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ABSTRACT As the signaling proteins, cytokines regulate a wide range of biological functions. It is important
to distinguish the cytokines from other kinds of proteins. The 188-Dimensional CNT features are presented
to identify the cytokines, which contain many redundant features. In this paper, we propose three kinds
of feature compression algorithms to exclude the redundant features from the 188D features and keep the
accuracy of the algorithm at the same time. The three algorithms are called the genetic based algorithm, the
greedy based algorithm and the brute-force based algorithm. Experimental results demonstrate that the brute-
force based algorithm gets the highest classification accuracy among the three algorithms. The genetic based
algorithm achieves the least number of compressed features among the three algorithms. But they consume
much more time than that consumed by the greedy based algorithm. The greedy based algorithm makes a
good trade-off among the three factors, which are the classification accuracy, the number of compressed

features and the time consumption.

INDEX TERMS Cytokine identification, feature compression, feature selection.

I. INTRODUCTION

Cytokines are a type of proteins, which play an important
regulatory role in many cellular activities, such as differenti-
ation, growth and interactions between cells. It has important
theoretical and practical significance to study the cytokine
identification and classification. The structures and functions
of unknown types of cytokines can be understood by accurate
recognition of the sequences of cytokines.

Based on the sequence structures and functions of
cytokines obtained, authors in paper [1] identify cytokines
by manual prediction. Several methods have been proposed
over the last decades to identify cytokines, such as the Hidden
Markov Model (HMM) based methods [2], [3], the Artificial
Neutral Network (ANN) based methods [4]-[7], the Basic
Local Alignment Search Tool (BLAST) [8], FASTA [9], [10],
CTKPred [11] and CytoPred [12]. In paper [13], Cai et al.
utilize a set of 188-Dimensional features extracted from the
Amino Acids (AAs) composition to identify the cytokines.
A common point of all the methods mentioned above is that
they all need to extract many features from the cytokines. Are
all these features necessary? As we know, the more features
the identification algorithms use to identify the cytokines,
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the more computation resources they consume. Sometimes,
irrelevant features can even reduce the accuracy of the iden-
tification algorithms. It is necessary to exclude the irrelevant
features from the feature set.

Feature selection is an effective method to reduce the
number of features in the feature set for classification
tasks [14]-[39], which can be very difficult because of a
large search space [40]. Given n features, there are 2"
possible feature subsets [41]. As the number of features
increases, the feature selection problem becomes even more
challenging [42]-[45]. The exhaustive strategy for searching
the optimal feature subset is impossible [46], [47]. Vari-
ous kinds of search strategies have been proposed, such as
the complete, the random, the greedy, the heuristic search
strategies [48]-[68].

In this paper, we try to compress the 188D CNT feature
set [69] by removing the redundant features from it and keep
the identification accuracy of the original 188D CNT feature
set based method at the same time. We propose three kinds
of feature compression algorithms. The first algorithm is
called the genetic based feature compression algorithm.
In the genetic based algorithm, a 188D binary vector (called
a solution) is used to represent the 188D feature set. Each
bit in the 188D binary vector corresponds to a feature in the
188D CNT feature set. If a feature in the 188D CNT feature
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set is selected in the compressed feature set, the bit in the
vector corresponding to the feature is set to 1, otherwise,
the bit is set to 0. A correlation-based algorithm is proposed
to produce the initial population with n solutions. Then the
population is evolved for several generations by the genetic
based algorithm. The classification accuracy is used as the
fitness value to evaluate the quality of each solution in the
population for each generation. Finally, the genetic based
algorithm gets a binary vector that has the largest fitness value
among all the other solutions in the population. The final
compressed feature set is composed of the features, whose
corresponding bits are set to 1 in the vector. The second
algorithm is called the greedy based feature compression
algorithm. All features in 188D feature set can be classified
into 9 classes, called feature classes, according to the quanti-
ties of the AAs (20D), hydrophobicity (21D), polarity (21D),
normalized Van der Waals volume (21D), surface tension
(21D), charge (21D), polarizability (21D), solvent accessibil-
ity (21D) and secondary structure (21D). In the greedy based
algorithm, we evaluate the correlation between a feature class
and the cytokine. The feature classes are greedily added to the
compressed feature set according to their evaluation results
from largest to smallest. After adding a class of features to
the compressed feature set, the classification accuracy of the
new compressed feature set is evaluated by the Support Vector
Machine (SVM). The third algorithm is called the brute-
force based feature compression algorithm. The third algo-
rithm is also based on the feature class. A 9-bit binary vector
is used to represent the 9 feature classes of the 188D feature
set. Each bit in the vector represents whether a feature class is
selected in the compressed feature set. The 9-bit binary vector
can be thought of as a decimal number ranging from 1 to
511 (Zero is not included because it means that no feature
class is selected). The brute-force based algorithm evaluates
all the 511 kinds of conditions and tests the classification
accuracy. Finally, the features in the feature classes, corre-
sponding to the decimal number with the largest accuracy,
are selected as the compressed feature set by the brute-force
based algorithm.

The contributions of the paper are as follows. First, we
propose three algorithms to compress the 188D feature set
to identify the cytokine proteins, which are the genetic based
algorithm, the brute-force based algorithm and the greedy
based algorithm. Second, extensive experiments were done to
test and compare the performance of the three algorithms. The
experimental results show that the genetic based algorithm
achieves the best feature compression performance. While it
consumes the most time and the classification accuracy of
the compressed feature set is not better than that of the 188D
feature set. The brute-force based algorithm has the best clas-
sification accuracy while it also consumes time. The greedy
based algorithm makes a good trade-off among the classifi-
cation accuracy, the number of compressed features and the
time consumption.

The organization of the paper is as follows: in section 2, we
introduce the data collection and data preprocessing method.
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In section 3, we introduce the three kinds of feature compres-
sion algorithms in detail. In section 4, we give the experimen-
tal results to evaluate the performance of the three algorithms
proposed in this paper. Finally, we draw the conclusion.

Il. MATERIALS AND METHODS

A. DATA COLLECTION AND PREPROCESSING

Cytokines regulate a wide range of biological functions
including hematopoiesis, inflammation and repair by extra-
cellular signaling. It is important to distinguish the cytokines
from other kinds of proteins. Cai et al. [13] extract
188-Dimensional (188D) features based on the physicochem-
ical properties, distribution and composition of amino acids,
which are used to analyze whether a protein is a cytokine.
But whether all the 188D features are necessary for the iden-
tification is a question. In this paper, we propose three kinds
of feature compression algorithms to reduce the number of
features contained in the 188D feature set to predict whether
a protein is a cytokine.

Figure 1 shows the procedure on how to collect and pre-
process the data used in the three kinds of the feature com-
pression algorithm. The whole data set is composed of two
parts: the positive instances and the negative instances.

set

Download the positive data J

A

Generate the negative data set
based on the positive data set

A

Compress the postive and
negative data sets by the CD-HIT

\
F&xtract the 188D features from the

positive and negative data sets

y

Splite the whole data set into

two parts used for parameter
learing and testing

FIGURE 1. Procedure for collecting and preprocessing the cytokine data
set.

To get the positive instances, we download the cytokine
data set from the Uniprot database [70]-[72]. To get the
negative instances, we first list the PFAM families that all
positive instances belong to. For each PFAM family, except
the PFAM families the positive instances belong to, we
extract the longest sequence protein as the negative instance.
The CD-HIT program [73] is used to remove the redundant
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instances from the positive and negative data sets. Finally, we
get a data set with 18944 instances altogether, which contains
9645 positive instances and 9299 negative instances.

B. FEATURE EXTRACTION STRATEGY
In this paper, we want to compress the 188D features pro-
posed in [13]. Now, we briefly introduce how to calculate
188D features [74].

As the Amino Acids possess a variety of properties,
188 features are extracted for the cytokine prediction, which
is denoted as a 188D Feature Vector (FV).

The first 20 features (1-20) are denoted as FV1, ..., FVy:

n; .
FV,:Zl i=1,...,20)

where n; is the number of the 20 AAs appeared in the
sequence and L is the length of the sequence [75].

Eight kinds of properties are used to extract the 168
features left from a sequence, including the hydrophobic-
ity, normalized Van der Waals volume, polarity, polarizabil-
ity, charge, surface tension, secondary structure and solvent
accessibility. 21 features are extracted according to each kind
of physicochemical property. Next, we take the hydropho-
bicity property as an example to show how to calculate the
21 feature values (FV51, ..., FV41) in the 188D FV.

According to the hydrophobicity property of 20 AAs, they
can be classified into three groups, which are the RKEDQN,
GASTPHY, and CVLIMFW groups.

The FV51, FV»; and FV»3 are calculated as follows:

(FVay. FVsa. FV )_(CHl CH, CH3)
21, 22, 23) = L L L

where CH1, CH», and CH3 are the size of the three groups.
The FVs from 24 to 38 are calculated as follows:

(FVa4, ..., FVag; FVao, ..., FV33; FV34, ..., FV3g)
_ (DH11 DH5 DHy; DHjs
- L s ety L i L 3 ey L i
DH3, DHs3s
I L

where the DH;(i = 1,2,3;j = 1,2,...,5) represents the
sequence length, where the first, 25, 50, 75, and 100 percent
of AAs of the three groups are located.

The FV39, FV49 and FV4; are calculated as follows:

FH, FH, FHj3
L-1"L-1"L-1

where the FH;(i = 1, 2, 3) represents the respective number
of bivalent seeds that contain two amino acids from different
groups and (LY 1) represents the number of bivalent seeds.

A total of 21 features (FV>; — FVy4;) are calculated for
the hydrophobicity property. After the other seven kinds of
physicochemical properties are analyzed in the same way as
that of the hydrophobicity, we get a 188D feature vector for
a cytokine.

A 188D feature vector is calculated for each cytokine in the
positive and negative data set obtained by the CD-HIT pro-
gram in step 3 of the data preprocessing procedure in Figure 1.

(FV39, FV40, FV41) = (
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And we get a suitable data set to train the machine learning
algorithm.

C. SUPPORT VECTOR MACHINE

In this paper, we use the Support Vector Machine (SVM)
[76]-[97], as the classification algorithm. Given a set of
instance-label pairs (x;, y;),i = 1, ..., n (called the training
set) where x; is a n dimension vector [4], the SVM calculates
the optimal solution of the following problem:

!
. L 7
vrvn};ré EW w—l—ch:&,
1=

subjectto yi (W'o () +b)z1-&  &=0

By mapping the x; in the training set to a much higher
dimensional space, the SVM can find a hyperplane that sepa-
rates the vectors in the training set with the maximal margin in
the new space. Parameter c is the penalty for the classification
errors. And the kernel function is defined as qb(xi)Tqb(xj). Four
kinds of kernel functions are often used, which are the radial
basis function (RBF) kernel, the sigmoid kernel, the linear
kernel and the polynomial kernel.

The RBF kernel [98], [99] is used in this paper, which has
two parameters ¢ and y. For a given problem, the optimal
values of the two parameters are not known. We use a grid-
based searching strategy to find suitable values for ¢ and y
to make the classifier accurately classify the unknown data.
Various pairs of (c,y) values are sampled from the grid
searching space and the one with the highest accuracy is
selected.

To learn the optimal values for the parameter (c, y), the
whole data set obtained in section 2.1 is divided into two non-
intersecting parts. The first part, called ‘‘Optimal Parameter
Searching Data Set (OPSDS)”, is used to search the optimal
values for the two parameters (c, y) of the SVM. A stratified
selection method is used to draw 10% of the data from the
whole data set. The OPSDS is composed of the selected
data. The stratified selection method can ensure the same
class distribution in the subset as that of the whole data set.
The second part called “Testing Data Set (TDS)”, which is
composed of the 90% data left, is used to test the accuracy of
the SVM.

Ill. THE FEATURE COMPRESSION ALGORITHMS

In this section, three kinds of feature compression algo-
rithms are introduced, which are the genetic based feature
compression algorithm, the greedy based feature compres-
sion algorithm and the brute-force based feature compression
algorithm. As is shown in Figure 2, all three algorithms need
to learn the optimal values of (c, y) by using the OPSDS for
any candidate compressed feature set. Then the TDS is used
to evaluate the accuracy of the candidate compressed feature
set by using the optimal (¢, ) just learned. And the candidate
compressed feature set with the highest accuracy will be the
final compressed feature set selected by the algorithm.
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Genetic based feature
compressing algorithm

Greedy based feature
compressing algorithm

Brute-force based feature
compressing algorithm

Calculate the optimal parameters

(€.y) for the SVM and train the
classification model

Test the classification
accuracy for the
compressed feature set

FIGURE 2. Workflow of the feature compression algorithms.

A. THE GENETIC BASED FEATURE COMPRESSION
ALGORITHM

In this section, the Genetic based Feature compression
Algorithm is introduced. We present each component of the
algorithm first, including how to represent the solution of
the feature compression problem, how to construct the initial
population and how to define the fitness function. Finally, we
introduce the whole algorithm.

1) SOLUTION REPRESENTATION

In a genetic algorithm, a set of solutions to the optimization
problem is constructed. By evolving the solutions generation
by generation, a good solution can be found. The set of
solutions is called Population P. We also need a kind of
encoding scheme to encode each solution in P. A binary
encoding scheme is used in this paper. It means that a solution
x in Pis a 0 — 1 vector with 188 dimensions, which is the
number of features to be compressed. If an element x; in
solution x, (i = 1,2, ...188), is set to 1, then the i feature
is included in the compressed feature set represented by x.
Otherwise, the x does not include the i""* feature.

2) INITIAL POPULATION CONSTRUCTION ALGORITHM

The quality of the initial population decides the future gener-
ations, which is very important, so an initial population con-
struction algorithm is proposed. The algorithm evaluates the
value of each feature by calculating the correlation between
it and the class according to the Pearson’s formula (1). After
calculating the worth of each feature, the algorithm constructs
an individual in the initial population based on the roulette
selection. The probability, calculated by formula (2), decides
the chance that a feature is selected or not. It is obvious that
the bigger the worth of a feature is, the larger the chance for
the feature being selected in an individual of the initial popu-
lation. The process is repeated M times which is the number
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Algorithm 1 Initial Population Construction Algorithm
Input: OPSDS+TDS, the population number M
Output: Initial Population Set
1: For each feature x;(i = 1,2,...,188), calculate its
correlation py, y with the class according to formula 1
based on the union of OPSDS and TDS
2: Set the initial population set P = ¢
3: while |P| < M do
Produce a solution x by the roulette selection and add
the x into P
5: end while
6: return P

of solutions in the initial population. The Initial Population
Construction Algorithm is illustrated in Algorithm 1.

cov(X;, Y)
Xy = ——————
ox,0y
EXiY) — E(XDE(Y)
= (D
\/E (x2) — E2(Xi)\/E (v2) — EX(Y)
PXiy
[pp— - @)
Z,IE? PXiy

3) FITNESS FUNCTION

Given a solution x = (x1, x2, ..., x188) in the population P,
x is used by the SVM to classify the data in the OPSDS. The
classification accuracy, which is defined by the formula (3),
is used to be the fitness of the solution x.

) — TN + TP -
T IN T FP+ TP+ FN

where TP is the true positives, FP is the false positives, TN is
the true negatives and FN is the false negatives classified by
SVM according to x.
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For Vd € PSDS or TDS, d = (di,d>,...,digg). We
must filter d; according to the selected features in solution

x = (x1, x2, ..., x188) according to formula (4).
g=1% =l @)
0 ifxi=0

The basic idea of the Fitness Calculation Algorithm is
to evaluate the value of each solution x in population P
according to the fitness function formula (3). To calculate
the fitness value of a solution x, we first filter the data in
the OPSDS and TDS according to formula (4) and get the
filtered data set OPSDS1 and TDS1. Then the OPSDS1 is
used to search the optimal value of (c, y) for the solution x.
Finally, we classify the data in TDS1 by using the (¢, y) just
learned and the classification accuracy is the fitness value
of solution x. The Fitness Calculation Algorithm is shown
in Algorithm 2.

Algorithm 2 Fitness Calculation Algorithm

Input: solution x, OPSDS, TDS
Output: fitness of solution x
1: For Yd € OPSDS, calculate d’ according to formula 4
and get the result data set OPSDS1
2: Search the optimal value for (c, y) based on the grid
search algorithm provided by libSVM by using the
OPSDSI1
3: Filter the data in TDS in the same way as that of Step 1
and get the result data set TDS1
4: Classify the data in TDS1 based on the SVM by using
the (c, y) in step2 and TDS1
5: Calculate the classification accuracy acc of the classifi-
cation as the fitness of the solution x
6: return acc

The Genetic based Feature compression Algorithm starts
with the initial population of solutions generated by an “‘ini-
tial population construction algorithm” (Algorithm 1). Each
solution represents a candidate feature subset to the Feature
compression problem, which evolves several generations.
During each generation, a fitness function (Algorithm 2)
is applied to each solution in the population to determine
their qualities. In each generation, the population is updated
through crossover and mutation operators. Good solutions are
selected according to the Tournament selection method. The
Genetic based Feature compression Algorithm invokes the
standard one-point crossover and bit mutation to update the
current population. The search is terminated when the num-
ber of generations exceeds a threshold. The Genetic based
Feature compression Algorithm is stated by Algorithm 3.

B. THE GREEDY BASED FEATURE COMPRESSION
ALGORITHM

In section II-B, we introduce that the 188D features can be
classified into 9 classes according to their physicochemical
properties. 20 features belong to the quantities of the AAs.
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Algorithm 3 Genetic Based Feature Compression Algorithm

Input: OPSDS, TDS
Output: The compressed feature set

1: Initialization. Set the size of Population M, the number
of max generations g.x. Set the crossover probability
pe € (0, 1) and the mutation probabilities p,, € (0, 1).
Generate an initial population Py by using Algorithm 1.

2: Parent Selection. Select a temporary population P; from
the current population by using the Tournament selection
method

3: Crossover. Make the one-point crossover operation to
solutions in P;, and update P;.

4: Mutation. Make the uniform mutation operation to solu-
tions in P;, and update P;.

5: Survival Selection. Calculate the fitness value for all
solutions generated in the updated P; by calling the
Algorithm 2 and set Py = P;.

6: Stopping Condition. If # > g,,,4y, then terminate. Other-
wise, set t =t + 1, and go to Step 2

7: return the solution in the current population who has the
maximum fitness value as the best compressed feature set

And 21 features belong to each of the left eight kinds of
physicochemical properties.

In the greedy based feature compression algorithm, we
consider all the features belonging to the same class as a
feature class, so there are altogether 9 feature classes. Once
a feature class is selected by the greedy based algorithm, all
the features belonging to the class will be included in the final
compressed feature set.

The basic idea of the greedy based algorithm is to eval-
uate the relationship between each feature class with the
prediction results of the cytokine data set. The greedy based
algorithm greedily adds the features in the feature classes
to the compressed feature set one by one according to their
influences on the prediction results, until all 188D features
are added.

Three different kinds of methods are used to evaluate the
relationship between an individual feature and the prediction
result, which are the correlation based method, the Info Gain
based method and the Gain Ratio based method. By adding
all the evaluation results of the features belonging to the
same feature class, we can evaluate the relationship between
a feature class with the prediction results of the cytokine
data set. The correlation based evaluation method is given by
formula (1). The Info Gain based evaluation method is given
by formula (5). The Gain Ratio based evaluation method is
given by formula (6). The greedy based feature compression
algorithm is given by Algorithm 4.

The Info Gain is calculated by the following formula:

Gain(S, A) = E(S) — E(S|A) )

where E(S) =
Y i1 PiE(SIA = a)).

— ¢ piloga(pi) and E(S|A) =
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Algorithm 4 The Greedy Based Feature Compression
Algorithm

Algorithm 5 The Brute-Force Based Feature Compression
Algorithm

Input: OPSDS, TDS
Output: The accuracies calculated for every compressed
feature set
1: Evaluate each feature of 188D feature set based on for-
mula (1), (5) or (6) and get the evaluation results set
R=ri,r,...,rs8
2: Calculate the evaluation result R’ of the class features by
adding the features’ evaluation results in set R together
that belong to the same class feature
3: Sort the class evaluation results R from largest to
smallest
4: whilei < 9do
5 Add the features belonging to the r/ class feature set to
the compressed feature set
6:  Filter the data in OPS and TDS and get the data set
OPS1 and TDS1
Search the optimal value for (c, y) by using OPS1
Classify the data in TDS1 based on the SVM by using
the (c, y)
9:  Calculate the classification accuracy acc of the classi-
fication and store acc into an array ACC
10: i=i+1
11: end while
12: return ACC

The Gain Ration is calculated by the following formula:

. . Gain(S,A)
GainRation = - - (6)
Splitinformation(S, A)

where SplitInformation(S,A) = — Y ;_, %loggl‘g—"l.

C. THE BRUTE-FORCE BASED FEATURE COMPRESSION
ALGORITHM

In this algorithm, one bit is used to represent a feature class.
As there are 9 kinds of feature classes, it needs 9 bits alto-
gether. If a kind of feature class is selected, the bit represent-
ing the feature class is set to 1, otherwise, the bit is set to 0.
There are altogether 511 kinds of feature selection strategy
except number zero. The brute-force feature compression
algorithm enumerates all kinds of feature selection strategies
and selects the one with the highest classification accuracy.
According to our experimental results, the strategies with less
than 6 kinds of feature classes get poor classification accu-
racy, so the brute-force based feature compression algorithm
only enumerates the feature selection strategies who have
more than 6 kinds of feature classes. The brute-force based
feature compression algorithm is given by Algorithm 5.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, three experiments are done to test the perfor-
mance of the three feature compression algorithms proposed
in this paper. Finally, we analyze the advantage and disadvan-
tage of different algorithms. Three evaluation standards are

83650

Input: OPSDS, TDS
Output: The accuracies calculated for every compressed
feature set
1: Set the feature strategy number i to 1
2: whilei < 512 do
3:  if the binary value of i has more than six 1-bit value

then
4: Add the features belonging to the class feature set
corresponding to the 1-bit to the compressed feature
set
50 endif

6:  Filter the data in OPS and TDS and get the data set
OPS1 and TDSI1 according to the compressed feature
set

7:  classify the data in TDS1 based on the SVM by using
the (c, y)

8:  Calculate the classification accuracy acc of the classi-
fication and store acc into an array ACC

9 i=i+1

10: end while
11: return ACC

used to compare different kinds of algorithms, which are the
number of features contained in the final compressed feature
set, the classification accuracy and the running time of the
algorithms.

A. PERFORMANCE OF THE GENETIC BASED FEATURE
COMPRESSION ALGORITHM

In this experiment, we test the performance of the genetic
based feature compression algorithm. Firstly, we produce a
population with 25 solutions by Algorithm 1. The crossover
probabilities p. and mutation probabilities p,, are set to
(0.5, 0.05), (0.7, 0.05), (0,9, 0.05), (0.5, 0.1), (0.7, 0.1),
(0.9, 0.1), (0.5, 0.2), (0.7, 0.2) and (0.9,0.2) respectively.
We run the genetic based feature compression algorithm
(Algorithm 3) for 20 generations. The maximum fitness value
in each generation, calculated by Algorithm 2 for each case
of p. and p,,, is shown in Figure 3, which shows that the

e (0.5,0.05) (0.7,0.05)
(0.5,0.1) ==@=(0.7,0.1)

845 | cmmm (0.5,0.2) et (0.7,0.2)

(0.9,0.05)
- 8= (0.9,0.1)
e (0.9,0.2)

Fitness Value
o]
@
n

0
@

0
N
5}

82

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

FIGURE 3. The fitness value calculated for n = 25.
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fitness values generally become bigger and bigger with the
increasing generation. After 20 generations, the fitness value
for each pair of (p., pn) is steady and it is the maximum
fitness value among all generations. We use the solution
with the maximum fitness value as the selected compressed
feature set to test the performance of the genetic based feature
compression algorithm.

Then we produce a population with 50 solutions by
Algorithm 1. The crossover probabilities and the mutation
probabilities are set to the values as same as that in Figure 3.
We run Algorithm 3 for 10 generations. The fitness values,
calculated by Algorithm 2 for each generation, are shown
in Figure 4. It also shows that, after 10 generations, we get
the solution with the maximum fitness value for each pair
of (p¢, pm) among all generations, which can be used as the
selected compressed feature set to test the performance of the
genetic based feature compression algorithm.

85 = (0.5,0.05)  ==fl==(0.7,0.05)

(0.9,0.05) (0.5,0.1)
84.5 —e—(0.7,0.1) —0— (090.1) //.
S =

83.5

Fitness Value

83

82.5

82

Generation

FIGURE 4. The fitness value calculated for n = 50.

After running Algorithm 3 for the case of the initial pop-
ulation with 25 solutions (n = 25) for 20 generations, we
get 9 solutions, which are 9 sets of compressed features for
the 188D features. In the same way, we get another 9 sets of
compressed features in the case of 50 solutions in the initial
population (n = 50). In Figure 5, we compare the number
of features contained in the final compressed feature set for
n = 25 and n = 50. On average, the number of compressed
features for n = 25 is 101, which is less than 104 for n = 50.

In Figure 6, we compare the classification accuracy of the 9
groups of compressed feature sets got for n = 25 and n = 50.

n=25 En=50

No. of Features
B e e
s o o © & B
&§ & 8 8 &8 38

~
S

o

(0.5,0.05) (0.7,0.05) (0.9,0.05) (0.50.1) (0.7,0.1) (0.9,0.1) (0.50.2) (0.7,0.2) (0.9,0.2)
crossover & mutation probability

FIGURE 5. Comparison of the number of compressed features between
n =25 and n = 50.
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FIGURE 6. Comparison of the classification accuracy between n = 25 and
n =50.

It shows that the maximum accuracy is achieved in case of
n = 25, p. = 0.5 and p,, = 0.05, in which case the number
of compressed features is 111.

B. PERFORMANCE OF THE GREEDY BASED FEATURE
COMPRESSION ALGORITHM

In this experiment, we test the performance of the greedy
based feature compression algorithm. The correlation based,
infoGain based and GainRatio based methods are used to
evaluate the rank of each feature class. The experimental
results are shown in Figure 7. The x axis is the number
of feature classes being used to classify the cytokine data.
The y axis is the classification accuracy based on the selected
features in the feature class. Figure 7 shows that when the
number of feature classes selected is few (less than 4), the
accuracy of SVM classifier is poor. With the increasing of
the number of feature classes selected, the accuracy becomes
better and better. Among the three kinds of evaluation meth-
ods, the accuracy of the correlation based method is the most
steady. The best accuracy is achieved by the InfoGain based
method when 8 feature classes are selected, with 167 features.
The classification accuracy of the selected features is also
better than that of the 188D features.

C. PERFORMANCE OF THE BRUTE-FORCE BASED
FEATURE COMPRESSION ALGORITHM

In this experiment, we test the performance of the brute-force
based feature compression algorithm. The x axis is the num-
ber for a kind of feature selection strategy. The y axis is the

=il Correlation-based = k= InfoGain-based GainRation-based
90
88
86
84
82
80
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74
72
70

I — - - o
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No. of class features

FIGURE 7. Comparison of the classification accuracy among different
feature class evaluation methods.
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Accuracy

FIGURE 8. Classification accuracy for different compressed feature sets.

classification accuracy corresponding to the feature selection
strategy. It shows that when the number is 383, the brute-force
based algorithm achieves the maximum accuracy, which is
better than the greedy based algorithm and the genetic based
algorithm. The decimal number 383 corresponds to the binary
number 101111111, which means only the second feature
class is not selected as the classification feature by the SVM.
The performance of feature compression for the brute-force
based algorithm is the same as that of the greedy based
algorithm.

D. DISCUSSION
From the three groups of experiments, we can compare the
three feature compression algorithms proposed in this paper
from three aspects, which are the accuracy, feature compres-
sion and runtime.

Among the three algorithms, the genetic based algorithm
gets the minimum compressed feature set with the same
classification accuracy. But as the search space is very large
for the genetic based algorithm, it is hard to find the global
optimal accuracy, so in our experiment the best accuracy of
genetic based algorithm is not better than the other two kinds
of algorithms. As the fitness value is measured by the clas-
sification accuracy of the SVM, the genetic based algorithm
needs to constantly train the SVM for each solution in the
population. It’s why the time spent by the genetic algorithm
is the longest among the three algorithms.

The brute-force based algorithm achieves the best classi-
fication accuracy among the three kinds of algorithms. The
number of compressed features is the same as that of the
greedy based algorithm. But it consumes much more time
than the greedy based algorithm because it needs to train the
SVM for hundreds of feature selection strategy.

The greedy based algorithm makes a good trade-off among
the accuracy, the number of compressed features and the
runtime. It can get better accuracy than the original 188D
features with fewer features. The runtime of the greedy based
algorithm is much less than that of the other two kinds of
algorithms because it only needs to train the SVM for 9 times.

V. CONCLUSION
In this paper, three kinds of feature compression algorithms
are proposed to compress a 188D feature set, named the

83652

genetic based, the greedy based and the brute-force based fea-
ture compression algorithm. The experimental results show
that the brute-force based algorithm achieves the highest
classification accuracy. The genetic based algorithm selects
the least number of features from the 188D features as the
compressed feature set. The shortcoming of the two algo-
rithms is that they consume much time because they con-
stantly run the SVM classifier during the procedure of feature
selection. The greedy based algorithm makes a good trade-off
among the classification accuracy, the number of compressed
features and the time consumption.
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