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ABSTRACT The introduction of the cyber-physical system (CPS) into power systems has created a variety
of communication requirements and functions that existing legacy systems do not support. To this end,
the IEEE 1815.1 standard defines the mapping between existing distributed network protocol networks
and IEC 61850 networks that reflect new requirements. However, advanced CPS cyberattacks have been
reported, and in order to address cyberattacks, security research on new power systems that use network
devices and heterogeneous communication is necessary. In this study, we propose an intrusion detection
system for an IEEE 1815.1-based power system using CPS. We 1) analyze an IEEE 1815.1-based power
system network and propose a suitable application method for an intrusion detection system, 2) suggest a
bidirectional recurrent neural network-based anomaly detection system for an IEEE 1815.1-based network,
and 3) demonstrate the verification of the proposed technique using various power system-specific attack
data, including real power system using CPS network traffic, CPS malware behavior (CMB), false data
injection (FDI), and disabling reassembly (DR) attacks. Proposed technique successfully detected five types
of CMB attacks, three types of FDI and DR attacks.

INDEX TERMS Anomaly detection, cyberattack, cyber-physical system (CPS), network security, smart grid
communications, supervisory control and data acquisition (SCADA).

I. INTRODUCTION
The Distributed network protocol (DNP3) [1] is the de facto
communication protocol used at the distribution and trans-
mission level and it is widely used in the North American
and Asian power systems. With the introduction of
the cyber-physical system (CPS), various power sys-
tems are connected, resulting in communication functions
and requirements that the existing DNP3 systems can-
not support. However, the ‘‘IEC 61850-Communication
networks and systems for power utility automation [2]’’
standard is the standard for communication networks and
systems in substations. Since 2007, IEC 61850 has expanded
to communications networks and systems for power utility
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automation and includes a variety of interconnected systems
related to power systems, including hydropower systems
and wind power systems. In particular, IEC 61850 defines
a systematic data structure and communication functions,
considering the interoperability and requirements of vari-
ous interconnected systems for power systems using CPS.
Therefore, for the power system using CPS, the existing
DNP3 system adopts the IEC 61850 system; the standard for
mapping DNP3 and IEC 61850 for this is IEEE 1815.1 [3].

Fig. 1 shows the supervisory control and data acquisi-
tion (SCADA) system of CPS. The intelligent electronic
device (IED) is connected to wireless/wired sensors, actua-
tors and physical devices to perform monitoring, metering,
protection, and control. The human machine interface (HMI)
connected to the IED allows an operator to check the system
status and interact with it. The remote terminal unit (RTU)
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FIGURE 1. SCADA system of CPS.

collects the field digital and analog signals monitored by
the IEDs, transmits them to the SCADA workstation, inter-
prets the control commands of the SCADA workstation,
and transmits the control commands to the corresponding
IED. Historian stores sensor data and performs logging.
Fig. 2 shows the IEEE 1815.1 use cases. IEEE 1815.1
use case (a) is when the IEC 61850 IED is connected to
a DNP3 master. An example of using IEEE 1815.1 use
case (a) is when an IEC 61850 substation is connected to a
network control center using DNP3 communication. IEEE
1815.1 use case (b) is when the DNP3 IED is connected to
an IEC 61850 Client. An example of using IEEE 1815.1 use
case (b) is when an IEC 61850 substation should be connected
to DNP3 legacy IEDs. Thus, power systems are more con-
nected with network and complicated due to the use of CPS
and heterogeneous communication.

Cyberattacks targeting CPS are becoming more advanced.
BlackEnergy3 (2015) and Crashoverride (2016), which
caused blackouts in Ukraine, and TRITON (2017), a highly
advanced malware that installs backdoors in a safety instru-
mented system (SIS), have been recently reported. In addi-
tion, in June 2019, the Xenotime hacking group, behind
TRITON, was believed to be acquiring data from the power
industry in the US and Asia-Pacific, creating a crisis in cyber
security in the power system. In particular, Crashoverride and
TRITON have the function of attacking the control system by
generating a packet complying with the CPS communication
protocol. Therefore, security based on network traffic behav-
ior is required rather than a simple whitelist-based security.
However, the application of IEEE 1815.1 is being considered

FIGURE 2. IEEE 1815.1 use cases.

when opening a new substation in a network control center
using the existing DNP3 communication. But the current
research on IEEE 1815.1-based network security is limited
to the work of Yoo et al. [4], a security analysis study for
heterogeneous networks, and no cyber security system has
been proposed. Therefore, this study proposes an intrusion
detection system in environment IEEE 1815.1-based sys-
tem to address cyber threats targeting CPS. To this end,
we 1) analyze the IEEE 1815.1-based network and pro-
pose a suitable application method of an intrusion detection
system, 2) propose a bidirectional recurrent neural network
(BRNN)-based anomaly detection system and a method for
improving false detection for IEEE 1815.1-based network.
The proposed method is validated through actual power sys-
tem using CPS network traffic and various CPS-specific
attack data including CPS malware behavior (CMB), false
data injection (FDI) [5], and disabling reassembly (DR) [6]
attacks. The main contributions of this study are as follows.

1) The IEEE 1815.1-based power systemwas analyzed and
an application method of the network security solution such
as intrusion detection system was proposed.

2) Bidirectional RNN based anomaly detection sys-
tem is proposed considering the network characteristics of
power system using CPS in the heterogeneous system with
DNP3 and IEC 61850.

3) Test methods for abnormal behavior were pre-
sented through various CPS-specific attack data including
power system using CPS network traffic, CMB, FDI, and
DR attacks.

This paper is organized as follows. In Section II, related
research is described. In Section III, the application scope of
the proposed technique and the target protocol are presented.
Section IV describes the proposed technique and Section V
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describes the normal and attack data sets used to verify the
proposed technique. Section VI describes the verification of
the proposed technique and discussion about the proposed
technique. Finally, we provide conclusions in Section VII.

II. RELATED WORKS
The CPS intrusion detection system can be divided into
anomaly detection based on a network packet header or
network traffic flow and that based on a network packet
payload or measurement value. Yun et al. [7] proposed a
method of whitelisting traffic patterns based on the main
header information of the packet by each command. The
proposed technique can identify the abnormality of the use
of a disused abnormal command and network transmission
of a single command. However, this technique does not
detect the abuse or absence of existing used commands.
Zolanvari et al. [8] detected abnormal behavior through var-
ious features of network traffic flow and machine learning
algorithms. Because statistical information is regarding net-
work traffic flow of the existing transmission control pro-
tocol (TCP) port, it has a disadvantage in that an advanced
attack executed through the existing port is difficult to detect.
As an anomaly detection study based on the network packet
payload and measurement values, Agrawal et al. [9] pro-
posed a support vector machine (SVM)model to discriminate
abnormal behavior using the variation in the measurement
data as a feature. Wu et al. [10] proposed a neural network
model for discriminating abnormal behavior using the mea-
surement data as a feature. These studies are typical black-
box-level machine learning-based techniques. In this case,
it is difficult to analyze the detection result and improve the
false detection. Goh et al. [11] proposed a model to learn a
recurrent neural network (RNN) using the measurement data
as a feature and analyze the results through cumulative sum
(CUSUM). Goh et al. did not determine normal or abnor-
mal characteristics through the RNN but generated the next
measurement data that is predicted and abnormal behavior
was determined through CUSUM, a technique for analyzing
continuous data. Therefore, it has the advantage that it is
easy to analyze the learning results. Lin et al. [12] proposed
a model to learn normal behavior through timed automata
(TA) and Bayesian networks after simplifying changes in
measurement data to quick/slow and up/down. Compared to
the existing SVM and the cyclic neural network, it shows
a faster processing speed but has a disadvantage of low
accuracy in learning normal behavior. Feng et al. [13] pro-
posed a normal behavior learning technique for changes in
measurement data and control events and showed a high
normal behavior learning rate. However, it has a disadvantage
that in expressing the change in measurement data, it is
difficult to intuitively interpret the detection result because it
maps each change in the measurement data to one of several
Gaussian mixture models (GMMs) generated based on the
expectation-maximization (EM) algorithm.

Existing studies have investigated network anomaly detec-
tion using network packet header and traffic flow features

and payload anomaly detection using network packet payload
and measurement values. Network anomaly detection does
not detect advanced attacks using manipulation of payloads.
However, payload anomaly detection does not detect vari-
ous attacks that prevent data acquisition through a network
such as denial of service (DoS). In our prior work [14],
we proposed an anomaly detection model that learned
header-based whitelist and payload through one-class support
vector machine (OCSVM) and verified it using testbed data.
However, the model did not detect advanced attacks such as
FDI and DR and it is difficult to improve because it generates
anomaly detection results through OCSVM.

Research regarding the security of an IEEE 1815.1-based
network is limited to the work of Yoo et al. [4], which is
a security analysis study for heterogeneous networks, and
no cyber security system has been proposed. Therefore, this
study analyzes the network of a heterogeneous system with
DNP3 and IEC 61850 and proposes a suitable application
method of an intrusion detection system. In addition, to uti-
lize the advantages of related research and compensate for
the disadvantages, we include both header and payload in
the feature use. In addition, we selected RNN as anomaly
detection algorithm. The RNN can predict patterns over a
set of network input data and also using RNN as a data
generation model, rather than for abnormal behavior discrim-
ination, RNN results can be interpreted intuitively. Model
verification is performed through actual IEEE 1815.1-based
power system data using CPS and advanced CPS-specific
attack data such as CMB, FDI, and DR attacks.

III. APPLICATION SCOPE AND PROTOCOL OF THE
PROPOSED TECHNIQUE
‘‘NISTIR 8219 – Securing Manufacturing Industrial Con-
trol Systems: Behavioral Anomaly Detection’’ [15] describes
the definition and function of anomaly detection in indus-
trial control systems. There are three types of anomaly
detection systems described in NISTIR 8219: network-
based, agent-based, and historian- and sensor-based systems.
A network-based system aggregates the overall network traf-
fic and performs anomaly detection. An agent base installed
in specific systems performs abnormal behavior detection
based on collected information. A historian- and sensor-based
system performs abnormal behavior detection through sensor
data stored in the historian. The technique proposed in this
study aims to detect network attacks such as Crashover-
ride and TRITON using CPS protocols. Therefore, based
on the classifier of the recent national institute of standards
and technology (NIST) work, it belongs to the category of
a network-based system and performs abnormal behavior
detection for the entire network traffic of the power system.
Network traffic may be collected by performing mirroring on
the network switch, such as NISTIR 8219, or by performing
mirroring on an RTU that communicates with both SCADA
and IEDs. However, commercial products are already avail-
able for a variety of general information technology (IT)
network traffic except the protocol of the power system.
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FIGURE 3. IEEE 1815.1 use cases (a) communication flow.

Therefore, the proposed technique only covers the network
traffic of the power system using CPS such as DNP3 and
IEC 61850.

The proposed technique is applicable to both IEEE
1815.1 use case (a) and (b). However, use case (b) is a
case where DNP3 legacy IEDs are connected to an IEC
61850 substation, and its practical applications are limited.
However, use case (a) is a dominant case in which a new
IEC 61850-based digital substation is connected to a control
center of an existing power grid and some actual applica-
tion cases exist. The IEEE 1815.1-based power system data
used in this paper are also data collected in the field of use
case (a); thus, the subsequent description is with regard to
IEEE 1815.1 use case (a). Fig. 3 shows the communication
flow of the IEEE 1815.1 use case (a). A key feature of the
IEEE 1815.1-based networks is the use of process images.
The process image, which is a database that stores the current
data values of all IEDs, is updated through communication
between the gateway and the IEDs. When acquiring data
from SCADA, a command is not directly sent to an IED and
necessary data are acquired from the process image of the
gateway. There are as many as dozens of IEDs, depending
on the site, and there may be delays in directly commu-
nicating with the IEDs in real time. Therefore, using the
process image has the advantage of not having to perform
real-time pass through with a large number of IEDs. How-
ever, in the case of a control command message, protocol
conversion is performed through the gateway and directly
transmitted to the relevant IED. Because of these character-
istics, the SCADA and IED communication sections have
different communication characteristics with the gateway as
the boundary; messages in the gateway-IED section are not
detected in the SCADA-gateway section. Therefore, to collect
all network traffic in an IEEE 1815.1-based network, net-
work traffic collection for two sections, the SCADA-gateway

and gateway-IED, is required. In this environment in which
substations are transformed into IEC 61850-based automated
substations through the application of the IEEE 1815.1 stan-
dard structure, the proposed technique of this study is applied
and verified for the DNP3 communication section which is
known for cyber-security threats as described in [16] and can
be attacked using Internet communication protocols such as
TCP/internet protocol (IP).

The DNP3 protocol is one of the data transmission pro-
tocols widely used in SCADA systems for power and
water in North America and Asia and is defined in IEEE
1815-2012 [1]. DNP3 is more reliable than IEC 60870-5 [17],
a data transmission protocol of the SCADA system which
is mainly used in Europe, because a fragmented message
can be transmitted according to message length. The data
acquisition side is defined as the DNP3 master and the data
transmission side as the DNP3 outstation. There are two
types of communication: request response and unsolicited
response. The request response type is that in which an
outstation responds after the master sends a request. The
unsolicited response type allows the outstation to send a
message without the master’s request to more quickly report
important events. The transmitted data do not include detailed
information such as the name of the data other than the
type. Therefore, when communication is first established,
the master requests the entire data of the outstation to
perform synchronization. As a function of security, IEEE
1815-2012 specifies secure authentication version 5, which
uses digital-signature-based authentication and encryption.
However, the majority of SCADA systems using DNP3 do
not use authentication and encryption functions because of
the availability of legacy devices depending on its capability
and the necessity of installing public key infrastructure (PKI).
TheDNP3 protocol operates at the application layer and inter-
nally consists of a data link layer, a transport function, and an
application layer. Fig. 4 shows a field of a DNP3 message for
each layer. The data link layer is a layer for station addressing
and error detection and performs DNP3 communication link
management. The transport function segments the message
up to 249 bytes for reliable communication and manages the
segment message. The transport function field consists of
a 1-bit FIR, FIN, and 6-bit sequence number, indicating
whether it is the first or last segment message. Even in the
application layer, messages can be divided according to the
performance of the application. Thus, the application header
has control fields similar to transport functions. The object
header contains object information required by each func-
tion code and consists of object type information such as
a binary/analog signal and integer/float and address range
information of the object.

IV. PROPOSED TECHNIQUE
A. ALGORITHM SELECTION
Despite the existence of advanced cyber threats targeting
CPS such as Crashoverride and TRITON, few network
intrusion detection systems have been applied to
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FIGURE 4. Structure of the DNP3 protocol message.

CPS environments. As a result of analyzing the opinions
of CPS managers of several smart factories and smart grids
in collaboration with Korea power exchange (KPX), Korea
energy technology evaluation and planning (KETEP) and
Korea electric power corporation (KEPCO) when conducting
the research [14], [18], the main reasons why the intrusion
detection system is not actually used for CPS are the frequent
false positives and the difficulty in interpreting the detection
results. For example, a false positive rate of 0.1% means
very high accuracy. However, at least 100,000 packets in
a general-sized CPS network and millions of packets in a
big-sized CPS network can be sent per day. Therefore, even
if 100,000 packets are transmitted per day, a false detection
rate of 0.1% means that 100 false detections occur per day.
Frequent false positives can mitigate security awareness of
security managers. In the case of TRITON, forensic analysis
has reported that two or more intrusion detection alerts were
ignored, allowing hackers to successfully install malware.

Therefore, a measure for improving the accuracy by ana-
lyzing the cause of false positives is needed. However, the dif-
ficulty in interpreting detection results hinders improvement
of false positives. The algorithms of detection techniques
of previous studies such as Zolanvari et al. [8],
Agrawal et al. [9],Wu et al. [10], and Feng et al. [13] generate
their detection results at a black box level and there is no
suggestion to interpret the detection results. Therefore, it is
difficult to analyze whether an abnormal behavior detected
as a detection result is a false detection for normal behavior
or a true detection for an abnormal behavior. This leads to
difficulty in using and improving detection results. To solve
this problem, there is a technique that can easily visually
analyze the result value instead of at the black box level,
such as a graph-based automata creation as in Lin et al. [12].
However, as a result of practical application, it was found that
detection is performed only one time in the automata-based
detection technique which is a problem. For example, when
there is an automata represented by (1234)∗, if a packet of
a type representing 5 after 123 has been transmitted and
determined to be abnormal, a ground is needed to determine
whether the next abnormality determination would continue
to be performed again as a 4 state after a 3 state which has
been normal or as a 1 state again after a 4 state. In particular,
the data used for the verification of the proposed technique

have a normal network flow pattern length of greater
than 100. From analysis, it has been noted that the time to
return to normal network flow after abnormal behavior is
inconsistent. Therefore, we selected the RNN algorithm that
can determine the next abnormality by learning the pattern of
the data input after the occurrence of abnormal behavior. The
RNN stack is a useful model for predicting patterns over a set
of input data [19]. In this study, RNN is used as a model to
predict the data of the next expected packet by learning the
pattern through a series of network packet data rather than
directly determining abnormal behavior. The general ‘‘many
to many’’ RNN model is not suitable because it performs
an accuracy calculation by generating all the next predictive
data for each input over a series of inputs. Therefore, we use
a ‘‘many to one’’ RNN model that predicts only one next
prediction data for a series of inputs. However, in our priori
research [18], it was found that the unidirectional RNNmodel
did not predict rare data. For example, suppose there are
commands with a 5-s cycle and a command with a 5-min
cycle. In this case, the unidirectional RNN model tends to
predict only 5-s periodic commands, ignoring 5-min periodic
commands for better accuracy. Therefore, this study uses
a ‘‘many to one’’ bidirectional RNN structure. However as
shown in Fig. 5, traditional ‘‘many to one’’ bidirectional
RNN uses N series input as forward layer and (N+1)th to
(N+m)th input as backward layer to predict the (N+1)th
input. Because backward layer already has (N+1)th input,
the backward layer’s weight became so high and appropriate
training cannot be done. Therefore we propose new type of
many to one bidirectional RNN as shown in Fig. 6. This
structure receives N traffic patterns as input and generates
(N+1)th prediction data and further receives M data from
(N+2)th data to correct (N+1)th prediction data. As M data
are additionally used for correction delay abnormal behavior
determination, a model with a smaller M is advantageous for
real-time detection.

B. BRNN-BASED ANOMALY DETECTION SYSTEM
The BRNN-based anomaly detection system is shown
in Fig. 7. It is largely divided into training, and test phases.
The training phase is the step of creating a BRNN model
that generates the next prediction value by learning with the
training data and threshold. The test phase is the step of
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FIGURE 5. Traditional many to one bidirectional RNN.

generating a predicted value of the BRNNmodel through test
data including normal and attack data and providing a detec-
tion result by comparing the predicted value to a threshold.
Even within each step, learning and detection are performed
by separating the header and payload of the packet. Anomaly
detection for the header of a packet aims to ensure normal
data acquisition through the network by learning the pattern
of the communication flow of the network and determining
anomalies on the network. The detection of abnormal behav-
ior of the payload portion of the packet ensures the validity
of power system data by determining abnormal behavior in
payload data acquired through the network.

1) TRAINING PHASE OF THE BRNN-based ANOMALY
DETECTION SYSTEM
a: HEADER TRAINING PHASE
Training phase of BRNN-based anomaly detection system
is shown Fig. 8. The BRNN model is trained by extract-
ing the header part from the packet and using the extracted
header as a series of inputs. The function code for deter-
mining the type of a command and FIN, FIR and SEQ for
packet reassembly and detecting packet duplication and loss
were selected as the main features of the header. In the
case of SEQ, we didn’t use integer value of SEQ, but it is
generally represented by 1 using a changed value from the
previous packet. The red-colored part of Fig. 9 shows the
header feature. The application layer fragmentation fields
were excluded from the feature because fragmentation was
not used in our data. Because the number of header types
is finite, 1-hot vectors are constructed for each finite header
type without generating prediction values as real values for
each field. Therefore, a higher accuracy BRNN model can
be expected without considering the types of headers that
cannot be generated. In addition, the header information cor-
responding to a 1-hot vector can be used as a whitelist. In gen-
eral, even normal network communication includes abnormal
communication flow because of network instability. There-
fore, the anomaly frequency detected through normal training
data learning is used to set the threshold during the test
phase.

FIGURE 6. Proposed many to one bidirectional RNN.

b: PAYLOAD TRAINING PHASE
Training a BRNN model with an entire set of payloads as
input is less than optimal in terms of learning time and
accuracy. To improve the learning time, it is possible to
shorten it by removing unnecessary fields in advance, such
as a value that is always constant. To improve accuracy, it is
advantageous to extract the fields related to pattern learning.
Ideally, fields that are not related to pattern learning, such as
fields with random values, are expected to have their weights
related to the corresponding fields all set to zero during
the training process. Otherwise, fields that are not related
to pattern training will act as variables that reduce accu-
racy in loss calculation during the training phase. Therefore,
via constructing a separate BRNN by removing unrelated
fields and tying related fields, a BRNN model of higher
accuracy can be constructed. Payload training phase consists
of preprocessing, association rule mining, rule revision and
BRNN model training steps.
Preprocessing: During the preprocessing step, the field

always used as a constant value is removed and the change in
the variable field value is expressed as increased, decreased,
or unchanged. Removing constant value fields shortens the
BRNN model training and association rule mining time.
In addition, the main reason for removing constant value
fields is that in BRNN model training, the data is meaning-
less, and for association rule mining, a set of constant value
fields is always generated as the highest frequency of asso-
ciation rules. Changing field values to increased, decreased,
and unchanged is because association rule mining is not
optimized for numeric values such as integer and float.
Association rule: During the association rule mining step,

we used the Apriori algorithm to find patterns in which the
increase and decrease in each value always matches and
generate the association rule. Algorithm I shows pseudo
code of Apriori algorithm. Let P = { 1, 2, · · · , k}

be a set of k payload data and = { 1, 2, · · · , l}

be a set of l fields in the payload in which each field
in

[
increased,decreased,unchanged

]
. Metrics used in the

Apriori algorithm include support, trust, lift, and conviction.
Among them, we used confidence, which means the accuracy
of the rule, and under the assumption that the data change in
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FIGURE 7. BRNN-based anomaly detection system.

FIGURE 8. Training phase of the BRNN-based anomaly detection system.

FIGURE 9. DNP3 example packet and header/payload features.

the CPS is made under certain conditions, min_conf is set
to 1. Example of association rule is field A increases when
field B increases for proportional relations field A and B.
Rule Revision:The generated association rule goes through

a rule revision step. During the rule revision step, the field

Algorithm 1 Apriori Algorithm
INPUT :P, conf WHERE P = payloadset, min_conf= 1
OUTPUT : SetofFields
1: procedure GetConfidentFields
2: freqFields[]←null
3: for all payload in P do
4: for all Fields in do
5: if conf ≥ min_conf then
6: freqFields[]←
7: end if
8: end for
9: end for
10: end procedure

engineer analyzes the generated rule to 1) remove the
nonsensical rules, 2) supplement the generated rule by adding
a field among the fields used as constant values if it is
associated with the generated rule, and 3) add a rule that
consists only of constant values. The rule revision step has the
advantage of not only including the characteristic of the field
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FIGURE 10. Test phase of the BRNN-based anomaly detection system.

that is not included in the test data or missed by the algorithm
but also including the monitoring rule for safety in use.
BRNN Models Training: BRNN models are created by

training the real values for each rule as input rather than
a series of incremental and decrement values for each
field. The number of BRNN models is same as number of
field set of association rules. However, if all data are not
included through association rule mining, additional BRNN
can be configured using the remaining fields after eliminat-
ing unnecessary fields at the discretion of the engineer. The
maximum error rates of each field after training each BRNN
model are used to set the thresholds during the test phase.

2) TEST PHASE OF BRNN-BASED ANOMALY DETECTION
SYSTEM
a: HEADER TEST PHASE
Fig. 10 shows test phase of the BRNN-based anomaly detec-
tion system. A predictive header value is generated from
a series of header information and compared to the actual
header value. Because the header information is expressed
as a 1-hot vector, the result of the comparison is divided into
right and wrong. Abnormal data flow, such as packet loss,
occurs even in a normal operating control system. Therefore,
alarming with only one wrong prediction can be a cause of
frequent false positives. To solve this problem, we set the Z
score suitable for use as the threshold through the anomaly
frequency calculated during the training phase. If the current
anomaly frequency per unit time exceeds the threshold, it is
determined as an anomaly. If an input value that cannot be
represented as a 1-hot vector occurs, it is considered as an
anomaly because it is regarded as abnormal behavior result-
ing from an inappropriate command or packet type use.

b: PAYLOAD TEST PHASE
BRNN learned by each association rule uses different input
fields and requires different input lengths. Therefore, the
predictive payload value is generated by inputting the appro-
priate series of payload information for each BRNN and
comparing it to the actual payload value. Unlike the header
information, because it is not a 1-hot vector, the actual output

TABLE 1. IEEE 1815.1 based power system network traffic characteristic.

payload generally has a real value. The initial threshold is
set as the maximum prediction error rate of the payload
calculated during the training phase. When the threshold is
exceeded by comparing the error between the predicted and
actual values, it is determined as anomalous.

V. DATASET
A. IEEE 1815.1-BASED POWER SYSTEM DATA USING CPS
A total of three days of network packets were collected
from an operating IEEE 1815.1-based Korean substation. The
SCADA gateway has approximately 320,000 DNP3 pack-
ets. The collected packet was confirmed by the engi-
neer as normal data without a cyberattack and abnormal
behavior.

However, it was found that 2% abnormal network traffic
was included because of network burst and session reestab-
lishment. The DNP3 master equipment acquires five types
of data as shown in Table 1 according to the power market
operation rule [20] and the observed normal network traffic
pattern length is 137.

Because the actual payload data are private information,
the entire contents cannot be publicly shared. Therefore, with
the aid of engineers, four IEDs and 127 data were selected to
express substations out of dozens of IEDs. DNP3 has no data
naming rules. Therefore, IEEE 1815.1 maps the data points
of DNP3 according to the data and naming rules standardized
in IEC 61850. The data name of IEC 61850 largely consists
of LDName, LNName, DataObjectName, and DataAttribute-
Name, as shown in Fig. 11. LDName is a logical device (LD)
name that is the name of a corresponding device and it is
application specific. LNName is a logical node (LN) name
that consists of an application-specific prefix, a class name
of four alpha characters as defined in IEC 61850-7-4 [21],
and an instance ID that is a number for distinguishing the
same class name. DataObjectName is a data object belonging
to each LN class and is also defined in IEC 61850-7-4.
Each DataObjectName belongs to the common data
class (CDC) defined in IEC 61850-7-3 [22] and each DataAt-
tributeName and attributes type are defined in the CDC.
The example in Fig. 11 shows the ctlVal attribute of Pos
which means switch position in XCBR which is a circuit
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FIGURE 11. IEC 61850 naming architecture.

FIGURE 12. Simulation testbed.

breaker of E1QA5 LD. CtlVal is a BOOLEAN value with on
and off. The selected 127 data with 4 IEDs were organized
into data names mapped in IEC 61850 according to the
standard of IEEE 1815.1, as shown in the Appendix. The
IEDs of Fig. 12 shows data point composition of each IED.
However, application-specific information, which is private,
was removed or replaced with meaningless information when
it was necessary to distinguish between data. A total of 50%
of the collected data was used for training and the remaining
50% for testing.

B. ATTACK DATASET
Attacks cannot be performed against an actually operating
substation. Therefore, using a commercial product of Tri-
angle Microworks’ distributed test manager (DTM) [23],
a DNP3 network with four IEDs was constructed to config-
ure the same experimental environment as a substation as
shown Fig. 12. When an attack packet itself could be gener-
ated in the DTM, it was generated through the DNP3 master
of the DTM. Otherwise, the packet was directly generated
using Ostinato [24], which is an open source traffic generator
in Attack PC. To construct the attack dataset, the packet was
generated by a CMB attack, an FDI attack, and a DR attack
and it included in the test packet. A description of each type
of attack is as follows.

TABLE 2. CMB attack.

1) CMB ATTACK
The main types of attacks of Crashoverride [25] and TRI-
TON [26] are reconnaissance and DoS attacks and file trans-
fer commands. Table 2 shows 3 type of CMB attack. The
reconnaissance attack is an attack for collecting network
information. In the case of DNP3, the integrity data polling
command that requests the entire data of the device belongs
to this attack. When the session is re-established, integrity
data polling commands may be transmitted depending on the
DNP3 device configuration. In this case, the integrity data
polling, which is unrelated to the session re-establishment,
should be detected as abnormal. A DoS attack refers to
device operation through abnormal control commands, such
as operate and cold/warm restart of DNP3. The file transfer
command is an attack for transferringmalicious firmware and
files and file writing is initiated through the OPEN_FILE
command of DNP3. Because all commands were standard
DNP3 commands supported by DTM, DTM sent commands
of the IBM attack type through the DNP3 master and a total
of five commands were sent 10 times.

2) FDI ATTACK
An FDI attack [5] is an attack that is not easily detected by
generating false data that maintains the linear characteristics
during data manipulation after identifying the linear charac-
teristics in the data. An FDI attackwas performed by selecting
data with linear characteristics for the fields included in each
association rule. Fig. 13 shows a graph of an FDI attack
performed against active and apparent power in a proportional
relationship with each other. The red line represents the point
in time of the attack. FDI (a) is the case in which one data
has been changed to an abnormal value. The abnormal value
is the original value plus 10% to 100% of the original value.
FDI (b) is the case in which the data has been changed in the
decreasing direction, and in the case of FDI (c), the original
value has been changed to 1.5 times. Because an FDI attack
is an attack performed on data values, FDI attack data is
directly injected into existing payload data without network
packet transmission. Ten types of FDI attacks were performed
10 times on 10 analog input data included in the association
rule.

3) DR ATTACK
A DR attack is an attack that interrupts reassembly by
transmitting a packet having an abnormal reassembly header
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FIGURE 13. Example of FDI attack.

FIGURE 14. Example of DR attack.

between normal packets when the DNP3 message is frag-
mented because of its long length. The segment message
processing method of DNP3 is to drop all segment messages
that were previously transmitted at the moment of receiving
packets of abnormal FIR, FIN, and sequence fields. Thus,
continuous DR attacks can lead to DoS [16], and depending
on the configuration of the DNP3 device, a single DR attack
can cause tens of seconds of DoS [18]. Fig. 14 is an example
of a DR attack.When data is transmitted in four segment mes-
sages, FIR means the first is set in the first segment message
and no flag is set in the middle segment messages. In the
fourth segment message, FIN, which means the last packet,
is set. However, because of the DR attack, the segmentation
field of the third packet is manipulated and changed to abnor-
mal such that segment messages 1 and 2 are dropped and
the corresponding command cannot be processed. Because
such an abnormal DR attack message could not be generated
through DTM, the DR attack was generated through Ostinato
on the attack PC. Three types of DR attacks including FIR,
FIN, and FIR + FIN were performed 10 times each and each
attack made data acquisition impossible for more than 30 s.

VI. VERIFICATION OF THE PROPOSED TECHNIQUE
A. DEVELOPMENT ENVIRONMENT AND MODEL
GENERATION RESULTS
The development environment is an Intel Core i7-8700 cen-
tral processing unit (CPU) with 16 GB of memory,

FIGURE 15. Header-based anomaly detection result – DR attack.

TABLE 3. Development environment and training model parameters.

a GeForce GTX 1070 Ti, and TensorFlow library. The
parameters of each learning model were optimized by
repeated experiments. The RNN cell type was selected
as a gated recurrent unit (GRU) [27] for faster learn-
ing. Table 3 summarizes the parameters of the generated
header-based anomaly and payload-based anomaly detection
models.

There was considerable trial and error in the creation of the
association rule. Finally, five data point groups were created
as listed in Table 4. To create an association rule, we first
removed the constant value field. Binary values are not likely
to change in a normal operating substation environment.
In practice, the binary values also had a small number of data
points that changed but selected data points were not changed.
For analog input, AI #8 and AI #12 are excluded because of
constant values. The constant value fields can be configured
as whitelists for monitoring. Therefore, the Apriori algorithm
is performed on 11 analog inputs and the min_conf is set
to 1 under the assumption that data change occurs under
specific conditions in the CPS. The first problem encountered
is the generation of meaningless rules based on data imbal-
ance. As a result of analyzing the created association rule,
approximately 70–95% of the analog data were expressed
as unchanged according to data points. The analysis result
from the engineering information is a result of the power
data changing in a cycle of approximately 100 s. Therefore,
to focus on the data change, unchanged data is treated as
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TABLE 4. Association rules.

missing data such that it does not affect the association rule
calculation. The second problem we faced was the lower
confidence resulting from data errors. As a result of analysis
through engineering information, the analog input value is
transmitted by rounding off the measured float value to an
integer. This results in data errors because of measurement
and rounding down, creating certain patterns of variation that
are not always consistent. Therefore, we set min_conf to a
lower value of 0.7, not 1. As a result, four association rules
and two data point groups were generated by the Apriori
algorithm. Analyzing the data point group of the created
association rule, AI #0, 1, and 2 are the A/B/C current and
AI #3 and 5 are power points that are proportional to each
other. Therefore, it can be seen that a reasonable association
rule has been created in which all five points are increased
and decreased. AI #9, 10, and 11 can also confirm that a
reasonable association rule has been created with data points
that are proportional to each other with A/B/C phase currents.
However, AI #9, 10, and 11 have a lower confidence level
of 0.7 than that of AI #0, 1, and 2 because the analysis
information shows that AI #9, 10, and 11 have a small amount
of change, which causes a greater error from rounding down.
For AI #4, 6, 7, 8, and 12, the rules were written based on
engineering information. AI #4 and 6 are cases in which
the Apriori algorithm could not extract the associated field
because of data error of rounding down. AI #4 is a reactive
power, AI #3 is an active power, and AI #5 is an apparent
power.

AI#32 + AI#42 = AI#52 (1)

AI#3/AI#5 = AI#6 (2)

AI# 3, 4, and 5 have an Eq. (1) relationship. Therefore,
we added AI #3 and 5 to AI #4. AI #6 is a power factor that
has an Eq. (2) relationship. Therefore, we added AI #3 and 5
to AI #6. AI #7 is a frequency and was independently added
because there is no analog input related to frequency. AI #8 is
a reclosing operation and AI #12 is a power factor of IED #3.
AI #8 and 12 are constant value and there is no other ana-
log input related to these analog inputs. Therefore, learning
with AI #8 and 12 is impossible and AI #8 and 12 were
excluded.

TABLE 5. Header-based anomaly detection results.

B. NORMAL DATA LEARNING RATE AND ANOMALY
DETECTION RESULTS
The threshold value used in the header-based anomaly detec-
tion model is a Z score of 1.65 (95%) for the 5-min frequency
of anomaly detection in the training data. The detection
results are listed in Table 5. The normal behavior pattern
of 137 lengths was well learned and all three types of CMB
attacks were detected. All three types of attacks were detected
as abnormal because they were not mapped to the 1-hot
vector because they were types of instructions not found in
the training dataset. However, if integrity data polling of the
reconnaissance attack was a commonly used environment,
it would not be possible to perfectly detect it. Fig. 15 shows
the result of the DR attack detection. If the frequency of the
anomaly detection exceeds a threshold, the anomaly detection
system alerts and sets the frequency to 0. In the case of
DR attacks, attack detection was performed well but some
abnormal network traffic on normal operation CPS was clas-
sified as abnormal behavior. We analyzed and found that this
was the case in which network traffic congestion occurred
during the process of reestablishing the session and the TCP
reconnection was not normally performed for a long time.
Therefore, the proposed technique also identifies communi-
cation problems on the network of the control system under
normal operation, which can be utilized in terms of network
state management.

The initial threshold used in the payload-based anomaly
detection model is the maximum prediction error rate of the
actual value and the predicted value during the training phase.
Table 6 shows the results of payload anomaly detection. The
total is the result of anomaly detection when anomaly is
detected on any AI prediction result. Higher thresholds do not
detect precise FDI (a) attacks. In the case of FDI (b), an attack
can be immediately detected according to an analog point.
However, even if an attack cannot be immediately detected,
all attacks are detected because of the continuous change in
the value. In the case of FDI (c), it was immediately detected
because of the great change in value. Because AI #6, a power
factor of Rule group #3, has only values of 0 and 1, and the
value does not frequently change, all values were predicted
well with threshold 0 for normal data. However, the FDI
attacks on AI #6 were not detected at all and the FDI attacks
on rule group 3 were detected by AI #3 and 4 which were
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TABLE 6. Payload-based anomaly detection results.

added through rule revision. It was found that fraction infor-
mation is needed for effective learning of the power factor,
AI #3. The threshold can be lowered for higher immunity to
attacks such as those FDI (a). To detect a 10% level of an
FDI (a) attack, the threshold also requires a level of 10%.
The last column of Table 6 lists the normal behavior accuracy
when the threshold is set at 10% and 15%, respectively. It is
difficult to detect 10% FDI (a) attacks due to the low accuracy
of normal behavior, and it was found that a 15–20% level of
FDI (a) attacks can be detected.

C. DISCUSSION
We analyze the proposed technique in terms of 1) SCADA
system function, 2) CPS network traffic characteristic,
3) result analysis andmanagement and 4) CPS-specific attack
detection result.

1) SCADA SYSTEM FUNCTION
Function of a SCADA system can be seen as data acqui-
sition and control through a network. Therefore, the main
requirement of an intrusion detection system is the detection
of an anomaly from the network packet flow and payload.
Anomaly detection from the network packet flow ensures
normal data transmission through the network by detecting
abnormal behavior such as missing data transmission and
abnormal packets preventing reassembly of segment packets.
Anomaly detection on the payload detects an FDI attack that
transmits an abnormal value and abnormal behavior, ensuring
the validity of the received data. The proposed technique
detects abnormal behavior of network traffic flow patterns

using a header-based technique to ensure normal data trans-
mission through the network. In addition, by verifying the
validity of the data transmitted through the network using the
BRNNmodel via each associated payload field, the proposed
technique was found to satisfy the functional considerations
of the SCADA system.

2) CPS NETWORK TRAFFIC CHARACTERISTICS
Depending on each CPS environment, various abnormal traf-
fic exists in the CPS network traffic itself under normal
operation. Older legacy systems often contain slower com-
munication lines. In this case, packets are easily dropped
when instantly crowded. For security reasons, there are cases
in which the port is changed through aperiodic session
reconnection. In addition, commands such as the unsolicited
response of DNP3 are aperiodic and the number of com-
mands can be low such that they may not be considered in
learning or may be determined abnormal data. It is difficult
to separately process various abnormal traffics for each type
according to the CPS environment. Therefore, an abnormal
behavior detection technique should be able to address abnor-
mal traffic in this normal operating environment. When an
anomaly detection engine is applied to an actual CPS, its
processing speed should not be slower than the CPS network
packet transmission rate such that packets to be analyzed
will not accumulate and normal operation will be possible.
The proposed technique generates prediction data using the
BRNN technique and the determination of abnormal behavior
is performed using a threshold value based on the number of
abnormal network traffic per unit time in the normal control
system traffic. Therefore, it has partial immunity to abnormal
traffic occurring in the normal control system traffic. In terms
of real-time processing capability, the deep learning tech-
nique has an advantage of taking a long time for learning but a
short time for determining; it will be applied to and validated
in a real power system through port mirroring.

3) RESULT ANAYLSIS AND MANAGEMENT
To utilize the actual intrusion detection system, the interpre-
tation of the detection result should be easy. For this purpose,
it should be possible to distinguish whether a behavior actu-
ally analyzed as abnormal is a falsely detected normal behav-
ior or a truly detected abnormal behavior by presenting the
reasonwhy it is deemed abnormal behavior. In addition, when
a false detection occurs, there should be a tuning method for
reducing the false detection and improving accuracy. The pro-
posed technique facilitates analysis of the result of the learn-
ing engine because the predicted value of the BRNN does
not indicate abnormal or normal but generates the field value
of the actual packet. For the false detection management,
in the CPS environment in which the network communication
pattern does not mainly change, false detection of abnormal
behavior detection on headers is infrequent. If the unusual
commands used for rare events such as maintenance do not
belong to the 1-hot vector of the trained model, it will be
determined as abnormal. If this frequently occurs, it needs
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TABLE 7. IED #1’s Data points.

to re-learn from the learning dataset containing the command
or make an exception rule. In addition, if the communication
periodicity is changed, re-learning is required because the
pattern of communication flow itself has changed. If the
pattern of communication flow is frequently disturbed by
network instability, the threshold needs to be set higher to
reduce false positives. In the case of an actual DR attack,
because the attack must be continuously executed for its
effectiveness, even if the threshold is set high, a DR attack
can be detected. In the case of payload anomaly detection,
because field values which are predicted as real values are
compared, the more uncertain the change pattern, the higher

TABLE 8. IED #2’s Data points.

the prediction error rate. In this case, the threshold will be
set higher but FDI attacks that manipulate field values may
not be detected. Therefore, for data points that require more
sensitive countermeasures against FDI attacks, it is better to
create an exception rule that eliminates false positives of the
same type by analyzing false positives rather than setting
the thresholds higher; however, it is necessary to verify the
validity of the proposed technique by applying a real field for
a long time.

4) RESULT ANAYLSIS AND MANAGEMENT
The verification of proposed technique was performed using
various power system-specific attack data, including real
power system using CPS network traffic, CMB, FDI, and
DR. Five types of CMB attacks including reconnaissance,
DoS and abnormal firmware upload were detected by
header-based anomaly detection using 1-hot vector as header
whitelist. Three types of FDI attacks were performed and
multiple data FDI attacks were detected through payload-
based BRNNs. In case of single data FDI, only attack with
large changes in values exceeding 20% were detected. But a
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TABLE 9. IED #3’s Data points.

single FDI attack that manipulates a small change in value is
not worth it as an attack and even if the attacker performs
continuous attacks with small change, proposed technique
can eventually detect it, as with FDI (c), (d). Three types
of DR attacks manipulating FIN, FIR, SEQ were performed
and it is detected by header-based anomaly detection using
anomaly frequency based threshold. Few false detection were
analyzed as network congestion, therefore proposed tech-
nique also identifies communication problems on the network
of the control system under normal operation.

VII. CONCLUSION
The recent cyberattacks targeting the CPS are advanced
attacks that use CPS protocol packets. Therefore, the CPS
requires an abnormal behavior detection system at a
network-traffic level. In this study, we propose an IEEE
1815.1-based network intrusion detection system to address
CPS cyberattacks in an IEEE 1815.1-based network, a new
network structure of the power system using CPS. The
proposed technique performs header- and payload-based

TABLE 10. IED #4’s Data points.

abnormal behavior detection to guarantee the main func-
tions of the CPS of SCADA system and improves accu-
racy by using a BRNN. This facilitates the interpretation of
results. In addition, we validate the proposed technique using
IEEE 1815.1-based Korea power system network data and
CPS-specific attack data such as an CMB attack that performs
reconnaissance, DoS and abnormal firmware upload, an FDI
attack that falsifies acquisition data, and a DR attack that pre-
vents data acquisition. Five types of CMB attacks, three types
of FDI and DR attacks were successfully detected. By using
the proposed technique, we can detect not only attacks
using various unauthorized commands, but also advanced
attacks such as FDI through existing commands, so that we
can measure advanced CPS cyberattacks. In future research,
we will verify the suitability of the tuning scheme and test
the real-time processing capability by applying the proposed
technique to the actual field using port mirroring.

APPENDIX
See Table 7–10.
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