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ABSTRACT Online social networks (OSNs) have become important platforms for efficiently connecting
people and promoting information dissemination, which is of great importance to our social life and society.
However, due to privacy concerns, and access limitations, it is difficult to obtain the whole network of
OSNs for analysis, so it is critical to have a representative subgraph. Yet due to the same reasons, we are
in lack of the original network as the ground truth which poses great challenges on evaluating sampling
methods on the performance on unbiasedness, let alone representativeness. Thus uniform sampling (UNI)
[Gjoka et al. 2010] was proposed to obtain an unbiased nodal property distribution as of the original network
to evaluate the degree of bias of other methods. Yet UNI sampling suffers from its low efficiency, and the
representativeness and connectivity of the obtained subgraph, which is formed by the sampled nodes and
connections between them, are rarely studied. We propose an adaptive UNI sampling (adpUNI) method to
overcome previously mentioned disadvantages of UNI by dividing the userID space into several intervals,
whose sampling probability adaptively changes based on its target rate. By adding its neighbors of the
targeted node into the sample set (adpUNI+N), we can further improve the performance on sampling
efficiency and obtain a more connective and representative subgraph. When applied to Sina Weibo and
Twitter, our methods over-perform other classical methods on sampling efficiency, and always have a better
performance on connectivity and representativeness than UNI sampling. And we also find that an unbiased
sample doesn’t guarantee a more representative subgraph.

INDEX TERMS Complex networks, representative sampling, large-scale online social networks, UNI,
adaptive method.

I. INTRODUCTION
Nowadays, complex networks are ubiquitous in our world,
among which, online social networks (OSNs) play a cru-
cial role in society by efficiently connecting people and
promoting social interactions. The spreading of informa-
tion, ideas, innovations and even behaviors all strongly rely
on it [1]–[6]. Social network is the backbone of our soci-
ety and of great importance to our social life and urban
economy [7]–[9]. With the development of information and
network technology, OSNs have grown rapidly over the past
few decades and already have millions or even billions of
users. For example, by the end of 2018, as one of the most
popular social micro-blog platforms in the world, Twitter has
321 million monthly active users [10]; for Facebook, this
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figure is 2.32 billion [11]; Sina Weibo – the most popular
micro-blog platform in China — has a size of 462 million
monthly active users at the same time, and the total num-
ber of all the users is about 1.092 billion worldwide [12].
OSNs are typical instances of complex networks, and after the
emergence of Web 2.0, OSNs have become a free-of-cost and
efficient mass medium where users can present themselves
to and interact with a wider public [7] which goes beyond
a simple communicating channel. It attracted great attention
from users, researchers and policy makers.

In order to better depict and understand the spreading
and interacting dynamics on OSNs, collecting the data of its
topology is the crucial first step, yet OSNs operators rarely
provide complete data sets to researchers due to user privacy
protection and business security; In addition, the giant size
of OSNs also pose great technical challenges when handling
such big data. Therefore, for many applications or researches
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on massive OSNs, obtaining a relatively small but repre-
sentative sample network (we also refer to it as subgraph
thereafter) is of great value.

There have been a variety of sampling algorithms on
complex networks, which can be classified into three cat-
egories: graph traversal sampling, random walk sampling,
and random selection sampling. Yet one critical issue for
all sampling methods is the evaluation of the unbiased-
ness of the sampled nodes, let alone representativeness of
the obtained subgraph (we will clarify these two concepts
very shortly), which requires the original networks as the
ground truth. However, this is usually not feasible for large
scale OSNs due to privacy concerns, data protection, and
access limitations, thus uniform sampling (UNI) [13] has
been proposed as a solution to obtain a ‘‘ground truth’’ of
the distribution of the original network to evaluate the bias
of other methods. UNI sampling is proved to be an equal
probability (i.e., uniform) sampling, which means that for
each node, the sampling probability is the same regard-
less of the topology of the original network. Such unifor-
mity can certainly guarantee the unbiasedness of sampled
nodes on any concerned nodal property (such as degree,
clustering coefficient, etc.). The unbiasedness is measured
by the Kolmogorov-Smirnov (KS) distance (see Methods)
between the nodal property distribution of the original net-
work and those sampled nodes, whose property are the
same as in the original graph (not the value calculated
from the subgraph formed by the connections between
them) [13]. For example, if there were 1000 nodes with
degree 6 in the original network, then UNI sampling with
a 10% eventual desired sample size will averagely give you
100 nodes with degree 6. Therefore the nodal property distri-
bution of the sampled nodes obtained by UNI was used as a
ground truth to evaluate the unbiasedness of other sampling
methods [13], [14].

However, UNI sampling suffers from its low efficiency,
when user IDs of the OSN are sparsely allocated in the userID
space, which refers to the whole range of possible user IDs
(it’s usually either [0, 232 − 1] or [0, 264 − 1] depending
on the design of the system). And the representativeness,
which is measured by the KS distance between the distri-
bution of the subgraph and original network on concerned
nodal properties, of UNI method is rarely studied due to the
lack of the original network for large scale OSNs. In this
work, we find that the obtained subgraph by UNI, as well
as MHRW (Metropolis-Hasting Random Walk), is not as
representative as ours, though they are unbiased sampling
methods [13], [15]. While, for researches and many other
practical applications, we need to give a more representative
sample network to end users.

In this paper, we propose some fast adaptive methods to
overcome the above-mentioned defects of UNI sampling and
to obtain a more representative subgraph, since eventually
what the end users needed is a representative handy subgraph.
We firstly analyze the userID space of SinaWeibo as of 2014,
which contains about 470 million valid user IDs. We find

that the distribution of valid user IDs of Sina Weibo is quite
heterogeneous across its 64-bit userID space, some intervals
are very sparse and some are quite dense. Since the sampling
efficiency of UNI is mainly affected by the target rate (the
total number of targeted nodes divided by the total sampling
attempts, when a sampled ID is valid in the OSN system,
we will add this node to the sample set, and refer it as a
‘‘targeted’’ node), we come up the idea of dividing the userID
space into I equal-length intervals, and adaptively changing
the sampling probability of each interval according to its cur-
rent target rate, so that the algorithm samples more frequently
in denser intervals (i.e., with more valid IDs in the interval)
and less in sparser intervals.We call it adaptiveUNI (adpUNI)
sampling. In order to further improve the sampling efficiency,
we further propose an adpUNI+N method which adds all its
neighbors of the targeted node to the sample set, and all other
settings are the samewith adpUNI.We apply ourmethods and
other classical sampling methods, including UNI, RN (Ran-
dom Node sampling), MHRW, BFS (Breadth-First Search),
and RW (RandomWalk), to Sina Weibo and Twitter, and find
that the sampling efficiency of our methods are much higher
than other methods, and adpUNI+Nhas the best performance
among all methods on sampling efficiency, and always have
a much better representativeness and connectivity over UNI
sampling method. By testing our methods and other classical
ones on the uniformity, unbiasedness and representativeness,
we also find that perfect uniformity can ensure an unbiased
sampling of nodes, but not a more representative sampled
subgraph. For example, our methods are not that uniform, yet
the sampled nodes can still be relatively unbiased, and the
obtained subgraph is more representative than others.

II. RELATED WORKS
Network sampling algorithms can be classified into three cat-
egories: graph traversal sampling, random walks sampling,
and random selection sampling [13], [16].

Graph traversal sampling methods attempt to obtain the
topology of the original network by traversing it, which
mainly include Breadth-First Search (BFS) [17], Depth-First
Search (DFS) [18], Forest Fire (FF) [19] and Snow-Ball
Sampling (SBS) [20]. These methods all start from a ran-
domly selected initial seed node and vary in the visiting order
when sampling the nodes. BFS and DFS are the most basic
network sampling algorithms [21]. When performing BFS,
if the neighbors of the current node are visited based on a
probability p, it becomes FF; BFS can be considered as an
extreme case of FF when p = 1. Similarly, if only exact
n neighbors are chosen randomly when performing BFS,
it is called n-name SBS. According to a classic definition by
Goodman [22], an n-name SBS is similar to BFS, for every
sampled node, not all its neighbors but exactly n neighbors
are chosen randomly, and these n neighbors are scheduled
to be visited, but only if they have not been visited before.
BFS has been widely applied in sampling OSNs [23]–[27],
due to the belief that a full view of a particular region in
the graph can be representative of the entire network [27].

VOLUME 8, 2020 77107



G. Cai et al.: Fast Representative Sampling in Large-Scale OSNs

However, many works have proved that BFS leads to a biased
sampling towards high degree nodes [13], [28]–[31]. In [19],
Kurant et al. quantified the degree bias of BFS sampling
and showed that all commonly used graph traversal tech-
niques (i.e., BFS, DFS, FF, SBS) lead to the same bias
for random graphs. Here the bias was measured by the
Kolmogorov-Smirnov (KS) distance between the nodal prop-
erty (such as degree) distribution of the original network and
sampled nodes, whose property are the same as in the original
network (not the value calculated from the subgraph formed
by the sampled nodes and connections between them). They
also showed that when the original graph is random, it is pos-
sible to precisely correct this bias. Additionally, the bias can
be reasonably corrected well even in more realistic graphs,
but for a very small sample size. Nevertheless, the bias of
BFS will be relatively small or even can be ignored without
any correction when the sampled graph covers a very large
part of the original one. However, it is difficult to interpret
the results in all other cases [19].

In contrast to graph traversal sampling methods which can
traverse the whole network, random walk sampling methods
usually traverse a part of the original graph. Random walk
sampling also start from a randomly selected initial seed
node, then instead of traversing all or most of its neigh-
bors, the algorithm chooses the next sampled node from its
neighbors according to a certain criterion, and during the
sampling, nodes can be revisited for several times. Random
walk samplingmethods have been employed for sampling the
WWW [32], peer-to-peer networks [15], [33], [34], some
large scale OSNs [16] including Twitter [35], Friendster [36],
and Facebook [13]. The most basic random walk sam-
pling (RW) randomly chooses one neighbor of the targeted
node at each time step. The bias of RW can be analyzed
by Markov Chains and corrected by re-weighting the esti-
mator, and such method is called Re-Weighted Random
Walk (RWRW), which has been demonstrated in the context
of sampling peer-to-peer networks [33]. Alternatively, the
RWcan bemodified using theMetropolis filter to achieve any
desired distribution [37], [38], and if the desired distribution
is uniform, the algorithm is called Metropolis-Hasting Ran-
dom Walk (MHRW). It has been applied by Stutzbach et al.
to the peer-to-peer network to obtain a nearly uniform rep-
resentative sample [15]. In [13], the authors prove that
RWRW and MHRW both can achieve unbiased sampling,
and RWRW is faster than MHRW but also more complicated
in the sampling process. While RWRW and MHRW ensure
unbiased graph sampling, they suffer from their slow diffu-
sion over the space which can in turn lead to poor estimation
accuracy. In particular, their fully random nature in selecting
the next node, when making a transition, often cause them to
go back to the previous node from where they just come. This
produces many duplicate samples for a short to moderate time
span, thereby reducing estimation accuracy [39].

The third type is random selection sampling which can be
further divided into sampling by random node (RN) selection
and by random edge (RE) selection. RN and RE sampling

methods differ in the way how the nodes and edges are
selected, respectively. The most basic RN sampling selects a
set of nodes uniformly at random from the original graph. Yet,
there’s evidence showing that RN cannot retain the power-law
degree distribution of original networks [43]. There are also
some improved methods based on basic RN sampling. Thus
probability of selecting a node can be proportional to its
degree (called RandomDegree Node, RDN) or its Page-Rank
value (RandomPage-RankNode, RPN) [44]. The idea behind
RDN and RPN is to increase the selection probability of
important nodes in the graph, either evaluated by degree or
Page-Rank centrality [45]. Similar to RN sampling, RE sam-
pling selects a set of edges uniformly at random from the
whole edge set of the original graph, and both nodes con-
nected to the selected edge will also be added to the sample
set. The sample graphs obtained by RE tend to be biased
since the high-degree nodes have more edges and thus have a
higher probability to get chosen. Random Node Edge (RNE)
sampling solves this problem by selecting a node at random
and then selects some edges uniformly among the edges con-
nected to the selected node [16]. Leskovec and Faloutsos [16]
et al. applied a variety of methods (including RN, RPN, RDN,
RE, RNE, RW, FF, etc.) to several large scale networks and
showed that in terms of the degree distribution, RN and RPN
are closer to the original network, RDN is biased towards
nodes with high degree, and RE is farther away than RN
and RPN from the original network. Lee et al. proved that
RN sampling performs better than RE sampling regarding the
clustering coefficient of the network [17]. However, all these
random selection sampling methods require global informa-
tion of the network, which hardly can be the case for large
scale OSNs.

Thus UNI sampling has been proposed as a solution to
obtain a ‘‘ground truth’’ of the distribution of nodal prop-
erties of large scale OSNs, when the complete topology is
not accessible. UNI sampling has three steps: firstly, set the
sampling range as [0, userIDmax] according to the coding
rules of sampling objects (the userIDmax is usually either
232 − 1 or 264 − 1 depending on the design of the system);
Secondly, an intended sample ID is randomly selected from
the userID space with equal probability each time; Thirdly,
make query in the OSN system, and if the ID exists in the
actual network, it will be added to the sample set; otherwise,
it will be discarded. This method is a textbook technique
known as rejection sampling [47], which in general allows
to sample from any distribution of interest. In particular,
Gjoka et al. showed that it guarantees to select uniformly
random user IDs from the OSN regardless of the actual
distribution in the userID space (i.e., the sampling probability
of any node will be the samewhatever form of the distribution
is) [13]. Therefore, the sampled nodes obtained by UNI will
certainly be unbiased on any nodal properties against the
original network, and thus the obtained distribution on nodal
properties of sampled nodes by UNI was used as a ‘‘ground
truth’’ for evaluating the unbiasedness of other sampling
methods [13], [14]. In addition, the representativeness of
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FIGURE 1. The distribution of valid user IDs of Sina Weibo in (a) the whole userID space with logarithmic bins, (b) the range of [0, 234]
and (c) [0, 5× 109] with linear bins on the x-axis. The results indicate that the distribution of valid user IDs is quite heterogeneous.
We only plot the intervals with non-zero values in (b) and (c); each dot represents the frequency of valid user ID within the interval.

the sampled subgraph was rarely studied, and in this paper,
we find that its subgraph is not as representative as ours.
Besides, UNI sampling suffers from its low efficiency when
the userID space is sparse. Now some OSNs, like Facebook
and Sina Weibo, have upgraded their userID space from
32-bit to 64-bit, which is quite sparse on average and will
lead to the inefficiency of UNI sampling. And as the topo-
logical properties of the original network was not considered,
UNI sampling can’t guarantee the connectivity of the sampled
network. These all affect its applicability in practice.

III. METHODS
A. ANALYSIS OF THE userID SPACE OF SINA WEIBO
Sina Weibo was first launched by Sina Corporation
in 2009 and filed an IPO as a separate entity in 2014, and
now Sina Weibo is one of the biggest media platforms in
China. We crawled the userID space dataset of Sina Weibo
network as of 2014, which has about 473 million valid
user IDs. Its userID space is 64-bit (they made the upgrade of
the user system from 32-bit to 64-bit around 2011), so all user
IDs are integers in the range of [0, 264 − 1]. We then analyze
the distribution of valid user IDs in the userID space to have
a comprehensive understanding (see Fig. 1(a) for the entire
distribution in log scale). We find that most of them are in the
interval of [229, 234] which accounts for around 99% of all
valid user IDs; We then further divide [0, 234] into isometric
intervals with a length of 100,000 and show the number of
valid user ID in each intervals in Fig. 1(b). We can see that it’s
very dense in [0, 5×109], while quite sparse and even empty
in some other intervals. We further divide [0, 5× 109] evenly
and show the distribution of valid IDs in Fig. 1(c), in which
the distribution is still quite uneven.

B. adpUNI AND adpUNI+N SAMPLING METHODS
Based on the heterogeneity of Sina Weibo user ID distribu-
tion, we first propose an adaptive UNI (adpUNI) sampling
method to improve the efficiency of UNI sampling. First of
all, we divide the whole userID space into I equal-length
intervals, among which valid IDs may be sparsely or densely
allocated. The interval length l = L/I , where L is the length
of entire user ID space (for Sina Weibo, L = 264). The whole

sampling process is without replacement – at each time step t ,
a new random ID will be generated according to certain rules
(see Algorithm 1), and if it falls in the interval i, it is called
being sampled in the interval i, then the sampling time of
the interval Si(t) will increase by 1. Here we can define the
sampling rate of the interval SRi(t) at time t as

SRi(t) =
Si(t)
l
. (1)

If this randomly generated ID is valid in the userID space,
it is called being targeted, and this node will be added to the
sample set, and the interval target time Ti(t), which tells the
number of sampled valid user IDs in the interval i, will also
be added by 1. The interval target rate TRi(t) at time t will be

TRi(t) =
Ti(t)
Si(t)

, (2)

which can tell us at time t , the fraction of targeted nodes
among all the attempts in a certain interval i. Here we can
see that in general, a higher density of valid user IDs in the
interval will correspond to a higher target rate. This is why
we need to divide the entire user ID space into I intervals.
By dividing intervals, there would be intervals with dense or
sparse valid IDs. And then in the sampling process, we design
to make the algorithmmultisample in the dense intervals, that
is, the interval with high target rate, and vice versa.

Yet during the sampling process, there are two problems
need to be tackled:

(1) Local optima traps. Intuitively, the higher the interval
target rate is, the higher the probability of sampling in the
corresponding interval will be assigned. However, if the sam-
pling probability of the interval blindly sticks to its target
rate, the algorithm will inevitably fall into some local optima
traps – an interval with a high target rate will be sampledmore
frequently, even if the number of remaining valid user IDs in
that interval has become less and less, which may affect the
sampling efficiency.

(2) Cold start problem. In contrast to the local optima prob-
lem, if the interval sampling probability simply self-adapted
according to the interval target rate, the sampling probability
of a ‘‘cold’’ interval with a target rate of 0 would also be 0,
which means that such an interval wouldn’t be able to get
‘‘started’’, causing the valid IDs in that interval to be ignored.
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In order to make the sampling probability of each inter-
val change adaptivly with the target rate and overcome
the local optima problem, we define the interval sampling
probability Pi(t) as

Pi(t) = TRi(t − 1)× [1− SRi(t − 1)], (3)

which is a trade-off between target rate and the fraction of
remaining sample-able range of the interval i, and thus can
be adaptively changed along the sampling process. On one
hand,Pi(t) is proportional to the interval target rate TRi(t−1),
the higher the TRi(t − 1), the greater the Pi(t) will be; on
the other hand, the interval sampling rate 1 − SRi(t − 1) is
an adjustment term which will gradually decrease. Thus the
algorithm can avoid continuously sampling in intervals with
a higher target rate.

As for the cold start problem, we set an initial minimum
sampling probability α = 1/I to all intervals. During the
sampling process, if the sampling probability of a certain
interval Pi(t) calculated according to Eq. (3) is too small
(or even 0), it will be set as α, thus any cold interval can
still get a sampling opportunity. And after each iteration,
we will update the sampling probability of the targeted
interval.

The detailed implementation steps of the adpUNI sampling
algorithm are described in Algorithm 1.

In the sampling process of adpUNI, according to Eq. (3),
the sampling probability of each interval is proportional to the
corresponding target rate; therefore, the target rate in intervals
with more valid user IDs is higher as well as the correspond-
ing sampling probability, making the number of sampling
attempts in dense intervals increase, however, decrease in
sparse intervals, and finally the goal of improving the overall
sampling efficiency is achieved.

In order to further improve the sampling efficiency and
connectivity of the sampled network, when a valid node is tar-
geted, we also add its neighbors into the sample set, and other
settings are all the same. We call it adpUNI+N sampling.
We performed some analysis on the adding neighbor process
for both UNI and our adpUNI. In Fig. 2, we plot the absolute
difference between the ID of the targeted node and the IDs of
its neighbors of Sina weibo. We can see that the ID difference
is not that much (most of them are within the range of 5×108

for both of UNI+N and adpUNI+N ) and their peeks are on
the left, which illustrate that most IDs and their neighbors
are within the same or adjacent intervals. Since the dense
intervals are usually continuous(see Fig. 7(b)), the sampling
probability of corresponding intervals will increase by adding
the neighbors of the target node, which can help the algo-
rithm find dense intervals quickly and further improve the
sampling efficiency. The code of our algorithms is available
at https://github.com/UrbanNet-Lab/FRsamplingOSNs.

IV. EVALUATION METRIC
A. NETWORK STATISTICS
We use three network topology measures to investigate the
representativeness of sampled networks.

FIGURE 2. The distribution of absolute ID difference of targeted node and
its neighbors of adpUNI+N and UNI+N in network of Sina weibo. Most of
them are within the range of 5× 108 for both of UNI+N and adpUNI+N,
which is not that much, indicating that there is some correlation between
the IDs of users with connections in the OSN.

1) DEGREE DISTRIBUTION
The degree of a node i in a network is the number of con-
nections or edges the node has to other nodes, which can be
defined as ki =

∑
j Aij where A is the adjacency matrix. The

degree distribution of a network can be formulated as

p(k) =
|vi ∈ V |ki = k|

n
,

where vi denotes the node i, V is the set of all nodes in the
network, |V | = n (n is the total number of nodes in the
network).

2) CLUSTERING COEFFICIENT DISTRIBUTION
The clustering coefficient of node i is a measure of the extent
to which nodes in a graph tend to cluster together, which is
the ratio between the number of edges among its neighbors
and the total number of all possible edges between them.

CCi =
#existing links between i′s neighbors(ki

2

) .

The clustering coefficient distribution of a network G can be
formulated as

p(c) =
|vi ∈ V |ki > 1,CCi = c|
|vi ∈ V |ki > 1|

,

where |vi ∈ V |ki > 1| is the number of nodes with degree
greater than 1.

3) CORENESS DISTRIBUTION
k-core (also called k-shell) decomposition starts by iteratively
removing all nodes with minimum degree kmin until there is
no node left with k ≤ kmin in the network. The removed
nodes are assigned with kc = 1 and are considered in the
first layer/shell. In a similar way, nodes with current mini-
mum degree kmin2 are iteratively removed and assigned with
kc = 2. This decomposition process continues removing
higher shells until ending up with a complete graph with
same degree (i.e., the central core, which will be removed
at last) [48]. k-core method decomposes the network into
ordered shells from the core to peripheries. Researchers found
that core nodes of the network are more influential than the
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Algorithm 1: adpUNI(L, I , DSS)
Input: L (the range of the userID space), I (the number of intervals), DSS (desired sample size)
Output: A sample network (the set of targeted nodes and edges)

1 α = 1/I ; l = L/I ; intervalList = []
2 Uniformly divide the entire user ID space L into I intervals with equal length l
3 for i in range(I) do
4 interval = Interval() #create an instance of Interval class
5 interval.S = 0 #sampling time of the interval
6 interval.T = 0 #target time
7 interval.P = α #sampling probability
8 interval.lowerLimit, interval.upperLimit = i ∗ L/I , (i+ 1) ∗ L/I
9 intervalList .append(interval)
10 end
11 sampledID = set() #save all tested IDs to ensure it’s a sampling without replacement
12 sampledNodes = set(); sampledEdges = set()
13 while len(sampledNodes)<=DSS do
14 sort all Interval instances in intervalList according to its sampling probability Pi
15 TI = None #Targeted Interval
16 for interval in intervalList do
17 RP = random.random()
18 if interval.P > RP then
19 TI = interval
20 break
21 end
22 end
23 if TI then
24 id = random.randint(TI .lowerLimit , TI .upperLimit)
25 while id in sampledID do
26 id = random.randint(TI .lowerLimit , TI .upperLimit)
27 end
28 else
29 id = random.randint(0, L)
30 while id in sampledID do
31 id = random.randint(0, L)
32 end
33 TI = intervalList .index(floor(id/l)) #based on the index of the interval to get the targeted interval
34 end
35 sampledID.add(id)
36 TI .S + = 1
37 if id exists in the system then
38 TI .T + = 1
39 sampledNodes.update(id)
40 end
41 TI .P = TI .T/TI .S ∗ (1− TI .S/l) if TI .T/TI .S ∗ (1− TI .S/l) > alpha
42 end
43 for node i in sampledNodes do
44 for node j in sampledNodes do
45 make query to see if there’s a connection
46 if i! = j and Eij then
47 sampledEdges.update(Eij)
48 end
49 end
50 end
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periphery ones [48]. The k-core is a metric of the connectivity
and community structure of a graph [49], [50]. The core sizes
also demonstrate the localized density of subgraphs in the
graph [51]. The coreness distribution of the network G can
be formulated as

p(kc) = (|vi ∈ V |Core(vi) = kc|)/n,

where Core(vi) is the coreness of node vi.

B. REPRESENTATIVENESS MEASUREMENT
As the goal of our methods is to sample a representative
subgraph Gs from the original graph G such that the distance
between the properties of G and Gs is small enough, so in
this article, we employ Kolmogorov-Smirnov (KS) statistic
for the distance measurement, which is widely used as a
measure of the agreement between two distribution [52]. The
KS statistic is calculated as the maximum vertical distance
between two distributions,

KS = maxx |F(x)− F ′(x)|,

where F and F ′ are two cumulative distribution functions
(CDFs), and 0 ≤ KS ≤ 1. In this paper, we utilize the
KS statistic for computing the distance between the distribu-
tion of the original graph and the approximation distribution
obtained from the sampled subgraph for the degree, clustering
coefficient, and k-core distributions. The value computed by
KS D-statistics is between 0 and 1. A smaller KS value
indicates that the property of the sample graph is more similar
to that of the original graph.

V. RESULTS
In order to verify the effectiveness of ourmethods, we employ
two real-world datasets in this paper: a crawled sample net-
work of Sina Weibo as of 2014, which includes around
3.58 million users and 14.84 million links; the same sample
network of Twitter as the one used in [53], which includes
41.6 million users and 1.2 billion links. For both cases,
the range of userID space is [0, 232-1]. And we regard them
as the original network for future evaluation. And these two
examples are also typical: one is quite sparse and heteroge-
neous over the whole userID space (Sina Weibo), the other
is relatively denser and more uniform (Twitter) (see Fig. 7).
Although both of them are directed networks, [54], [55] have
shown that we can treat them as an undirected graphs when
sampling, i.e., once there is a connection with any direction
between two nodes, then it will be regarded as a bidirectional
edge, which is the case when we deal with both Sina Weibo
and Twitter.

In our experiment, we stored the data of nodes and edges
of the original network in the Mysql database in advance.
So UNI and our methods access the database to validate the
existence of a random ID. In practice, we can directly call API
interface provided by most social network platform, such as
SinaWeibo and Twitter, to validate if a certain user ID is valid
in the system or not [13].

FIGURE 3. The number of targeted nodes as a function of logical sampling
times of UNI, MHRW and adpUNI, adpUNI+N sampling with a different
number of intervals for Twitter (a, b) and Sina Weibo (c, d). Each solid line
is an average of 3 realizations (For MHRW, three crawlers start from three
randomly selected nodes, its sampling size is the average of the three
crawlers). We can see that, as the red dotted vertical lines indicate,
adpUNI and adpUNI+N have higher sampling size under the same logical
sampling time steps than UNI and MHRW on both Twitter and Sina Weibo.

A. ROBUSTNESS TESTS
Since the number of intervals I is a parameter of our meth-
ods, in this section, we study the impacts of I on sampling
efficiency and performance on representativeness of sampled
network for adpUNI and adpUNI+N.

1) SAMPLING EFFICIENCY
In Fig. 3, as the sample times increase, we show the change
of sampling size (i.e., the number of targeted nodes) of our
methods (adpUNI, adpUNI+N) and other rejection sam-
pling methods (UNI, MHRW) for Sina Weibo (a, b) and
Twitter (c, d). We set four different interval granularity
(I = 104, 5 × 104, 105, 1.5 × 105, respectively). We can
see that on both Twitter and Weibo, as indicated by the red
dotted vertical lines, adpUNI and adpUNI+N have a much
larger sampling size than that of MHRW and UNI with the
same logical sampling times, showing that our methods are
the most efficient ones. We also report the sampling times
needed for each methods to reach a desired sample size
(see Table 1), and we can see that adpUNI+N is the fastest
one.

From Fig. 3(a), the sampling size of adpUNI slightly
decreases with the increase of I (the number of intervals),
and when the userID space is divided into 10,000 intervals,
its sampling size is the highest for a fixed sampling time steps
(see Fig. 3(a)), yet the differences between them on Twitter
are almost negligible (see Fig. 3(c)). The slight difference
between adpUNI on Weibo (see Fig. 3(a)) and Twitter (see
Fig. 3(c)) can be explained by the user ID distributions of the
original networks (see Fig. 8). As Twitter is more uniform,
so the density heterogeneity of different intervals is not that
strong, and thus it’s less sensitive to the number of intervals I .
And adpUNI+N is more robust to I on sampling efficiency.
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TABLE 1. Total sampling times needed (in a unit of 108) for adpUNI, adpUNI+N, UNI and MHRW with a sample size of 5× 105 for Sina Weibo and 105 for
Twitter. The digits below adpUNI and adpUNI+N are the number of intervals I . The impacts of I on the logical sampling time of adpUNI+N is almost
negligible. adpUNI+N is the fastest one among all these methods.

It is worth noting that in Fig. 3 and Table 1, the
‘‘sample time’’ refers to the logical sampling time step, not
the real time consumed by implementing each algorithm.
In this paper, we perform all our experiments on a DELL
server with 48 CPU cores with 2.1GHz and memory size
of 256GB. In practical applications, themost time-consuming
operation in each logical sampling time step is to access the
database to obtain neighbor nodes. MHRW needs to access
the database during each sampling step, while UNI, adpUNI,
and adpUNI+N do such operation only when they target a
node, soMHRW takes much longer time per logical sampling
steps. Although MHRW has higher sampling size than UNI
with the same sampling logical time steps in Fig. 3, it is
actually the slowest one in practice. Even for just sampling
0.1 million nodes on Twitter, it took us more than two weeks.

We didn’t make comparisons with other classical sampling
methods (such as BFS, RN and RW) on samping efficiency is
due to the fact that these methods are not rejection sampling,
and thus there is no comparability between them. Overall,
adpUNI and adpUNI+N have a much higher sampling effi-
ciency than UNI and MHRW, thus when the desired sam-
pling size is larger, our methods have more comparative
advantage.

2) PERFORMANCE ANALYSIS
We then study the impacts of interval number I on the
sampling performance on representativeness in terms of
KS distance (see Methods) on degree, clustering coefficient
and k-core distributions between the original network and
sampled networks.

For different values of I , we still report the average situa-
tion over 3 realizations with varying sampling sizes ranging
from 105 to 5×105 for SinaWeibo (see Fig. 4), and 106 to 5×
106 for Twitter (see Fig. 5). We find that, generally speaking,
the impacts of I are much less significant than sample size.
adpUNI has the smallest KS distance when I = 1.5 × 105

and the largest KS distance when I = 104 on almost all three
topology measures for Sina Weibo (see Fig. 4(a-c)), while
it is almost the opposite for Twitter (see Fig. 5(a-c)). The
reason behind it requires further investigations in the future.
Yet for most cases, such differences are not that significant.
As for adpUNI+N, the impact of interval numbers I is negli-
gible (see Fig. 4(d-f) and Fig. 5(d-f)). And adpUNI+N has a
much smaller KS distance on all three measures than adpUNI

FIGURE 4. The impact of interval numbers I on sampling performance on
representativeness in terms of KS distance of (a-c) adpUNI and (d-f)
adpUNI+N on degree, clustering coefficient, and coreness distributions,
respectively, for Sina Weibo. By comparing the results of adpUNI and
adpUNI+N, we can see that adpUNI+N is quite robust to the free
parameter I (i.e., the number of intervals), and it has a much smaller KS
distance compared to adpUNI on all three indicators. When sampling size
increases, the performance of both methods become better, and
adpUNI+N has much greater improvement than adpUNI, whose KS
distance decrease about twice as of adpUNI on Weibo.

FIGURE 5. The impact of interval numbers I on sampling performance on
representativeness in terms of KS distance of (a-c) adpUNI and (d-f)
adpUNI+N on degree, clustering coefficient, and coreness distributions,
respectively, for Twitter.

on both Sina Weibo (see Fig. 4) and Twitter (see Fig. 5).
And we can clearly see that with the increase of sampling
size, the performance of both methods are all becoming
better.
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B. THE RELATIONSHIP OF UNIFORMITY, UNBIASEDNESS
AND REPRESENTATIVENESS
UNI sampling has been theoretically proven to be an uniform
sampling (i.e., the sampling probability for every node is the
same), and thus the distribution of sampled nodes on any
nodal properties (such as degree, clustering coefficient, etc.)
will be unbiased against the original network. The obtained
distribution on nodal properties of sampled nodes by UNI
was used as a ground truth for evaluating the unbiasedness
of other sampling methods for large scale OSNs. And many
other algorithms have been proved to be unbiased as well,
such as MHRW and RWRW [15]. Yet the question worth
studying is that whether such uniformity or unbiasedness can
guarantee higher representativeness or not. Therefore in this
section, we will explore the relationship of uniformity, unbi-
asedness and representativeness for sampling methods. Here
we explain the meaning of the three conceptee in the previous
sentence again. The ‘‘uniformity’’ means the sampling prob-
ability for every node is the same; The ‘‘unbiasedness’’ is the
KS distance between the set of sampled nodes (the properties
of nodes are directly obtained from the original network)
against the original network; and the ‘‘representativeness’’ is
regarding the KS distance between the sampled subgraph (the
properties of nodes are calculated from the subgraph) against
the original network. Next, we first compare the uniformity
and unbiasedness of our methods with other classical sam-
pling algorithms.

In Fig. 7, we plot the ratios of the number of targeted
IDs to the number of valid user IDs in each interval in the
original network of Twitter and Weibo. If the result is a
perfect horizontal line, then it means that the uniformity is
achieved by the method. From Fig. 7, we can clearly observe
that UNI method has almost the same sampling ratio in each
interval on both Twitter andWeibo, so it is indeed an uniform
sampling;While adpUNI has higher sampling ratios in denser
intervals, and lower ratios in sparser ones, which, on the one
hand, validates our adaptive design idea, on the other hand,
shows adpUNI is not an uniform sampling. And uniformity
is a stricter requirement than unbiasedness, as MHRW is
proved to be unbiased [15], it still can be not that uniform
(see Fig. 7(b)).

The unbiasedness is measured by the KS distance between
the distribution of the original network and the sampled nodes
(i.e., we directly use the nodal properties of sampled nodes
as in the original network, not the properties calculated from
the subgraph, which is consisted of the sampled nodes and
connections between them). We test our methods on unbi-
asedness against other classical algorithms (see Fig. 6 and
Table 2), and we can see that UNI is of the lowest bias as pre-
dicted, but our methods also have a quite good performance,
and adpUNI is always more unbiased than MHRW on both
Twitter and Weibo. And this further indicate that although
perfect uniformity can guarantee unbiasedness, the degree of
uniformity is not directly related to the unbiasedness. Even a
method is not that uniform, it still can be unbiased (see the
comparison between adpUNI and MHRW on Weibo, though

FIGURE 6. The comparisons between the original network and sampled
nodes on cumulative distribution of degree with a sample size of 5× 104

for Sina Weibo and 106 for Twitter. We can see that UNI is always the
closest one to the original network, and adpUNI is also quite comparable.
And it’s worth noting that some methods are not that stable on
unbiasedness on different networks. Note that P(X >= x) in (a, b) refers
to Complementary Cumulative Distribution Function (CCDF).

MHRW is closer to uniformity than adpUNI, yet it’s more
biased). And from the Twitter case, when the sample size
is 106, most methods have similar uniformity (see Fig. 7),
yet their unbiasedness varies much larger (see Table 2).

Then we come to the more important question: Can uni-
formity or unbiasedness guarantee higher representative-
ness? The representativeness is measured by the KS distance
between the distribution of the original network and the sam-
pled network (i.e., for sampled nodes, we calculate their nodal
properties from the obtained subgraph). We still compare our
methods with other classical sampling methods, including
UNI,MHRW,BFS, RW, RN. In Fig. 8, we plot the cumulative
distributions of degree, clustering coefficient and k-core of
the original network and sampled networks, and report their
KS distances in Table 3 with a sample size of 5× 105, which
is around 15% of the original Weibo network. We can see
that adpUNI+N are among the closest ones to the original
network on all three measures. The results on Twitter (see
Fig. 9 and Table 4) also show that our methods over-perform
UNI, though our methods cannot keep uniformity and have
relatively larger bias compared with UNI. This indicate that
representativeness is not monotonously related to uniformity
or unbiasedness.

C. REPRESENTATIVENESS ANALYSIS
In this section, we compare and analyze the representa-
tiveness of UNI, adpUNI, adpUNI+N and other classical
network sampling methods, including RN, BFS, RW and
MHRW.We plot the cumulative distributions of degree, clus-
tering coefficient and k-core of the original network and sam-
pled networks of Sina Weibo in Fig. 8 and Twitter in Fig. 9.
And also we calsulate the corresponding KS distance of
Weibo in Table 3 and Twitter in Table 4.
For degree distribution, though the sample network

obtained by adpUNI+N has smaller fraction of nodes with
degree range from roughly 10 to 100 (corresponds to a slower
decrease in CCDF, see Fig. 8(a)), and relatively larger frac-
tion of high degree ones (i.e., a steeper decrease), and it is
still much closer to the original network than other classical
methods measured by KS distance (see Table 3). RN, UNI,
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TABLE 2. Unbiasedness analysis of different methods. In this table, we report the KS distance between the degree distribution of the sampled nodes and
the original network with a sample size of 5× 104 for Sina Weibo and 106 for Twitter. We also tested our methods on Twitter with a sample size of
5× 106, and find the KS distance of adpUNI and adpUNI+N drops to 0.0062 and 0.3851, respectively, which shows that with an increasing sample size,
our methods also become unbiased. It’s worth noting that some methods are not that stable on unbiasedness on different networks. Top three methods
with comparable performance are marked in bold.

FIGURE 7. The ratio of the number of targeted IDs to the number of valid user IDs in each interval with linear bins for
(a) Twitter with a sample size of 106 (around 2.5% of the original network) for UNI and MHRW due their low sampling
efficiency, and 106 (orange line, 2.5%), 5× 106 (green line, 12.5%) for adpUNI, respectively; (b) Sina Weibo with a
sample size of 5× 105 (around 15%) for both methods. The results indicate that the sampling ratios of UNI are quite
uniform over all intervals regardless of original user ID density, while adpUNI has a higher sampling ratio in denser
intervals and vice versa. The left y-axis corresponds to the sample ratio of different methods, and the right y-axis
depicts the ratio of the number of valid user ID in a certain interval to the length of an interval l in the original
network. We can see that valid user IDs of Twitter is relatively dense in most intervals. In this figure, we only plot the
intervals with non-zero values, and lines are just a guidance to eyes. For adpUNI and adpUNI+N, with each setting of
interval number I = 104, 5× 104, 105, 1.5× 105, we perform three independent experiments, and get the average of all
realizations as shown in the figure.

and adpUNI they have quite similar performance on both
degree and k-core distributions. As we know that clustering
coefficient distribution captures a local structure, while core-
ness distribution captures a more global structure. We can
see that the maximum coreness of the sampled networks by
UNI, adpUNI, and RN are much smaller than the original
one, which indicate that they fail on preserving such global
structure. The sampled networks by BFS, RW, and MHRW
clearly have smaller fraction of low degree or even leaf
nodes and connections between different shells which leads
to larger deviations than adpUNI+N on coreness distribution
and clustering coefficients distribution at the smaller value
region. Among all methods, adpUNI+N is the closest one to
the original network. In Fig. 9, we also plot the cumulative
distributions of degree, clustering coefficient and k-core of
the original network and sampled networks with a sample
size of 106 for Twitter (around 2.5% of the original network).
Due to the fact that MHRW takes too long to even just sample
one million nodes on Twitter, MHRW is not compared here.
We can see that adpUNI+N is the closest one on clustering
coefficient distribution (see Fig. 9(c) and Table 4), and always
significantly over-perform UNI sampling (usually the sample
network obtained by adpUNI+N is at least twice closer to the
original network, see Table 4). By comparing the results on
Weibo and Twitter, we can see that when the size of original

network is larger and denser in user ID space(the case of
Twitter), RN have a better performance on degree and k-core,
yet due to its small sample size (2.5%) on Twitter, the local
feature such as clustering Coefficients distribution is not
preserved that well. And it’s worth noting that RN need the
global information of the network which is usually infeasible
in large scale OSNs, while our methods don’t require such
global information but only the range of the userID space.
Even on Twitter, our methods still have similar performance
with the best one, whose KS distance is quite comparable.

D. CONNECTIVITY ANALYSIS
adpUNI + N is proposed on the one hand to further improve
the sampling efficiency and on the other hand to improve the
connectivity of the sampled network. Thus in this section,
we aim to compare the connectivity of sampled network of
UNI, adpUNI and adpUNI+N.

The selection process of adpUNI+N didn’t explicitly con-
sider the connectivity, but the process of adpUNI+N is in
line with explosive percolation [56], [57], which has a critical
phase transition point(ie.percolation threshold), and when
the fraction of added nodes or links is beyond the critical
value, there will be a giant component emerging. It has been
proved that on networks having power law degree distribu-
tions (scale-free networks) with exponent λ smaller than 3,

VOLUME 8, 2020 77115



G. Cai et al.: Fast Representative Sampling in Large-Scale OSNs

TABLE 3. KS distance for all methods on degree, clustering coefficient (cc) and coreness distribution with the same sampling size 5× 105 for Sina Weibo.

TABLE 4. KS distance for all methods on degree, clustering coefficient (cc) and coreness distribution with the same sampling size 1× 106 for Twitter.

TABLE 5. Comparision of the fraction of edges(P) in the sampled network with the percolation threshold(Pc) for UNI, adpUNI and adpUNI+N. λ is the
exponent of the degree distribution of the original network for Sina weibo and Twitter. S is the fraction of nodes in the giant commponent of the sampled
network of each sampling methods for Weibo and Twitter. It can be seen the edge fraction of adpUNI+N is quite greater than the corresponding
percolation threshold for both Weibo and Twitter, while UNI and adpUNI are the opposite. And accorrding to the fraction of nodes(S) in the giant
component of the sampled network of each method, it is obvious that the connectivity of adpUNI+N is the best.

the fraction of nodes or links to be removed from the graph
for it to have no giant component tends to 1 in the limit of
infinite network size. From the perspective of percolation and
focusing on links, this also means: a scale-free network with
λ<3 is kept connected by a vanishing fraction of randomly
chosen links; i.e., the percolation threshold is zero. For λ>3,
instead, a finite threshold appears [57]. We show the fitting
of the complementary cumulative distribution(ccdf) of the

original network for Sina weibo and Twitter in Fig. 10. In the
Table 5, we report the exponent λ(λ) of the degree distri-
bution of the original network for Sina weibo and Twitter
and the corresponding percolation threshold(Pc) according to
the result of [57]. It can be seen that the exponent of them
are all smaller than 3 and the relative percolation thresh-
olds are also very small. Then we calculate the ratio of
edges in the sampled network of each sampling method to
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FIGURE 8. (a) Degree, (b) k-core and (c) clustering coefficient (cc)
distribution of the original network, and sampled networks obtained by
our methods (adpUNI, adpUNI+N) and other classical methods (UNI, RN,
RW, MHRW, BFS) with the same sample size 5× 105 for Sina Weibo.
AdpUNI+N is the closest ones to the original network on all three
topology measures. Note that P(K >= k) in (a, b) refers to
Complementary Cumulative Distribution Function (CCDF),
and P(K <= k) in (c) refers to CDF.

FIGURE 9. (a) Degree, (b) k-core and (c) clustering coefficient (cc)
distribution of the original network, and sampled networks obtained by
our methods (adpUNI, adpUNI+N) and other classical methods (UNI, RN,
RW, BFS) with the same sample size 1× 106 for Twitter. adpUNI+N is still
quite comparable to the closest ones to the original network on all three
topology measures. Note that P(K >= k) in (a, b) refers to
Complementary Cumulative Distribution Function (CCDF),
and P(K <= k) in (c) refers to CDF.

FIGURE 10. Fitting of the complementary cumulative distribution(ccdf) of
the original network for Sina weibo and Twitter. The exponents λ are
2.18 and 2.33 for Sina weibo and Twitter.

the total number of edges in the original network of Sina
weibo and Twitter and report them(P) in the Table 5. For
Sina weibo and Twitter, the edge fraction of adpUNI+N
is quite greater than the percolation thresholds, while UNI
and adpUNI are the opposite. Thus we can assum that the
connectivity of adpUNI+N is better than UNI and adpUNI.
Next, we calculate and show the fraction of the nodes in the
giant component of the sampled network by UNI, adpUNI
and adpUNI+N for Sina weibo and Twitter in Table 5, which
shows adpUNI+N is almost completely connected for both
of Sina weibo and Twitter, while UNI and adpUNI are far
behind.

VI. CONCLUSION AND DISCUSSION
In this article, we proposed some fast representative sam-
pling methods (adpUNI and adpUNI+N) when dealing with
large-scale OSNs, which have significant improvement on
sampling efficiency and performance based on the obser-
vation of heterogeneous userID space. The key idea of our
methods are dividing the entire userID space into several
equal-length intervals, whose sampling probability adap-
tively adjust with its real time target rate.The contributions
of this paper are as follows:

1) We propose and verify two fast adaptive methods
(adpUNI and adpUNI+N) to overcome the defects of UNI
which is of low efficiency, this is important for sampling large
scale OSNs.

2) The subgraph obtained by ourmethods is ofmuch higher
representativeness and connectivity than UNI, which is more
important for practical applications, since eventually we need
to give a representative subgraph to end-users.

3) In the paper, we also reveal the relationship of three
key concepts involved in all sampling methods: perfect uni-
formity can ensure an unbiased sampling of nodes, but not
necessarily a more representative sampled subgraph.

Though there’s a free parameter I (the number of intervals)
in our methods, we find that our methods are quite robust
with respect to different settings. However, there are also
some requirements for being able to implement our methods.
First, the range of userIDs assigned to users of OSN, that is
MAXuserID, must be known or estimated in advance, so that
a new ID can be randomly generated; Second, the OSN need
to be allowed to query to return data for the selected userID,
if it is valid, or return an error message if it does not exist.

The future research work mainly has the following aspects:
First, how to develop more effective adaptive changing rule is
an interesting topic. Secondly, we also want to study how to
apply our methods to OSNs whose user IDs are pure letters
or mix of numbers and letters. Moreover, we only apply our
methods to Sina weibo and Twitter, which are regarded as
undirected and unweighted static graphs in the paper. And
in the future, we aim to study the sampling effect of our
methods on other types of networks, such as weighted net-
works, dynamic networks, multiplex networks, multi-layer
networks, etc.
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