalized
interference from other short-queue BSs

I s-short =
∑

y∈8s\y0
ζy,thy‖y‖−α. (13)

By plugging the equation I = I s-long + I s-short, (12) and (13)
into (1), when the typical device is served by short-queue BS
y0, the coverage probability in the steady state is therefore
given by

P(γy0 ≥ θ ) = lim
t→∞

E
(
exp

(
− s(I s-long + I s-short)

))
=

∫
∞

0
LI s-long(s | r)LI s-short(s | r)fR(r) dr, (14)

where fR(r) = exp(−λsbπr
2)2πλsbr [5].

In the next two subsections, we would like to derive the
mathematical expressions of the conditioned serving distance
distribution and the conditioned Laplace transform in (11)
and (14) so as to obtain the coverage probability of the serving
BS in the steady state.

A. DISTANCE DISTRIBUTION
Suppose Wout and Sx respectively be the set of the distance
from the BSs that lies outside the serving distance r in cluster
8l
x0 to the origin and the distance from the long-queue BSs in

cluster 8l
x (x 6= x0) to the origin. Let v = ‖x‖, then we have

the following Lemma:
Lemma 1: wout ∈Wout, s ∈ Sx are conditionally i.i.d. and

fWout (wout | v0, r) =
fS (wout | v0)
1− FS (r | v0)

· 1+(wout > r), (15)

fS (s | v) = Ricepdf(s, v; σ ), (16)

where 1+(·) =

{
1, if · is true
0, otherwise

is an indicator function,

fS (wout | v0) is the conditioned PDF of variable wout,
FS (r | v0) = 1 − Q1(

v0
σ
, r
σ
) with notation Q1(a, b) being

the Marcum Q-function, and Ricepdf(s, v; σ ) is the PDF of
Rice distribution.

Proof: The proof of Lemma 1 can be found in [24].
We remark that Lemma 1 gives the distance distribution for

the intra-cluster interfering BSs and inter-cluster interfering
BSs, which will be used to calculate the conditional Laplace
transform LI l-intra (s | v0, r) and LI l-inter (s | r) in the next
subsection.

Now we focus on calculating the conditioned distribution
of the serving distance fR(r | v0). We first consider a circle
area B(0,R) centered at the serving BS y0x0 with radius R.
Let 8̃l

x0 = 8l
x0 ∩ B(0,R) be the set of the long-queue BS

in both cluster 8l
x0 and area B(0,R); S̃x0 be the set of the

distance from the long-queue BSs in 8̃l
x0 to the origin. The

number of BSs in 8̃l
x0 equals to k =

∣∣∣8̃l
x0

∣∣∣. Define a set of

the distance {s(i)}ki=1 such that the values of the k elements in
set S̃x0 are sorted in ascending order, i.e., s(1) ≤ . . . ≤ s(k).
Since the typical device links with the nearest BS, we have the
serving distance r = s(1). The conditional serving distance
distribution can be derived by using the properties of order
statistics and enlarging the radius of B(0,R) to infinity. The
main results are presented in the following Lemma
Lemma 2: The distribution of the serving distance condi-

tioned on v0 = ‖x0‖ is given by

fR(r |v0) = m̄ exp
(
− m̄FS (r | v0)

)
fS (r | v0). (17)

Proof: See Appendix A.

B. LAPLACE TRANSFORM
Using the distance distribution derived in the previous sub-
section, we now calculate the conditional Laplace transform
of the interference. Two cases that whether the serving BS
is a long queue length BS or a short queue length BS are
separately considered.

We first analyze the case that the serving BS is a long queue
length BS. For the long-queue BSs, we have ζyx0 ,t = 1 in the
large time horizon, i.e., t � 1. Hence, limt→∞ P(ζyx0 ,t = 1)
is a constant that equals to one. In the sequel, we focus on the
steady state, i.e., t → ∞, and drop the subscript t . Given
that the serving BS belongs to the cluster center which is
the closest to the origin among all other cluster centers, the
conditional Laplace transform of intra-cluster interference in
the steady state is given by the following Lemma
Lemma 3: Suppose the serving BS is a long-queue BS. The

conditional Laplace transform of the intra-cluster interfer-
ence and the inter-cluster interference in the steady state are
respectively given by

LI l-intra(s |v0, r)= exp
(
(1− m̄)

×

∫
∞

r

sw−αout
sw−αout + 1

fWout(wout | v0, r) dwout
)
,

(18)

LI l-inter (s |r)= exp
(
− 2πλp

∫
∞

0

(
1− exp(−m̄

×

∫
∞

r

su−α

su−α + 1
fU (u |v) du)

)
v dv

)
, (19)

where the expression of fWout (wout | v0, r) and fU (u | v) is
obtained by (15) and (16), respectively.

Proof: See Appendix B.
Comparing with (18), the Laplace transform of the inter-

cell interference dose not related to the order of the distance.
Besides, it gets one more integration that relates to the dis-
tance of the cluster center.
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Unlike the long-queue BSs, the active state of a short-
queue BS varies across different time slots. We define
qy = limt→∞ P(ζy,t = 1) as the active probability for BSs
y ∈ 8s in the steady state and assume that ζy for all BSs
y ∈ 8s are independent. Suppose the serving BS is a long-
queue BS, we now present the conditional Laplace transform
of the short-queue BSs interference in the steady state.
Lemma 4: When the serving BS is a long-queue BS, the

conditional Laplace transform of the short-queue BSs inter-
ference in the steady state is

LI l-short (s |r) = exp
(
− 2πλsbqy

∫
+∞

r

sv−α

sv−α + 1
v dv

)
. (20)

Proof: See Appendix C.
A complete expression of (20) requires us to calculate the

term qy. To do this, let us first denoteµ
8b
y to be the conditional

SIR coverage probability (service rate) of the devices served
by BS y ∈ 8s in the steady state, i.e.,µ8b

y = P
(
γy ≥ θ | 8b

)
.

Furthermore, we denote f 8b
y (u) as the PDF of µ8b

y . The
expression of qy can be derived as follows.
Lemma 5: The active probability for BS y ∈ 8s in the

steady state is given by

qy =
∫ 1

ξ

ξ

u
f 8b
y (u) du. (21)

Proof: Equation (21) is a standard result of Geo/G/1
queue [25].
Lemma 5 shows that the service rate of the short-queue BSs

in the steady state is always larger than the packet arrival rate,
i.e., µ8b

y > ξ .
It is non-trivial to obtain the closed-form expression of

f 8b
y (u) (or qy). Instead, we obtain the value of f 8b

y (u) (or qy)
iteratively. Let us denote f 8b

y,n (u) and µ
8b
y,n as the expression of

f 8b
y (u) and the value ofµ8b

y in the n-th iteration, respectively.
Now we focus on calculating f 8b

y,n . Define Y
8b
y,n = ln(µ8b

y,n) =
ln(P(γy,n ≥ θ ) | 8b), then we have the following Lemma
Lemma 6: The l-th moment generation of Y8b

y,n is given by

M
Y
8b
y,n

(l)

=

∫
∞

0
2πλsbr exp(−λ

s
bπr

2)×
(
exp

(
− 2πλp

×

∫
∞

0

[
1−exp

(
− m̄(1−

∫
∞

r
(

1
1+θrα/uα

)l fU (u |v) du)
)]

× v dv
)
× exp

(
− πλsbr

2
∞∑
k=1

(
l
k

)
(−1)kqy,n

×
2θ l

αl − 2 2
F1(l, l −

2
α
; l −

2
α
+ 1;−θ)

))
dr, (22)

where qy,n is obtained by (21) with changing f 8b
y (u) into

f 8b
y,n−1(u).

Proof: See Appendix D.
We remark that according to the relationship Y8b

y,n =

ln(µ8b
y,n), we have MY

8b
y,n

(l) = E(elY
8b
y,n ) = E({µ8b

y,n}
l). There-

fore, to obtain the mean and the variance of r.v. µ8b
y,n, it is

necessary to calculate the moment generation function of
Y8b
y,n , i.e.,

E(µ8b
y,n) = M

Y
8b
y,n

(1), S2(µ8b
y,n) = M

Y
8b
y,n

(2)− {M
Y
8b
y,n

(1)}2.

Suppose F8b
y,n (u) to be the cumulative distribution function

(CDF) of µ8b
y,n. As seen shortly, the result in Lemma 6 will

be used to derive F8b
y,n (u).

A closed form expression of F8b
y,n (u) can be obtained by

Euler’s formula and Gil-Pelaez theorem [26]

F8b
y,n (u) = P(Y8b

y,n < ln u)

=
1
2
−

1
π

∫
∞

0

1
ω
Im
{
u−jωM

Y
8b
y,n

(jω)
}
dω. (23)

The value of f 8b
y,n (u) is therefore obtained by

f 8b
y,n = ∇uF

8b
y,n (u). (24)

Hence, given the active probability of the BSs qy,0 = ξ , the
value of qy is obtained by calculating (22), (23) and (24),
iteratively. More details can be found in Algorithm 1.

Algorithm 1 Iterative Algorithm

1: Given λp, m̄, σ 2, λsb, qy,0 = ξ , ε ≥ 0;
2: Set n = 1
3: repeat
4: Obtain M

Y
8b
y,n

(l), F8b
y,n (u) and f 8b

y,n (u) by calculating
(22), (23) and (24) iteratively;

5: Update

qy,n+1 =
∫ 1

ξ

ξ

u
f 8b
y,n (u) du; (25)

6: n← n+ 1
7: until ‖qy,n − qy,n−1‖ ≤ ε;
8: Output qy = qy,n.

Due to the high computing complexity of (23), we approx-
imate f 8b

y,n (u) by the PDF of a Beta distribution with the
same mean and variance of µ8b

y,n [18]. That is, in the n-th
iteration, we approximate µ8b

y,n by µ̃8b
y,n ∼ Beta(ay,n, by,n),

with parameters ay,n and by,n satisfies

E(µ8b
y,n) = M

Y
8b
y,n

(1) =
ay,n

ay,n + by,n
, (26)

S(µ8b
y,n) = M

Y
8b
y,n

(2)− {M
Y
8b
y,n

(1)}2

=
ay,nby,n

(ay,n + by,n)2(ay,n + by,n + 1)
. (27)

By solving (26) and (27), we obtain

ay,n =
by,nMY

8b
y,n

(1)

1−M
Y
8b
y,n

(1)
, (28)

by,n =
(M

Y
8b
y,n

(1)−M
Y
8b
y,n

(2))(1−M
Y
8b
y,n

(1))

M8b
Yy,n (2)− {MY

8b
y,n

(1)}2
. (29)
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In summary, by applying Iterative Algorithm and plugging
(15), (16) into (18), (19) and (20), we have derived the
expression of the related conditional Laplace transforms in
the case that the serving BS is a long queue length BS.

Now, we consider the case that the serving BS is a short-
queue BS. Comparing (12) with (9), the interfering long-
queue BSs is almost the same but adding a typical cluster
x0 ∈ 8l

c of the BSs. Using Slivnyak’s theorem [5], we have

LI s-long(s | r) = LI l-inter(s | r). (30)

Similarly, comparing (13) with (10), the interfering short-
queue BSs is almost the same but removing a point y0 from
PPP 8s, therefore, when the serving BS is a short-queue
BS, the conditional Laplace transform of the short-queue BSs
interference is

LI s-short(s |r) = LI l-short (s |r). (31)

Theorem 1: The coverage probability of the multi-cell
downlink system with typical BS z ∈ 8b is given by

P(γz ≥ θ ) =
m̄λp
λb

P(γy0x0 ≥ θ )+
λsb

λb
P(γy0 ≥ θ ). (32)

Proof: The result follows the law of total probability for
the typical BS.

V. NUMERICAL RESULTS
In this section, we provide Monte Carlo simulation results
to verify the accuracy of our analysis and compare the per-
formance of the proposed method with that proposed in
[18], which serves as a benchmark. Simulation parameters
are based on the 3GPP standard [27]. In the simulation, we
consider a square study area with 1000 m2. Following the
definition of dense networks [28], we deploy the BSs and the
devices in the study area as independent PPPs with density
λb = 0.1 BS/m2. We consider both large-scale fading and
small-scale fading. The path loss exponent is set as α = 3.8.
The small scale fading of all links are i.i.d. and follow com-
plex Gaussian distribution with zero mean and unit variance.
In theMAC layer, the packets arriving at each node follow the
independent Bernoulli process with parameter ξ . The maxi-
mum system operating time is set as T = 1000 time slots.
The iteration tolerance in Algorithm 1 is set by ε = 10−5.
For the sake of clarity, the parameter settings are listed in
Table 2.
By iteratively running the system to the maximum operat-

ing time, the long-queue and short-queue BSs are extracted
by adopting the K-means method [29]. To characterize the
pattern of the spatial point process, we introduce Ripley’s K
function [30]. Given a randomly chosen event and a distance
t , Ripley’s K function K (t) is defined as the expected number
of the events (except the chosen event) within the radius t
circle centered at the chosen event divided by the number of
the events in the unit area. Mathematically, the Ripley’s K
functions of NSP and PPP are respectively given as follows:

KNSP(t) = π t2 +
1− exp(−t

2

4σ 2
)

λp
, (33)

TABLE 3. Fitting parameters for the cases in Figure 8.

TABLE 4. Fitting parameters for the cases in Figure 9.

KPPP(t) = π t2. (34)

However, for the events with unknown point processes, the
closed-form expression of Ripley’s K functions is unavail-
able. To address this issue, based on the definition in [30],
the estimated Ripley’s K function is given by

K̂ (t) = λ̂−1
∑
i∈8

∑
j6=i

wi,j
1+(di,j < t)

N
, (35)

where λ̂ = N
A is the estimated density of the target point

process 8 with N equals to the observed number of the
points in the study area A; 1+(·) is the indicator function
(same as the one in (15)); di,j is the distance between point
i and point j; and wi,j is the weight that related to point i
and point j. Suppose that there is a circle centered at point
i and passing through point j, wi,j equals to the portion of
the circumference of that circle that falls in the study area.
In our system, suppose N l and N s is the number of the long-
queue BSs and the short-queue BSs in the study area, respec-
tively. Replacing parameters (N ,8) in (35) with (N l,8l

b) and
(N s,8s

b), we obtain the estimated Ripley’s K function of the
long-queue BSs and the short-queue BSs i.e., K̂ l(t) and K̂ s(t),
respectively.

In Monte Carlo simulations, the coverage probability of
serving BS z is estimated by

P̂(γz > θ) =
nrecv
ntran

, (36)

where ntran is the transmission number at the transmitter
and nrecv is the number of the packets that are successfully
received at the intended receiver. The result is obtained by
averaging over 1000 independent Monte Carlo simulations.

Parameters λp, m̄, σ 2 of NSP for the long-queue BSs and
λsb of PPP for the short-queue BSs in Algorithm 1 control
the portion of the long-queue and the short-queue BSs as
well as the patterns of the two point processes. Similar to
the idea in [31], the coverage probability of (32) is obtained
by carefully choosing the aforementioned parameters, i.e.,
λp, m̄, σ 2. Table 3 and Table 4 give the fitting results of the
parameters in different cases.
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FIGURE 5. The CDFs of the conditional SIR coverage probability obtained
by simulations and the approximated Beta distributions. In this case
ξ = 0.05 packets/slot and decoding thresholds changing by
θ = 5,8,10,12,15 dB.

In addition, a comparative result in [18], named as ‘‘IID
queue approximation’’, is also presented with the assumption
of temporal related but spatial independent queues.

To present the spectral efficiency (SE) that the system
can provide for the devices, we follow [32] and define the
averaged potential user SE by

PSE = λb log2 (1+ θ)× P(γ > θ). (37)

We remark that the potential SIR of the successfully transmit-
ted device is regarded as constant θ . Therefore, (37) is not the
accurate expression but the lower bound of SE for the target
device.

A. SIMILARITY OF THE APPROXIMATED MODEL
To illustrate the rationality of our approximated model, we
first present the similarity between the point processes in the
real deployed simulation and the approximated standard point
processes.

Figure 4 depicts the Ripley’s K functions of the standard
NSP and PPP as well as the estimated Ripley’s K functions
of the long-queue BSs and the short-queue BSs with θ = 10
dB and ξ = 0.05 packets/slot. In this figure, the dashed lines
are the corresponding values of K̂ l(t) and K̂ s(t), whereas the
solid lines are the theoretical values KNSP(t) and KPPP(t) in
(33) and (34), respectively. Solid line KNSP(t) (resp. KPPP)
is enveloped by two dotted lines, which are 0.025 and 0.975
quantiles of KNSP(t) (resp. KPPP) estimated over 1000 sim-
ulations, respectively. As seen in Figure 4, the Ripley’s K
functions for NSP and PPP are apparently different especially
when the distance becomes large. Comparing the dashed
lines with their corresponded solid lines, there is a close
match between the simulated locations of the long-queue BSs
(respectively, short-queue BSs) and the NSP (respectively,
PPP), which validates our approximation approach.

Figure 5 shows the CDFs of the conditional SIR coverage
probability F8y,n obtained by the simulations and the CDFs of
the approximated Beta distribution over different decoding
thresholds. From Figure 5, we observe that given a value

FIGURE 6. Effect of long-queue BSs portion in the case θ = 10 dB and
ξ = 0.05 packets/slot. The variance of the offspring point process is
σ2 = 3.

of CDF, the conditional SIR coverage probability decreases
as the decoding threshold θ increases. the conditional SIR
coverage probability decreases as the decoding threshold θ
increases. For instance, when θ = 5 dB, 50% percentage
of the devices obtain 0.9 coverage probability, whereas when
θ = 15 dB, more than half of the devices cannot be success-
fully served anymore. The reason comes from the fact that
higher decoding threshold increases the transmission failure
probability of the packets. Comparing the two distributions,
the CDFs of the Beta distribution match well with the one
calculated by the simulation results under different decoding
orders, which confirms the approximation method of the
conditional SIR coverage probability.

B. EFFECT OF FITTING PARAMETERS
Figure 6 examines the effect of the density of parent point pro-
cess λp and the portion of long-queue BSs m̄λp

λb
on the value

of coverage probability in (32). As seen, with the increase of
fitting parameters λp and

m̄λp
λb

, the coverage probability keeps
decreasing. This is due to the fact that the more long-queue
BSs, the more interference suffered by the system, which
results in a lower coverage probability. By comparing the two
fitting parameters, we find that the portion of the long-queue
BSs has a more significant impact on the coverage probabil-
ity. For instance, fixing λp = 0.005, the coverage probability
of the serving BS gets more than 62.50% degradation (from
0.40 to 0.15) as the expected number of the BSs in each
cluster improves 5 times ( m̄λp

λb
changing from 0.1 to 0.5). By

contrast, with the fixed number of the long-queue BSs (i.e.,
m̄λp
λb
= 0.5), the performance reduction is only 28.57% (from

0.21 to 0.15) when λp gets 5 times increment from 0.001 to
0.005.

Figure 7 depicts the effect of the density of parent point
process λp and the variance of the offspring point process σ 2

in NSP. Similar to the results in Figure 6, the coverage prob-
ability decreases with the increase of λp and σ 2. However,
different from Figure 6, both of the two fitting parameters
do not impact the performance of the coverage probability
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FIGURE 7. Effect of the NSP offspring process variance in the case θ = 10
dB and ξ = 0.05 packets/slot. The long-queue BSs portion is fixed by
m̄λp
λb

= 0.2.

FIGURE 8. Coverage probability versus decoding threshold in case
ξ = 0.05 packets/slot.

apparently. Specifically, among all simulated values of σ 2,
the largest coverage probability reduction occurs to be 7.04%
when λp = 0.002. Similarly, with λp increasing from 0.001 to
0.005, the maximum decrement of the coverage probability is
18.04% with σ 2

= 2. Figure 6 and Figure 7 demonstrate that
the coverage probability is more sensitive to the portion of
the long-queue BSs rather than λp and σ 2. This implies that
to obtain a better approximated performance via Algorithm
1, the portion of the long-queue BSs plays an important role
and should be selected carefully.

C. COVERAGE PROBABILITY
Figure 8 depicts the coverage probability versus decoding
threshold with ξ = 0.05 packets/slot. We compare the results
of Simulation, IID queue approximation and Theorem 1.
Specifically, the fitting parameters for Theorem 1 are given
in Table 3. As observed from the figure, the coverage proba-
bilities of the three methods decrease as decoding threshold θ
increases. Moreover, Theorem 1 approaches Simulation well
under all the considered decoding orders. The gap of the
coverage probability between the two methods is always less
than 0.05. The performance of IID queue approximation is

FIGURE 9. Coverage probability versus packet arrival rate when θ = 5 dB.

better than Theorem 1 when θ ≤ 4 dB. This is due to the fact
that when decoding threshold θ is small, the packets can be
successfully transmitted with a relatively high probability and
the buffers of the BSs are more likely to be empty. Therefore,
the BSs with empty buffers shut down the transmissions
and those active BSs are nearly spatially independent. How-
ever, Figure 8 shows that there is a noticeable gap between
IID queue approximation method and Simulation when the
decoding threshold θ becomes larger than 6 dB. Specifically,
with θ = 12 dB, the coverage probability of IID queue
approximation method is 1.8 times larger than Simulation.
The gap between the two methods mainly attributes to the
spatial correlation among the queueing states of the BSs
located in geographical proximity, which leads to a prolonged
transmission duration and raises the interference across the
entire network. Overall, by incorporating an underlying clus-
tered structure to the interfering point process, our method
successfully addresses the issue caused by the spatial queue-
ing interaction and gives an accurate characterization to the
probability of coverage.

Figure 9 compares the performance of the three methods
with different packet arrival rates. To guarantee a stationary
queue for the system, we set θ = 5 dB and packet arrival rate
ξ changing from 0.1 packets/slot to 0.3 packets/slot based
on Table 1. The values of the fitting parameters are given
in Table 4. We observe that the coverage probability of all
three methods decrease with the increase of the packet arrival
rate. Specifically, when ξ increases from 0.1 packets/slot to
0.3 packets/slot, the coverage probabilities of Simulation, IID
queue approximation and Theorem 1 decrease from 0.69 to
0.39, from 0.76 to 0.56 and from 0.69 to 0.36, respectively.
Moreover, Figure 9 shows that the coverage probability of
IID queue approximation is always larger than Simulation.
Furthermore, the gap of the two curves continuous increasing
from 10.17% to 45.47% as the packet arrival rate increases
from 0.1 packets/slot to 0.3 packets/slot. The reason is that
when ξ goes up, the increased traffic load results in the
phenomenon that the interfering BSs are more and more
close to the serving BS. Therefore, the impact of the spa-
tial correlation between the BSs becomes more and more
apparent and the high interferences among the BSs reduce
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FIGURE 10. The convergence of qy,n in Algorithm 1 in case ξ = 0.05
packets/slot.

the performance of the coverage probability. Among the three
methods, Theorem 1 approaches the results of Simulation
much better than IID queue approximation. The performance
gap by applying Theorem 1 is always less than 5.63%, which
manifests the validation of our algorithm.

Table 3 and Table 4 show the value of the fitting parameters
for the cases in Figure 8 and Figure 9, respectively. The basic
idea of such settings corresponding to the intuition that the
denser of the BSs, the more portion of the long-queue BSs
m̄λp
λb

in the system, and hence results in a larger value of λp
and σ 2. For example in Table 4, with ξ improving from 0.1
packets/slot to 0.3 packets/slot, the value of λp,

m̄λp
λb

and σ 2

increases from 1e−3 to 5e−3, from 0.02 to 0.15 and from 1 to
3, respectively. Besides, based on the observations in Figure 6
and Figure 7, the coverage probability is more sensitive to the
value of m̄λp

λb
than λp and σ 2. For instance, in Table 3, when θ

improves from 0 dB to 16 dB, the value of m̄λp
λb

enlarges more
than ten times relative to the original value 0.02.

D. CONVERGENCE PERFORMANCE
Figure 10 displays the convergence of active probability of
the BSs in Algorithm 1 over different decoding thresholds,
where the packet arrival rate is fixed as ξ = 0.05 pack-
ets/slot. From the figure, one can observe that the sequences
of active probability {qy,n}n of all the three cases mono-
tonically increase and converge fast. Specifically, the value
of qy,n gradually increases to 0.18, 0.16 and 0.11 when θ
equals to 15 dB, 10 dB and 5 dB, respectively and sequence
{qy,n}n of all the three cases converges within five iterations.
This phenomenon indicates that Algorithm 1 runs with a low
computing burden. Comparing among the three curves, the
larger decoding threshold θ is, the larger convergence value
of sequence {qy,n}n can be obtained. This is due to the fact that
given a large decoding threshold, the probability of failing
packet transmission is relatively high, which prolongs the
queue lengths and the active probability of the BSs.

E. SPECTRAL EFFICIENCY
Figure 11 presents the averaged potential user SE obtained by
(37) over different decoding thresholds. Three packet arrival

FIGURE 11. Averaged potential user spectral efficiency versus decoding
threshold over different packet arrival rates.

rates ξ = 0.01, ξ = 0.03 and ξ = 0.05 packets/slot
are considered. Different from the curves of coverage prob-
ability in Figure 8, the tendency of the averaged potential
user SE changes with different values of ξ . For instance,
when ξ = 0.01 packets/slot, the averaged potential user SE
monotonically increases with the ascending of θ . While in
case ξ = 0.05 packets/slot, the curve first increases then
decreases when θ changing from 0 dB to 16 dB. This is due to
the reason that potential SE is determined by the multiply of
potential rate log2(1+ θ ) and P(γ > θ). Although P(γ > θ)
is the lowest when θ = 16 dB, the large value of θ would
compensate the loss of coverage probability and results in a
high averaged potential user SE. Even though, we would like
to mention that this kind of high averaged potential user SE is
obtained with the cost of the un-fairness among the devices.
That is, most of the devices are failed to transmit the signals,
while only a small portion of the devices are successfully
transmitted with a high user SE.

VI. CONCLUSION
We conducted a statistical study on the coverage probability
of the multi-cell downlink system with the dynamic traf-
fic pattern and spatially interacting queues. In terms of the
queueing model, the randomness in the spatial and tem-
poral domain is generally homogeneous. We first gave the
sufficient and necessary conditions of the ε-stable region.
Then, taking into account the spatial correlation among the
queues, we extracted a two-queue-length non-homogeneous
spatial structure to model the original system. By respectively
approximating the locations of long-queue BSs and short-
queue BSs as NSP and PPP, we calculated the coverage
probability of the system via an iterated algorithm. To further
reduce the computational complexity, Beta distribution was
introduced to approximate the PDF of the service rate in each
iteration of the algorithm. Simulation results revealed that the
proposed algorithm converges fast and the analytical result is
sensitive to the portion of long-queue BSs. Numerical results
also demonstrated the accuracy of the analysis and revealed
that the proposed scheme offers significant performance gain
compared to a benchmark result. In the future, one promising
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direction is to extend the current work to other dense scenar-
ios, e.g., multi-user case, ultra-dense network, dense optical
communication system, etc..

APPENDIXES
APPENDIX A
PROOF OF LEMMA 2
The conditional serving distance distribution of the typical
device is given by

fR(r |v0)
(a)
= lim

R→∞

∞∑
k=1

{
fS(1) (s(1) |v0, k)× P

(
k = |8̃l

x0 |
)}

(b)
=

∞∑
k=1

{∫
. . .

∫
k!

k∏
i=1

fS (s(i) | v0) ds(2) . . . ds(k)

×
m̄k

k!
e−m̄

}
(c)
=

∞∑
k=1

{
k!

(k − 1)!
fS (s(1) | v0)

×

k∏
i=2

(∫
∞

s(1)
fS (s(i) | v0) ds(i)

)
×
m̄k

k!
e−m̄

}

=

∞∑
k=1

{
kfS (s(1) |v0)

(
1−FS (s(1) |v0)

)k−1
×
m̄k

k!
e−m̄

}
(d)
= m̄ exp (−m̄FS (r | v0)) fS (r | v0),

where (a) follows from the law of total probability over circle
area B(0,R); (b) and (c) follows from the Poisson distribution
of the BS number k and the property of the joint density
function of k order statistic for sequence {s(i)}ki=1 in [33]; (d)
follows from ex =

∑
∞

k=0
xk
k! and s(1) = r .

APPENDIX B
PROOF OF LEMMA 3
The conditional Laplace transform of the intra-cluster inter-
ference at the typical device is

LI l-intra (s |v0, r)
= E

(
exp(−s

∑
y∈8l

x0
\y0

ζyx0
hyx0 ‖x0 + y‖

−α) | v0, r
)

(a)
= lim

R→∞

∞∑
k=0

{
E
( ∏
y∈8l

x0
\y0

∩B(0,R)

1
s‖x0 + y‖−α

| v0, r, k
)

×P(k = |8̃l
x0 |)
}

(b)
=

∞∑
k=0

{( ∫∫
Bc(0,r)

fW (w | v0, r)
s‖x0 + y‖−α + 1

dw
)k

×
(m̄− 1)k

k!
exp (1− m̄)

}
(c)
= exp

(
(1−m̄)

∫
∞

r

sw−αout
sw−αout+1

fWout (wout |v0, r) dwout
)
, (38)

where (a) follows from the law of total probability over a
infinite space; Bc(0, r) is the complementary area of B(0, r),
fW (w | ·) is the conditional PDF ofw = x0+y; (b) follows from
the Poisson distribution of the BS number k and the averaged
number of the BSs m̄ in cluster8l

x0 (one serving BS and m̄−1

interfering BSs); (c) follows from equality ex =
∑
∞

k=0
xk
k! ,∫

Bc(0,r) fW (w | v0, r) dy = 1, and from changing variable
‖x0 + y‖ into wout.
Define 8̃l

x to be the set of the BSs that in both set 8l
x and

circle areaB(0,R), the conditional Laplace transform of inter-
cluster interference at the typical device is

LI l-inter (s |r)
= E

(
exp(−s

∑
x∈8l

c\x0,y∈8l
x

ζyxhyx‖x + y‖
−α) | r

)
(a)
= E

( ∏
x∈8l

c\x0

{
lim
R→∞

∞∑
k=0

{
E(

∏
y∈8l

x
∩B(0,R)

1
s‖x + y‖−α + 1

| r)

×P(k = |8̃l
x |)
}})

(b)
= E

( ∏
x∈8l

c\x0

exp
(
− m̄

∫
∞

r

su−α

su−α + 1
fU (u | ‖x‖) du

)
| r
)

(c)
= exp

(
− 2πλp

∫
∞

0

(
1− exp(

− m̄
∫
∞

r

su−α

su−α + 1
fU (u | v) du)

)
v dv

)
, (39)

where u = ‖x + y‖ and v = ‖x‖; the terms of (a) and
(b) in the first product of (39) follow a same idea of the
induction (a)-(c) in (38); equation (c) is obtained by using the
probability generating functional (PGFL) of PPP for parent
set {x ∈ 8l

c\x0}.

APPENDIX C
PROOF OF LEMMA 4
When the serving BS is a long queue length BS, the condi-
tional Laplace transform of the intra-cluster interference at
the typical device is

LI l-short(s | r)
= E

(
exp(−s

∑
y∈8s

ζyhy‖y‖−α) | r
)

(a)
= E

( ∏
y∈8s

{
E(

1
1+ s‖y‖−αζy

| r)
})

(b)
= E

( ∏
y∈8s

{ 1
1+ s‖y‖−α

× qy + 1× (1− qy)
}
| r
)

(c)
= exp

(
− 2πλsbqy

∫
+∞

r

sv−α

sv−α + 1
v dv

)
, (40)

where v = ‖y‖; (a) follows the exponential distribution of hy;
(b) follows the law of total probability of ζy; (c) follows the
PGFL of PPP for short-queue BSs set {y ∈ 8s

}.
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APPENDIX D
PROOF OF LEMMA 6
The l-th moment generation function of Y8b

y,n is given by

M
Y
8b
y,n

(l)

= E
(
exp

(
l ln

(
P(γy,n ≥ θ )

))
| 8b

)
= E

([
P(γy,n ≥ θ)

]l
| 8b

)
(a)
= E

(
E
( ∏
k∈8l

c

∏
m∈8l

k

[ 1

1+ θ‖y‖α
‖m+k‖α

]l
| 8l

c,8
l
k

)
×E

( ∏
z∈8s\y

[ qy,n

1+ θ‖y‖α
‖z‖α
+ 1− qy,n

]l
| 8s

)
| r
)

(b)
=

∫
+∞

0
2πλsbr exp(−λ

s
bπr

2)

× exp
(
− 2πλp

∫
∞

0

(
1− exp

(
− m̄

× (1−
∫
∞

r

[ 1
1+ θrα/uα

]l fU (u | v) du)))v dv)︸ ︷︷ ︸
term 1

× exp
(
− 2πλsb

∫
+∞

r

(
1−

[
1+

qy,n
θ r

α

uα +1
−qy,n

]l)u du)︸ ︷︷ ︸
term 2

dr,

(41)

where r = ‖y‖; (a) follows from the exponential distribution
of channel fading hy, hmk and hz with k ∈ 8

l
c being the index

of the cluster center, m ∈ 8l
k being the index of the long-

queue BSs in cluster 8l
k and z ∈ {8s

\y} being the index of
the interfering short queue BSs in8s; (b) follows from PGFL
of PPP, term 1 and term 2 respectively follows the same derive
ideas in (39) and (40).

By applying binomial expansion over (1+ ·)l , term 2

= exp
(
− 2πλsb

∫
+∞

r
−

∞∑
k=1

(
l
k

)(
−qy,n

1+ ( θr
α

uα )−1

)k
u du

)
(a)
= exp

(
− 2πλsbr

2
∞∑
k=1

(
l
k

)
(−1)k+1

∫
+∞

1

( qy,n
1+ t

α
2 /θ

)k dt)

= exp
(
− 2πλsbr

2
∞∑
k=1

(
l
k

)
(−1)k+1qky,n ×

2θ l

αl − 2

× 2F1(l, l −
2
α
, l −

2
α
+ 1,−θ )

)
, (42)

where (a) follows by replacing t =
( u
r

)2. By plugging (42)
into (41), we obtain the result in Lemma 6.
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