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ABSTRACT Considering the problem of discrete texture synthesis and the time for texturing, this paper
proposes a novel framework for synthesizing texture images based on discrete example-based elements.
We start with extracting texture feature distribution from exemplars and then produce discrete elements based
on the cluster algorithm. After initializing a texture image, we propose a texture optimization algorithm based
on heuristic searching to improve the quality of the texture image. Final, we use a texture transfer method
based on Convolutional Neural Network (CNN) to stylize the optimized texture image. Our results show that
the proposed texture synthesis method can significantly improve the quality of discrete texture synthesis and
effectively shorten the time for texture generation.

INDEX TERMS Texture synthesis, discrete elements, cluster algorithm, heuristic searching, CNN.

I. INTRODUCTION
The extraction and analysis of texture is the key issue in the
technical system of computer vision [1]. However, the tech-
nologies for further applying extracted texture need to be
explored. Such applications include texture mapping, render-
ing and synthesis [2]. Nowadays, many studies and meth-
ods for texture mapping and rendering have been discussed
(see [17] to [31]), but it is still worthy to discuss how to
realize effective texture synthesis based on different texture
properties that can be divided into two classes: discrete tex-
ture and continuous texture. For this purpose, it is necessary
to propose a method that can integrate the process of feature
extraction, optimization, synthesis and even stylization [3].
To our best knowledge, there are many pixel-based or patch-
based methods for texturing based on mathematical statistical
models [4], such as Markov Random Field (MRF) model.
However, these pixel-based or patch-based methods are more
suitable for synthesizing continuous texture [2], as shown in
Fig. 1, and most of them are quite time-consuming because
such methods need to grow texture pixel by pixel or patch by
patch. Indeed, methods for synthesizing discrete texture are
still limited.
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In this paper, to achieve fast texture synthesis for discrete
texture, we propose an integrative method to achieve this
goal, including five subsections. First, we obtain the feature
distribution based on images gradient information. Second,
discrete example-based elements can be extracted based on
image feature distribution. Here, we adopt the mean shift
algorithm to determine the number of discrete elements and
extract them from the exemplar discretely. Next, we ini-
tialize texture images in a stochastic or a regular way and
store their properties (such as respective position, angle and
structure) with a special method to speed up the synthesis
process in following subsections. Then, we propose an opti-
mization algorithm to improve the quality of texture images
based on heuristic searching. Final, we use the CNN-based
texture transfer technology to stylize the optimized texture
images. Compared with some existing methods (such as [18],
[20] and [28]) for texturing that may produce some image
seams and just optimize the local texture distribution (see
Fig. 12), our method starts with preserving the integrity of
elements in the exemplar, then optimizes the elements distri-
bution globally, and can save more time for texturing process.
Moreover, the overall synthesis process is automatic (users
only need to prepare their own materials), and it is quite easy
to transfer our model to a 3D surface according to user needs.
The final stylized texture images (see Fig. 13) that produce
some strong visual effects are also interesting.
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FIGURE 1. The patch-based method for texture synthesis [19]. (b) is the
output image of continuous texture from (a). (d) is the output image of
discrete texture from (c) that may present some image seams.

The rest of this paper is structured as follows. In Section II,
we present an introduction of related work. Section III intro-
duces the proposed process of texture synthesis. The results
are presented in Section IV, and the conclusions are drawn in
Section V.

II. RELATED WORK
A. FEATURE EXTRACTION
Common feature extraction methods mainly include: statis-
tical methods, transform-based methods and model-based
methods.

For statistical methods, the feature distribution of texture
images is extracted by some statistical models, such as a
gray-level model, a gradient histogram model and a mapped
pattern-based model. In [5], the gray level co-occurrence
matrix (GLCM) is used to extract second or higher order
feature from RGB images. Following [5], GLCM is further
applied to other scenarios, such as extracting structural infor-
mation from seismic attributes [6] and monitoring changes
in baguettes [7]. Furthermore, the authors in [8] propose
a texture descriptor for image segmentation based on the
histogram of image gradient, and the research in [9] designs
a method to recognize buildings according to the histogram
of oriented gradient (HOG). In this paper, we also extract
image feature based on image gradient changes. Further,
users can adopt some methods, such as Log-Polar Transfor-
mation (LPT), to reduce the rotation effects.

For transform-based methods, each texture image can be
transformed into a frequency space or a scale space to inter-
pret its texture. In [10], a texture classification method is
proposed by applying 1D or 2D Fourier filter to extract local
frequency information. Following [10], the authors propose
an effectivemethod for texture representation based onwedge
filters and local descriptors [11]. To extract more image infor-
mation, the author in [12] uses a copula model to decompose
texture information produced by Circularly Symmetric Gabor
Wavelet (CSGW).

For model-based methods, some mathematical models are
adopted. Among these models, the complex network model
has better effect than others, such as a gravitational model
[13] or an autoregressive model [14]. In [15], a vocabulary
of words based on Complex Network (CN) is built to ana-
lyze texture. Following [15], a local spatial pattern mapping
(LSPM) is proposed to classify texture images [16].

B. TEXTURE SYNTHESIS
Common methods for texture synthesis mainly include:
pixel-based methods, patch-based methods and example-
based methods.

For pixel-based methods, the basic idea stems from [17]
that designs a non-parameter synthesis method by extending
a noise image pixel by pixel. Following [17], the authors
in [18] propose a synthesis method based on MRF and adopt
a tree-structured vector to speed up such process. In [19],
a method called ‘‘image quilting’’ is proposed by minimizing
the cost path through the overlapped areas horizontally and
vertically to stitch input texture images. Such method is also
effective for resizing images by reduction and expansion
operation [20].

For patch-based methods, the main idea is to speed up the
synthesis process by overlapping patches instead of growing
pixels. In [21], the authors first extract the texture patches
from exemplars and then copy them into a 3D surface seam-
lessly by a liner model. The research in [22] presents an
analytical method for texture synthesis by decomposing an
exemplar into patches and recomposing them on a 3D surface
directly. Following [22], a graph-cut method is developed to
compute the optimal patch size. The extracted patches can
be copied into the output image dynamically [23], and the
method in [23] is also suitable for video synthesis. Moreover,
a search-based algorithm for texturing is proposed by con-
structing a image pyramid and using a cache reuse technol-
ogy [24]. Compared with pixel-based methods, patch-based
methods are more efficient.

For example-based methods, an input image is usually
regarded as a complete and small element, and the synthesis
process is similar to assemble these elements. In [25], a data-
driven method for discrete texture synthesis is proposed, but
such method requires users to determine their materials struc-
tures in advance. Following [25], the authors propose a global
optimization algorithm to generate large building models
based on small ones [26], and a tile-based method is proposed
in [27] to generate facade building images. With the advent
of neural networks, a method based on the long-short term
memory (LSTM) that stems from Recurrent Neural Network
(RNN) is proposed to produce regular texture [28], a feed-
forward network (FFN) is used to synthesize diverse texture
by interpolating texture images generated by different FNN
layers and maximizing stylized texture quality [29], [30],
and the authors in [31] propose a conditional generative
CNN-based (CGCNN) algorithm for synthesizing example-
based texturewith non-local structures.Moreover, the research
in [1] designs a novel method for growing texture over a 3D
surface, and a camera-aided texturing method is proposed
by integrating artistic tools into the texture synthesis sys-
tem [32]. In this paper, the main idea for texture synthesis
also stems from example-based methods.

III. METHODOLOGY
Our method mainly consists of five parts, as shown in Fig. 2.
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FIGURE 2. Texture synthesis flow chart. (a) is an exemplar. A feature extraction method is used to obtain discrete example-based elements in (b). In (c),
we initialize a texture image in a stochastic way. The regular initialization method can be also used, as shown in Fig. 8. Then, we propose a heuristic
algorithm to optimize the texture image (d). Final, a stylized image is obtained by texture transfer (e).

FIGURE 3. Texture synthesis processing chain.

FIGURE 4. Patch-based method [23] for texture synthesis based on
Fig. 3(a).

A. EXTRACT FEATURE FROM INPUT EXEMPLARS
Given an exemplar I (x, y), such as Fig. 3(a), if we directly
use some patch-based algorithms (such as [20]) to syn-
thesize texture, the final texture image may present some
image seams, as shown in Fig. 4, and the texturing process
is time-consuming. To preserve the integrity of elements in

I (x, y) and speed up the synthesis process, we need to extract
texture elements from I (x, y) discretely.

First, we obtain the blurred image g (x, y) from I (x, y) by
Gaussian filter [33] to reduce pattern noise:

g (x, y) =
1

2πσ 2 e
−
x2+y2

2σ2 ∗ I (x, y) (1)

where ∗ means the convolution operation and σ 2 is the vari-
ance.

Next, the gradient value G (x, y) and the gradient direction
θ (x, y) of g (x, y) can be obtained by Sobel operator [8]:

G (x, y) =
√
gx (x, y)2 + gy (x, y)2 (2)

θ (x, y) = arctan
(
gy (x, y)
gx (x, y)

)
(3)

where gx =
∂g(x,y)
∂x is the horizontal gradient component and

gy =
∂g(x,y)
∂y is the vertical gradient component.

Here, we remove some pixels that are near an element edge
by threshold TS to reduce the edge width:

G (x, y) =

{
G(x, y) if G(x, y) > TS
0 if G(x, y) ≤ TS

(4)

Then, two thresholds, TL and TH , are used to recognize the
feature points based on the result of (4):

G (x, y) = 255 if G (x, y) > TH
G (x, y) = t if TL ≤ G (x, y) ≤ TH
G (x, y) = 0 if G (x, y) < TL

(5)

where t ∈ {0, 255}. G (x, y) = 255 means that (x, y) is a
feature point. G (x, y) = t means that (x, y) is an uncertain
point. If an uncertain point is adjacent to known feature
points, its value is equal to 255; otherwise, its value is equal
to 0. G (x, y) = 0 means that (x, y) is a non-feature point.

Final, we can extract a pixel coordinate set of feature points
P = {(xi, yi)} , i = 1, . . . , p based on gradient information
by a border following algorithm, where p is the number of
feature points, as shown in Fig. 5. Moreover, if necessary,
users can add feature points to the set P manually to improve
the accuracy of edge extraction when they are facing with
some complex patterns, such as flower patterns.
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FIGURE 5. Extract feature points.

FIGURE 6. Discrete example-based elements.

FIGURE 7. Initial texture image in a stochastic way.

B. GENERATE DISCRETE EXAMPLE-BASED ELEMENTS
Based on the result of set P, we need to cluster these feature
points (see Fig. 5) to determine the approximate number
of elements. Therefore, some clustering algorithms, such as
K-means clustering or mean shift clustering [34], can be used
to determine the number of centroids (the pixel coordinates
need to be integerized) in an exemplar that are equal to the
number of discrete elements. If users want to use cluster
algorithms, such as K-means clustering, the number of cen-
troids should be determined in advance. Here, we adopt the
mean shift algorithm to cluster feature points because such
algorithm can search centroids based on the distribution of
feature points automatically, and the main steps are listed as
follows:

Step1: Select one random point as a center point ci from
the unclassified points (feature points).

Step2: Add all points around ci within ri to the set Mi,
where ri is the radius.

Step3: Compute each vector
(
ci,mj

)
, where mj ∈ Mi, and

add all
(
ci,mj

)
together to obtain Es.

Step4: Let ci move along the direction of Es, and the moving
distance is ‖Es‖.
Step5: Repeat Step2-Step4 until ‖Es‖ ≤ ε, where ε is the

threshold to stop the loop, and record the current position
of ci.

Step6: Repeat Step1-Step5 until all points are classified.
Step7: Compute an access frequency fci for each point

based on different center points ci, and let the current point
belong to ci by argmax

({
fci
})
.

Then, we divide the set P into single discrete elements{
p1, . . . , pj

}
, as shown in Fig. 6, where j is the number of

centroids. Each pj includes its pixel coordinate, its relative
angle and distance between the centroid j and corresponding
feature points, and the RGB intensities, which can speed up
the process for texture synthesis in following subsections.

C. INITIALIZE TEXTURE IMAGES
There are many methods that can be used to initialize tex-
ture images, such as patch-based methods. Here, we adopt
a stochastic pattern for initialization, as shown in Fig. 7.
However, a regular pattern can also be used to initialize
texture images, as shown in Fig. 8, and we will present the
final texture images based on both two initialization methods.

In this paper, the Poisson cluster process (PCP) is chosen
to model the stochastic position distribution of elements that
are randomly selected from

{
p1, . . . , pj

}
, and we always copy

selected elements into a output image completely [35]:

8 =
⋃
i∈n

8i + xi (6)

where 8 is the parent point process, n is the number of the
parent point process, and 8i, i ∈ n is a finite set of the child
point process. The modeling process is listed as follows and
shown in Algorithm 1:

Step1: Generate n ∼ Poisson
(
πr2λ

)
, where λ is the

density function, r is the radius, and u1 ∼ U (0, 1) , . . . , un ∼
U (0, 1).
Step2: Let R1 = r

√
u1, . . . ,Rn = r

√
un and sort

R1, . . . ,Rn to get R(1), . . . ,R(n).
Step3: Generate un+1 ∼ U (0, 1) , . . . , un+m ∼ U (0, 1)

discretely.
Step4: Let θ1 = 2πun+1, . . . , θm = 2πun+m, and generate

initial pixel coordinate pairs
(
R(n), θ1

)
, . . . ,

(
R(n), θm

)
.

In addition, to speed up the initialization process, we align
the centroid of selected element with the node generated by
PCP or the regular pattern and reconstruct the element based
on the relative angle and distance and the RGB intensities
restored in pj.

D. OPTIMIZE TEXTURE BASED ON HEURISTIC SEARCHING
From Fig. 7 or Fig. 8, we find that some elements overlap over
others, which cannot preserve the integrity of all elements.
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Algorithm 1 Algorithm for Texture Initialization
1: Input: Size of Texture Image, Distribution Density λ,

Number of Child Process Points n, and Distribution
Radius r

2: Output: Initial Texture Image
3: Initialize: Number of iteration m← λ

4: for i = 1, 2, . . . ,m do
5: Generate ui ∼ U (0, 1) and Ri = r

√
ui

6: for j = 1, 2, . . . , n do
7: Generate ui,j ∼ U (0, 1)
8: Compute θi,j = 2πui,j and generate

(
Ri, θi,j

)
9: end for

10: end for
11: return texture image

FIGURE 8. Initial texture image in a regular way.

To improve the quality of a texture image, we propose a
heuristic algorithm to optimize a texture image in this sub-
section.

First, we formulate our optimization problem via the fol-
lowing energy function:

E =
M∑
i=1

N∑
j=1

N∑
k=1,k 6=j

O
(
Sj, Sk

)
(7)

where M is the number of parent nodes, N is the number of
child nodes in each parent cluster, O

(
Sj, Sk

)
is the average

overlap rate (AOR) between element j and element k , and the
expression of O

(
Sj, Sk

)
can be expressed as:

O
(
Sj, Sk

)
=
Sj ∩ Sk
Sj ∪ Sk

(8)

where Sj and Sk are the relative area of element j and
element k .

Second, we define the relative area Sj or Sk in (8) as
the bounding box of element j or element k. Here, Graham
algorithm is used to determine such bounding box, and its
program interface can be found in CV2, as shown in Fig. 9.

Then, we can define our optimization problem as:

minE =
M∑
i=1

N∑
j=1

N∑
k=1,k 6=j

O
(
Sj, Sk

)
(9)

FIGURE 9. The bounding box of single element.

FIGURE 10. Iteration process.

Final, it is hard to solve (9) directly because its gradient
cannot be obtained. Therefore, we propose a heuristic algo-
rithm to optimize (9) based on Coordinate Descent Optimiza-
tion (CDO) that mainly consists of five steps, as shown in
Algorithm 2, with a time complexity of O (MNN ).

Step1: Set each centroid j as an origin, divide the searching
area for Sj into four quadrants, and set initial parameters for
the searching radius, the searching length in pixel coordinate
frame and the AOR threshold to stop the searching process
(set by users).

Step2: Before each iteration, we need to determine
whether element j and element k are overlapped based on (8).
If the value of (8) is greater than the AOR threshold, we will
add the number pair (j, k) to the set {(j, k)}.

Step3:Before each searching process, we select (j, k) from
the set {(j, k)}, then fix the element j position and choose
one random direction to begin our searching process. Here,
we adopt three transform methods to optimize the global
texture distribution, including translation, scale and rotation.
For example, we first fix the value of yk and search the
possible value xk ′ for the position (xk ′ , yk). Then, based on
the new position of xk , we will search the possible value for
yk .

Step4: After the searching process, we add the element k ′

position to a set {(xk ′ , yk ′)}, where (xk ′ , yk ′) is the possible
position for element k , and determine the optimal position
for element k by finding

(
x∗k , y

∗
k

)
that can minimize (8) in the

set {(xk ′ , yk ′)}. If so, (j, k) is removed from the set {(j, k)}.
Step5: Repeat Step2-Step4 until the set {(j, k)} is

empty or the number of loop reaches its threshold.
By Algorithm 2, we can obtain optimized texture images,

as shown in Fig. 10.
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Algorithm 2 Algorithm for Texture Optimization
1: Input: Initial Texture Image, Number of Parent Process

Points m, Number of Child Process Points n
2: Output: Optimized Texture Image
3: Initialize: Maximum number of iteration T ← κ , accu-

racy threshold← ε, AOR threshold← σ

4: Compute initial E from (7) - (8)
5: while T 6= κ or E ≥ ε do
6: for i = 1, 2, . . . ,m do
7: for j = 1, 2, . . . , n do
8: for k = 1, 2, . . . , n and j 6= k do
9: Compute O

(
Sj, Sk

)
from (8)

10: if O
(
Sj, Sk

)
≤ σ do

11: Add (j, k) to the set {(j, k)}
12: end if
13: end for
14: end for
15: end for
16: while {(j, k)} 6= ∅ do
17: Select (j, k), compute (xk ′ , yk ′) based on heuristic

searching, and add (xk ′ , yk ′) to a set {(xk ′ , yk ′)}
18: Let

(
x∗k , y

∗
k

)
← argmin ({(xk ′ , yk ′)}), update the

element k position and remove (j, k) from {(j, k)}
19: end while
20: T+ = 1, and compute current E
21: end while
22: return texture image

FIGURE 11. Stylization process.

TABLE 1. Simulation parameters of texture synthesis.

E. TEXTURE TRANSFER
In this subsection, our aim is to stylize optimized texture
images, and we adopt a neural network method to stylize
texture images. Such method can provide the feature space

TABLE 2. System parameters of texture synthesis.

TABLE 3. Results of texturing time by different methods.

FIGURE 12. The experiment results of texture synthesis. For each discrete
texture (left), the output images based on the pixel-based method in [18]
and the patch-based method in [20] are on the middle, and the output
image based on our method is on the right.

produced by CNN layers that are very useful for feature
representation.

Given an input image A (x, y) (Fig. 10(g)) and an artistic
image B (x, y) (Fig. 11(b)), we use 16 convolutional layers
and 5 average pooling layers from VGG-Network [36] to
extract feature representations from A (x, y) and B (x, y) in
different layers and define the squared-error loss between
different feature representations in layer l as:

` (A,B, l) =
1
2

Nl∑
i=1

Ml∑
j=1

(
F li,j − P

l
i,j

)2
(10)

where Nl is the number of filters in layer l,Ml is the size of
feature map, F li,j is the content loss produced by the filter i at
position j in A (x, y), and Pli,j is the style loss produced by the
filter i at position j in B (x, y).
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FIGURE 13. The experiment results of texture stylization. The input
images are on the left, including an exemplar and an artistic image,
the output image with a stochastic pattern is on the middle, and the
output image with a regular pattern is on the right.

The derivative of (10) can be expressed as [37]:

∂` (A,B, l)

∂F li,j
=

{(
F li,j − P

l
i,j

)
if F li,j > 0

0 if F li,j ≤ 0
(11)

Therefore, a gradient descent algorithm (GDA) can be an
effective method to optimize A (x, y) until it has the same
feature representation as B (x, y), i.e., minimize (10) based on
the convergence of (11), and the final texture image is shown
in Fig. 11.

IV. SIMULATION RESULTS
For our simulations, the parent nodes are distributed in an area
500 × 500 (the size of output image), and the distribution
of parent nodes satisfies PCP, where the distribution density
λ is 1, the number of subprocess points n is 50, and the
distribution radius r is 250 (usually half of the size of an
output image). Table 1 lists the simulation parameters of
texture synthesis and Table 2 lists the system parameters of
texture synthesis.

All results in this section are independent experiments
through Python (including NUMPY, CV2, SKLEARN and
KERAS). The results of texture synthesis are presented
in Fig. 12 and the corresponding results of texture stylization
are presented in Fig. 13. Moreover, the results of time for
texture synthesis are summarized in Table 3. As illustrated
in Table 3, our proposed method can save nearly 1 hour and
2 hours compared with the pixel-basedmethod in [18] and the
patch-basedmethod in [20], respectively. Here, themain steps
in [18] are summarized as follows, with a time complexity
that is proportional to the size of a sample image and an initial
noise image:

Step1: Input a sample image Is and generate a random
noise image In.
Step2: Set the searching radius r = 2 and the searching

window

w =

 1 1 1 1 1
1 1 1 1 1
1 1 1 0 0

 .
Step3: Select a patch in Is that is similar to the local region

in In based on the convolution operation.
Step4: Repeat Step3 until all pixels in In are updated.
The main steps in [20], with a time complexity that is

proportional to the size of an output image, a block and an
overlap region, include:

Step1: Input a sample image Is, initialize an image I0 and
set the size for an overlap region S and a block B.

Step2: Copy one block B1 from Is into I0 randomly to
begin.

Step3: Compute the error e = (Bcurrent − Bnext)2

at the overlap region Se to minimize Ei,j = e +
min

(
Ei−1,j−1,Ei−1,j,Ei−1,j+1

)
, where i and j are the size of

the overlap region Se and E is the cumulative error.
Step4: Repeat Step3 until I0 are filled with blocks.
Compared with our method, the methods in [18] and [20]

are more time-consuming obviously.

V. CONCLUSION
With a focus on fast texture synthesis for discrete texture, this
paper proposes a novel framework for texturing that mainly
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consists of five steps. We first extract texture feature from
input exemplars and generate discrete elements based on
the feature distribution and the mean shift algorithm. After
initializing the texture image in a stochastic or regular way,
we propose a texture optimization algorithm base on heuristic
searching to improve the quality of optimized texture images.
Final, a CNN-based method is used to stylize our texture
images. The results indicate that our method can effectively
optimize and speed up the process of discrete texture synthe-
sis.

In the future, we will explore methods for extracting more
complex patterns, like some feature matching methods, and
take into account factors that may improve the extraction
accuracy, such as illumination variation, viewpoint angles,
color constancy, and contrast balancing. Moreover, it is
important to design more robust optimization algorithms and
apply our texturing method to other scenarios, such as remote
sensing images fusion and artistic or industrial design.
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