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ABSTRACT Nowadays, machine learning (ML), which is one of the most rapidly growing technical tools,
is extensively used to solve critical challenges in various domains. Vehicular ad hoc network (VANET)
is expected to be the key role player in reducing road casualties and traffic congestion. To ensure this
role, a gigantic amount of data should be exchanged. However, current allocated wireless access for
VANET is inadequate to handle such massive data amounts. Therefore, VANET faces a spectrum scarcity
issue. Cognitive radio (CR) is a promising solution to overcome such an issue. CR-based VANET or
CR-VANET must achieve several performance enhancement measures, including ultra-reliable and low-
latency communication. ML methods can be integrated with CR-VANET to make CR-VANET highly
intelligent, achieve rapid adaptability to the dynamicity of the environment, and improve the quality of
service in an energy-efficient manner. This paper presents an overview of ML, CR, VANET, and CR-
VANET, including their architectures, functions, challenges, and open issues. The applications and roles of
ML methods in CR-VANET scenarios are reviewed. Insights into the use of ML for autonomous or driver-
less vehicles are also presented. Current advancements in the amalgamation of these prominent technologies
and future research directions are discussed.

INDEX TERMS Machine learning, VANET, cognitive radio, autonomous vehicles, smart transportation
system.

I. INTRODUCTION
Machine learning (ML) is an artificial intelligence (AI) tech-
nique used to teach a system about the unknown and make
efficient and effective decisions. The use of ML in nearly all
aspects, such as robotics, business, arts, automated systems,
biotechnology, and intelligent automated transportation sys-
tems, has become popular due to the availability of low-cost
and highly capable (i.e., high computational power and huge
data storage) machines and the presence of massive amounts
of data. ML provides smart and fast decision making for
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improving system performance, including reliability, energy
efficiency, and quality of service (QoS) [1].

Traffic congestion and safety have become vexing and
complex issues in many urban areas due to the rapid increase
in population and the proliferation of vehicles. Approxi-
mately 1.25 million people die every year worldwide due
to road accidents, which are the leading cause of death
among people aged between 15 and 29 years [2]. Congestion
causes expensive delays, stress, pollution, and wasted fuel.
In the U.S., the congestion cost was $305 billion in 2017 [3].
A smart and efficient transportation system can provide
smooth traffic flow, reduced road accidents, and a green envi-
ronment, which in turn improves economic competitiveness.
Vehicular ad hoc network (VANET) is designed to improve
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traffic safety and ameliorate traffic congestion for reducing
the travel time of commuters, particularly during peak hours.

The exponential growth of wireless devices has led to
the need for a vast spectrum to support high-volume data
transmission. However, spectrum scarcity (inadequate allo-
cation compared with the demand) has become a hindrance
to the deployment, support, and scaling of next-generation
applications for commuters, including the Internet of Things
(IoT), smart cities, virtual reality, augmented reality, and
high-definition 3D video streaming services. The two main
factors that cause spectrum scarcity are as follows: (a) fre-
quency bands are allocated to licensed users based on the
traditional fixed spectrum assignment policy and (b) a huge
volume of real-time data is generated and transferred over
a wireless medium in a dynamic environment. The authors
in [4] showed that most bands are still vacant and suitable for
secondary usage.

Cognitive radio (CR), which was introduced byMitola and
Maguire in [5], is a key enabling technology for spectrum
sharing that allows devices to sense and use underutilized
licensed channels (e.g., TV bands) dynamically in an oppor-
tunistic manner and for spectrum mobility that allows users
to vacate licensed channels re-occupied by licensed users [6].
CR can play a vital role in solving the spectrum scarcity
issue of VANET. Hence, CR-based VANET or CR-VANET
is a promising technology to tackle road safety, congestion,
and infotainment issues, and it serves as a basic building
block for next-generation transportation systems, especially
autonomous-driving vehicles.

This study focuses on the applications of ML in
CR-VANETs to ensure that decision making is fast, highly
reliable, secure, and energy-efficient. ML helps CR-VANETs
become increasingly intelligent to adapt to uncertain radio
environments rapidly and efficiently and reduces complex-
ity. This study reviews the recent advancements and future
directions of ML used in CR-VANETs.

A. MOTIVATION: NEED FOR ML IN CR-VANET
Numerous new vehicles are expected to appear on roads
in the coming years, and they would cause serious traffic
congestion that can paralyze urban areas and adversely affect
the economies of countries. Apart from contributing to eco-
nomic losses, poor management of transportation systems
can cause stress to people, reduce working efficiency, and
increase the number of accidents and casualties. To solve
these issues, the smart transportation system or VANET must
be improved to obtain an automated smart traffic system that
provides useful information on road and traffic conditions and
automated driving vehicles [7].

For a successful implementation of VANET, a massive
amount of live data must be exchanged. According to Intel,
a phenomenon called ‘‘flooding of data’’ is expected to occur,
whereby each smart autonomous vehicle (AV) would gener-
ate and consume approximately 4 terabytes of data on the
average per day of driving [8]. This amount is many times

larger than the current amount of data that an average person
currently generates.

An actively operating vehicle can generate an amount of
data that 3000 people currently generate on average. These
data, which can be gathered by sensors, cameras, and crowd-
sourcing, include road and traffic conditions, personal data,
and application data (e.g., marketing, societal, and enter-
tainment data). Therefore, data are the next ‘‘oil’’ in the
transportation system. However, the bandwidth required to
accommodate suchmassive real-time data exchange is scarce,
resulting in network congestion, especially in urban areas.

Based on the traditional fixed spectrum assignment policy,
two types of bandwidth or frequencies, namely, licensed
and unlicensed, are available. Unlicensed frequencies, such
as the industrial, scientific, and medical (ISM) band, are
free to use and thus prone to interference [9], which can
degrade QoS. Moreover, existing allocated frequency bands
are insufficient to handle large amounts of data. For exam-
ple, IEEE 802.11p (or IEEE 1609), which is also known as
the dedicated short-range communication (DSRC) standard,
has reserved 75 MHz of bandwidth in the frequency range
of 5.85–5.925 GHz for vehicular networks; however, this
bandwidth is insufficient to accommodate massive amounts
of data [10]. Meanwhile, licensed bandwidths or frequen-
cies, such as TV or military radio bands, are not highly
utilized [11], thereby rendering these bands idle and inac-
tive. In other words, spectral efficiency is lacking, and the
CR-based wireless communication system is the best solution
in these situations.

In the CR system, an unlicensed user (or secondary user,
SU) identifies any vacant or unoccupied licensed frequency
owned by licensed users (or primary users, PUs). Upon iden-
tifying a vacant frequency band, the SU is allowed to use
it providing that it does not interfere with any PU. Thus,
the SU must release the frequency band when the PU’s
activities reappear. The SU must ensure that its transmis-
sion power does not interfere with the PU’s activities in the
neighborhood [12].

High-speed mobility and a dynamic environment have
brought about additional complexities and challenges to
CR-VANET compared with other wireless networks such
as WSN (wireless sensor network). ML methods can ease
these complexities and provide tremendous improvements in
terms of network performance enhancement (e.g., reduced
delay, increased reliability, secure performance, and energy
efficiency) to CR-VANET. Although the energy capacity
of vehicles is generally sufficient, the cumulative energy
requirement of vehicles can be very high; thus, energy effi-
ciency must be achieved in consideration of the huge carbon
emission that can pose a threat to the green environment [13].
Another important issue is to improve the QoS and quality of
experience (QoE) of the network because the conventional
spectrum sensing, transmission adaptation, and handover in
the CR system (see Section III.A for additional description)
increase the delay, overhead, and energy consumption [14].
ML is an excellent candidate to enhance the network
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TABLE 1. Benefits of CR and ML in VANETs.

performance of CR-VANET [15]. Security enhancement is
one of the major issues in CR-VANET. Here, a vehicle can
pretend to be a PU and propagate false information to obtain
spectrum access selfishly. ML can be used to detect such
actions and enhance security [16], [17]. ML also provides
an optimum route to CR-VANET users to avoid traffic jams
and road accidents. ML can also play a vital role in the
best infotainment experience in CR-VANET. It can be used
for appropriate scheduling, selecting the best channel, and
prioritizing messages.

CR and ML can play a major role in the next-generation
driverless car system. The role of CR in the next-generation
transportation system has been presented in previous discus-
sions. This survey shows how ML can be applied to reduce
road accidents and traffic congestion. CR can be used to
accommodate the spectrum required to support massive data
communication among automated driverless vehicles and
networks. ML can be an integral part of this driverless or
automated vehicle system. Similar to a robot, an autonomous
vehicle (AV) can learn the surrounding environment and

communicate with increased safety, reliability, QoS, and
energy efficiency by applying such learning.

This paper presents the dynamic usages of ML in
CR-VANET elaborately. Several of the benefits of CR in
VANETs andML inVANETs andCR-VANETs are presented
in Table 1.

B. CONTRIBUTIONS OF THIS SURVEY ARTICLE
Many survey articles describe CR, VANET, ML, and
CR-VANETs individually or describe a few aspects of their
amalgamation. To the best of our knowledge, surveys that
cover the usage of ML in CR-VANET scenarios are lacking.
In this article, a comprehensive survey of the usage of ML in
CR-VANET is presented.

Several of the contributions of this work are as follows:

• The detailed concepts of CR, ML, VANET, and their
amalgamations are presented.

• The usages of CR and various ML methods in VANETs
are discussed.
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• Various types of ML techniques, including their
overview, limitations, and applications, are presented.

• Various usages of ML in CR-VANET, including spec-
trum sensing, spectrum switching, routing, congestion
control, and security enhancement, are surveyed in
detail.

• Several technological advancements in the aspects of
this integration are described.

• The applications of ML to reduce road accidents and
traffic congestion are presented.

• The usage of ML and CR for autonomous or driverless
vehicles is described.

• The open issues, challenges, and future research direc-
tions of ML in CR-VANETs are discussed.

The performance of CR processes depends on the qual-
ity of the spectrum sensing (the process of finding out the
vacant spectrum). Good spectrum sensing means it has to
be faster, highly accurate, robust to interference and noise,
low complex and low energy consumption [19]. However,
there are many challenges to achieve such good spectrum
sensing such as vehicle’s speed and direction, the effect of
multipath fading, shadowing problem, heterogeneous QoS
requirement and so on [19]. To enhance the performance of
the CR process and to solve these issues, ML can be applied
in CR-VANET [23], [24].

From this survey, readers can relate the necessity of CR in
VANET and ML in CR-VANET. They can get insight into
the applications of several ML techniques in CR-VANET.
Moreover, few open issues and research directions have been
provided, this will help the readers to do more research in
this field. As we have mentioned, this is the first kind of
such a survey, the readers can get knowledge about ML,
CR, VANET and their amalgamation with several chal-
lenges and issues in a single article. They can recognize the
spectrum scarcity issues for the practical implementation of
autonomous vehicles and know-how ML can be helpful to
solve several challenges associated with the implementation.

C. RELATED WORKS
The areas of ML, CR, VANET, and CR-VANET and their
amalgamations are presented. Several surveys [25]–[50] of
these techniques are available; however, they are either pre-
sented separately or with limited amalgamations (refer to
Figure. 1). To the best of our knowledge, no comprehensive
survey that describes the integration of ML in CR-VANET has
been conducted.

A comprehensive survey ofMLwas conducted in [25]. The
applications of ML in various areas, such as traffic predic-
tion, routing, and classification of different networks, were
discussed. A survey on deep learning was presented in [26].
In [27], Gosavi discussed the basic concept of the applications
of reinforcement learning, which is anML technique. A com-
prehensive survey of ML techniques in CR was conducted
in [28]. Various CR implementations with the use of AI were
presented in [29]. Various applications of ML in CRNs were
discussed in [30]. Comprehensive details regarding the usage

FIGURE 1. Related work and our focus.

of various AI techniques in CRNs were discussed in [22].
The usage of various ML methods in dynamic spectrum
access (DSA) was elaborately described in [15]. The recent
advancement and applications of ML in VANETs were dis-
cussed in [31]. Detailed discussions of various ML methods
used in VANETs were presented in [21], and the applica-
tions of various AI techniques in VANETs were discussed
in [32].

A brief survey of CR was performed in [33]. Here, the fun-
damental concepts of CR and its various steps, taxonomies,
challenges, and issues were discussed. Comprehensive details
on CR were provided in [34], [35]. In [36], a description of
the CR cycle, which consists of four steps of CR processes,
namely, spectrum sensing, analysis, reasoning, and adap-
tation (Section II.C describes these details), was provided.
Various spectrum sensing techniques were surveyed
in [37]–[40]. The details of spectrum mobility and its issues
were discussed in [41]. A survey on spectrum management
was conducted in [12].

A comprehensive survey of VANETs was performed
in [42]. The security, trust, and privacy issues of VANETs
were surveyed in [43]. A tutorial survey of VANETs was
presented in [44], and various routing issues of VANETs
were surveyed in [45]. The motivations of VANET toward a
green environment can be found in [46]. Various approaches
and challenges, along with the open issues of CR-VANETs,
were described in [10]. Several taxonomies, recent advance-
ments, and security and privacy issues were also discussed
in [10]. Various aspects of CR-VANETs were surveyed
in [7], [47]–[50].

The current survey provides a review of ML-based CR-
VANETs, including architectures, applications, taxonomies,
and various networking issues in spectrum sensing, manage-
ment, handover, energy, and security to reduce road accidents
and congestion. Current issues and research directions toward
intelligent CR-VANETs are also outlined.

Figure 1 shows a summary of related work on these tech-
nologies and the position of this paper.
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D. ORGANIZATION OF THIS PAPER
The acronyms used in this paper and their full forms are
listed in Table 2. The remainder of the paper is organized as
follows. Section II provides a basic overview, applications,
and limitations of various types of ML techniques with their
taxonomies. It also elaborately describes VANET and its
relevant issues and presents a detailed overview of CR and
its taxonomies, types, and other important issues. Section III
describes the issues and applications of various ML meth-
ods used in CR-VANET. Section IV outlines the current

TABLE 2. Summary of major acronyms used.

challenges and future research directions, and Section V
concludes this work.

Figure 2 shows a thematic view of the arrangement of this
paper.

II. OVERVIEW OF ML, VANET, AND CR
This section provides a detailed overview of ML, VANET,
and CR. The taxonomies and advantages of these technolo-
gies are also provided.

A. ML
ML, which is a member of the AI family, enables a system
to learn and increase its knowledge and experience with
minimal human involvement. Similar to a human, a machine
or a system can make appropriate decisions based on learned
knowledge, experiences, and data after appropriate learning
by using ML. ML is applied in multidisciplinary sectors.
A few of these applications are listed in Table 3.

TABLE 3. Application fields of ML.

In 1950, Alan Turing’s revolutionary Turing test [51]
inspired the world’s researchers to consider the ML process,
although the term ‘‘machine learning’’ was first coined
in 1959 by Arthur Samuel, who wrote the first computer
learning program [52]. Extensive studies have been con-
ducted since the late 1990s; currently, the world is witnessing
significant developments in ML.

ML has three main categories of learningmethods, namely,
supervised, unsupervised, and reinforcement. Other ML
methods, which are variations of the three major learning
methods, include semi-supervised learning, deep learning,
online learning, transfer learning, and case-based reason-
ing [21]. Figure 3 shows the taxonomy of various ML
approaches.

1) SUPERVISED LEARNING
The most frequently used ML method is supervised learning,
in which a machine learns from the training (or labeled)
dataset, which includes data on examples or observations
tagged with the right answers. The machine is trained using
this training or labeled dataset. The testing dataset is used for
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FIGURE 2. Arrangement of the paper.

testing purposes to predict outcomes based on the training
dataset.

The relation of the input and output in supervised learning
can be written simply as

Y = f (x), (1)

where x and Y denote an input and output variable, respec-
tively. The algorithm trains the system to learn mapping

function f appropriately; thus, for any new data x, the system
can reliably predict the outcome or value of Y. For example,
the basic linear regression (a type of supervised ML) can be
written based on Eq. (1) as:

ŷ = w[0]∗x[0]+ w[1]∗x[1]+ . . .+ w[i]∗x[i]+ b (2)

where w[i] and b are the parameters that would be developed
by training, x[i] is the feature of the data and ŷ is the predicted
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FIGURE 3. Taxonomy of machine learning (based on the discussions of [21], [105], [31]).

value of data. The performance of learning depends on the
size and quality of the training dataset.

Supervised learning is of two types, namely, classification
and regression. In classification, the system learns from the
input consisting of training data, and by using this learning,
it classifies new observation or simply categorizes the labeled
data. These data may be bi-class (for example, whether a
frequency band is vacant or occupied) ormulti-class in nature.
Classification is used in speech recognition, face detection,
handwriting recognition, and other areas.

While classification algorithms are used in discrete space,
regression algorithms are used in continuous space. The
regression algorithms map function f from input variables X
to predict a continuous output variable Y. For example, in lin-
ear regression, a type of regression algorithm aims to fit
with the best line, which goes through the data points. It is
used to forecast or predict weather and risk in finance and
various aspects of economics, trend analysis, drug response
modeling, and other areas.

Classification and regression have several renowned
algorithms. Table 4 presents an overview of the algorithms
and their applications and limitations.

2) UNSUPERVISED LEARNING
In supervised learning, a large amount of data is required to
train the system. In practice, providing the training dataset
is difficult. Unsupervised learning has emerged as a solu-
tion to this situation. The system learns from unlabeled
data, which are uncategorized or unclassified in nature.
The idea is to find similarities or differences in data and

act based on those similarities or differences. Unlabeled
data are sorted based on their similarities and differences.
Hence, in general, unsupervised learning has a more com-
plex job than supervised learning. Unsupervised learning
has been applied in self-driving cars, spectrum sensing in
a distributed CRN, chatbots, facial recognition, social net-
work analyses, market or customer segmentation, and speech
recognition.

Unsupervised learning can be further categorized into two
types, namely, clustering and dimension reduction. The aim
of clustering is to segregate similar samples into clusters.
Data samples are grouped in a way that a group has sim-
ilar samples that are dissimilar to other groups’ samples.
Clustering is used in customer segmentation, separation of
books in libraries, classification of species, and grouping
of similar objects in search engines. Meanwhile, the aim of
dimension reduction is to reduce the number of dimensions
in order to improve the system’s performance and provide
optimal solutions. In short, it reduces the number of random
variables by finding a set of principal variables. Dimension
reduction is used in data summarization and compression,
customer segmentation, trend detection, and analyses of mul-
timedia, biological, and social network data.

Clustering and dimension reduction employ several algo-
rithms. An overview of these algorithms and their usages and
limitations are provided in Table 5.

3) REINFORCEMENT LEARNING
In reinforcement learning (RL), agents (or decision-makers)
select appropriate actions by using mathematical approaches
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TABLE 4. Quick overview of various supervised learning algorithms.

and receive rewards in an unpredictable environment [104].
RL is neither supervised nor unsupervised learning [105]. The
main aim of RL is to exploit and maximize the long-term
rewards to be received in the future. It is an individual learning
process that interacts with the random environment. It is also
considered a trial-and-error learning process; thus, it does not
require any environment model and dataset for training in
many cases. It can learn from the current data and environ-
ment, so it is suitable for real-time applications. For these
reasons, it has been widely used in CRNs. In RL, an agent
or a learner (such as a CR-based vehicle) interacts with the
radio environment (comprising everything outside the agent).
As shown in Figure 4, at each time step t, the agent observes
the state of its surrounding environment stεS, where S is a set
of possible states. On the basis of state st , the agent selects an
action atεA, where A is a set of actions. At the next time step
t + 1, the environment transits to a new state st+1, and the
agent achieves a reward rt . The target is to obtain an optimal

FIGURE 4. Standard reinforcement learning method.

policy (agent behavior) π : S → A that can maximize the
reward at state S [105].
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TABLE 5. Quick overview of various Unsupervised learning algorithms.

RL is used in many scenarios, such as in teaching robots,
various schemes of CR (e.g., spectrum sensing and secu-
rity issues), self-driving cars, industrial automation, finance
sector, content optimization, and various applications of
VANETs.

In model-based RL, an agent acts in the Markov deci-
sion process (MDP) and models the environment (given the
reward function and transition probabilities) by using some
experience or supervised learning. The agent learns themodel
and the policy value π that can provide the maximum reward.
It involves minimal interaction between the agent and the

environment. It is capable of rapid convergence to the optimal
solution, and the accuracy of the transition models has a
significant impact on the learning process [106].

In model-free RL (e.g., Q-learning), an agent does not
require to learn a model of the environment (or simply does
not know the MDP) to find the optimum policy for reward
maximization. It acts as direct evaluations [107]; thus, it does
not require prior knowledge on transitions and can be easily
implemented. However, it has a slow convergence to the
optimal solution [106]. Various categories of RL algorithms
are briefly described in Table 6.
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TABLE 6. Quick overview of various reinforcement learning algorithms.
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a: Q-LEARNING
Q-learning, which is the most frequently used type of RL,
is an online algorithm that enables an agent to learn in an
interactive manner with its surrounding environment. The
main aim of Q-learning is to exploit the long-term rewards
to be received in the future. It does not require any envi-
ronment model and dataset for training. For these reasons,
it is the most suitable option for the dynamic CR-VANET
scenario, especially for addressing spectrum sensing issues.
In Q-learning, an agent or a learner (e.g., a CR-based vehicle)
interacts with the radio environment (comprising everything
outside the agent). On the basis of the reward table, the agent
selects the next action (which may be beneficial or harmful),
updates a new value called Q-value for state-action pairs Q
(st , at ), and stores the Q-values in the Q-table. For example,
in CR-VANET scenarios, an action might be choosing and
accessing any frequency band, and the state might be the
location and time of the vehicle. If the sensed frequency band
has interference from PUs, then the agent receives a negative
reward; otherwise, it receives a positive reward.

Specifically, after taking every action, the agent receives
the reward and updates its Q-value based on Eq. (3).

Qnew(state, action)

← (1− α)Qold (state, action)

+α(reward + γmaxQold (next state, all actions))

Q(t+1)(st , at )

← (1− α)Qt (st , at )+ α[r(t+1)(s(t+1), at )

+
max
a∈AQt (s(t+1), a)] (3)

where
α: Learning rate α determines how much the new

Q-value overrides the previous Q-value. The α value
ranges from 0 to 1. A high value of α indicates high
learning speed, which may lead to fast convergence,
although stability can be affected and could thus
cause convergence failure. A low value of α indicates
smooth learning, but the convergence rate can be slow.

γ : The discount factor implies how much importance is
provided to future rewards.

r: The reward received by the agent. It consists of a
short-term reward called delayed reward and a future
reward called discounted reward.

The two policies for taking action are exploitation and
exploration. When the agent selects exploitation (i.e., uses
existing knowledge to select the best possible action), it uses
an optimal policy. When it selects exploration (i.e., learns
more knowledge), it uses a random policy. The agent receives
positive delayed rewards when it selects an appropriate action
for a particular state. A positive value increases the respective
Q-value and vice versa [6]. Therefore, Q-learning aims to
obtain an optimal policy (or agent behavior) π : S → A that
can maximize the reward at state S [105].

The optimal Q-value for a particular state can be written as

V π
∗

(st ) =max
a∈A Qt (s(t+1), a). (4)

Therefore, the optimal policy can be written as

π∗(st ) =max
a∈A Qt (s(t+1), a). (5)

Evidently, the convergence rate depends on the quality of
the Q-table and the values of α and γ . The more reward an
agent accumulates, the better theQ-table becomes. Therefore,
the convergence speed is increased. However, the issue is that
the Q-learning algorithm learns completely by itself and does
not receive any help from others. For improved performance
and convergence, it must achieve a balanced tradeoff between
exploration and exploitation. Increased exploration provides
enhanced learning (i.e., sacrifices immediate rewards in the
hope for more future rewards) but slow convergence. Mean-
while, increased exploitation provides faster convergence that
may lead to reduced performance.

4) OTHER ML TECHNIQUES
ML has other popular variations, such as transfer learn-
ing, online learning, case-based reasoning, semi-supervised
learning, and deep learning. They can be incorporated into
supervised learning, unsupervised learning, and reinforce-
ment learning. For example, deep-reinforcement learning is
an algorithm where the deep-learning concept is used in
RL; similarly, deep neural network (DNN) is an advanced
version of neural network incorporated with a deep learning
approach [129]. A brief overview of these variant ML meth-
ods is presented in Table 7.

a: DEEP LEARNING
Deep learning is a member of the ML family. This learning
method is based on learning data representations (rather than
task-specific algorithms). In deep learning, learning can be
performed using supervised, unsupervised, and/or RL. It is
inspired by information processing in the human neuron sys-
tem. It has significant advancements comparedwith otherML
methods. Deep learning has been applied in various fields,
such as computer vision, natural language processing, audio
recognition, and various issues in CR-VANETs. A typical
architecture of deep learning is shown in Figure 5. The illus-
tration and discussions were adopted from [21].

Deep learning consists of multiple layers of nonlinear pro-
cessing units, and they are connected in a cascaded form,
as shown in Figure 5. Each layer is used for feature extraction
and transformation, where input data are transformed into
a near-abstract and composite representation. The leftmost
part is the input layer in which every node denotes a dimen-
sion of the input raw data. The subsequent layers are called
‘‘hidden layers’’ (i to l). The rightmost part is the output
layer (m). Each node performs a nonlinear transformation on
the weighted-sum of a subset of nodes in its previous layer.

The nonlinear function can either be a sigmoid function
fS (a) = 1/(1+ e−a) or a ReLU function fR (a) = max (0, a)
The input I and output z relation can be written as

z = f (I , θ) = f (L−1)
(
f (l−2)

(
· · · f (1) (I )

))
(6)

78064 VOLUME 8, 2020



M. A. Hossain et al.: Comprehensive Survey of ML Approaches in CR-Based VANETs

TABLE 7. Quick overview of Other machine learning approaches.

where L is the layer index and θ is the weight of the neural
network. For an improved output, more hidden layers can be
added (until the optimum value; otherwise, it might cause
overfitting). However, for deeper cases, it requires more time
and entails increased computational complexity.

Several deep architectures, such as DNN, DQN, and CNN,
are available. Section III presents the extensive usages of

these deep or hierarchical learning architectures in various
aspects of CR-VANET scenarios.

B. VANET
1) OVERVIEW OF VANET
Researchers have carried out numerous studies on rapidly
advancing VANETs. With the power of connectivity and
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FIGURE 5. Typical deep learning architecture (DNN) [21].

the advancement of technology, VANET can provide several
enhanced vehicular experiences and applications, such as
road safety, traffic and road conditions, and comfort and
entertainment. VANET is a type of mobile ad hoc net-
work (MANET) that consists of vehicles with high-speed
mobility. VANET emerged from the motivation of the intel-
ligent transportation system (ITS) and wireless access in
vehicle environment (WAVE) [48].

In VANET, vehicles are equipped with sensors, a global
positioning system (GPS), multimedia systems, wireless con-
nectivity, and navigation systems. A vehicle can sense the
surroundings, such as obstacles and objects ahead (e.g., front
vehicles), by using sensors to avoid collisions for emergency
stops or slowdown. It can use immediate information on road
conditions, such as congestion or accidents that occur ahead,
from the network infrastructure. Onboard wireless connec-
tivity with the network can provide users with entertainment
and other social applications on the road. In other words,
VANET provides improved user experience and reduces road
accidents and congestion.

VANET provides network connectivity among vehicles
and pedestrians and to the network infrastructure. The com-
munication in VANETs can be categorized into the following
types [143], and they are illustrated in Figure 6.

a. Vehicle-to-vehicle (V2V) communication takes place
during data exchange from one vehicle to another without
using any infrastructure, and it is mainly used for collision
control and congestion avoidance to enhance vehicular safety
and data relay.

b. Vehicle-to-infrastructure (V2I) or infrastructure-to-
vehicle (I2V) communication and vehicle-to-RSU (V2R) com-
munication occur during data exchange between vehicles
(i.e., onboard unit or OBU) and with infrastructures, such as
BTS, routers, AP, and roadside unit (RSU). Specific traffic
information, such as the location, identification, and speed
restriction (e.g., driving speed is more than the speed limit)
of vehicles, are exchanged. The communication between a
vehicle and an RSU is referred to as vehicle-to RSU or V2R
communication.

c. Infrastructure-to-infrastructure (I2I) communication
takes place during data exchange between network infrastruc-
tures, such as BTS and RSU, for real-time traffic updates and
important information exchange.

d. Vehicle-to-person or vehicle-to-pedestrian (V2P) com-
munication takes place during data exchange between vehi-
cles and pedestrians to ensure their safety on roads.

The other types of communication schemes in the vehic-
ular network include vehicle-to-barrier (V2B) and vehicle-
to-cloud (V2C) communication. V2B is a type of wireless
communication between vehicles and the roadside barri-
ers in VANET. This type of communication is required to
mitigate run-off-road crashes that account for more than
50% of roadside crash fatalities [144]. The functions and
motivation behind V2B and related practical experiments
were provided by [144]. In VANET, V2C is communication
between RSU and the base station with the cloud for various

FIGURE 6. Basic architecture of VANET.
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purposes, such as data analysis, decision making, and traffic
prediction [145].

VANET is an extremely large-scale wireless network that
expands on entire road systems. The network topology of
VANET is extremely dynamic due to the high-speed mobility
of vehicles. For instance, on a highway, in a rural area, and a
congested area, a vehicle moves at a speed of approximately
40 m/s, 25 m/s, and 15 m/s, respectively. The network is
also very dynamic due to a diverse range of applications
with various QoS requirements. Several applications require
immediate data exchange (i.e., very low end-to-end delay and
very high reliability), such as the exchange of road safety
messages, whereas other applications require high through-
put, such as the transmission of infotainment (e.g., video or
audio streaming) messages [21].

2) WIRELESS ACCESS STANDARDS OF VANET
The two wireless access standards for VANETS are ded-
icated short-range communication (DSRC) and wireless
access in vehicular environments (WAVE). DSRC is used
for short-range communication, such as toll collection at toll
plazas, and for V2V and V2R communication. Specifically,
75 MHz bandwidth within the frequency range of
5.85–5.925 GHz is allocated for DSRC by the Federal Com-
munications Commission (FCC). This bandwidth is divided
into seven channels, in which the first three and the last three
channels (these six channels are known as the service channel
or SCH) are used for exchanging safety and non-safety
messages; the middle channel (known as the common control
channel or CCC) is used only for high-priority safety mes-
sages [146]. The first 5 MHz is used as the guard band, and
all channels are 10 MHz [147].

DSRC was specified in 2003, and it is based on the
IEEE802.11a standard for wireless local area networks
(WLANs). DSRCgenerates a large overhead and high latency
due to the high speed of vehicles and the dynamic change in a
network topology. Thus, DSRC is unsuitable for high-speed
VANET. Tomake it adaptable and acceptable, a newmodified
version of DSRC was introduced and is called WAVE; it
consists of two protocol suits, namely, IEEE802.11p and
IEEE 1609 [147].

There are other access technologies for VANET are found
in the literature. Figure 8 provides some examples of those
standards and the descriptions are in the following subsection.

3) OTHER ACCESS TECHNIQUES FOR VANET
a: WI-FI FOR VANET
Wi-Fi is one of the widely used wireless technologies. It is
very much popular due to its low cost, higher data rate,
and easy installation. DSRC and WAVE are specified based
on Wi-Fi technology. However, simple Wi-Fi or WLAN
standards such as IEEE 802.11(a/ac/b/e/g/n) can be used by
VANET as the access technology for V2V and V2I commu-
nications [148]. These techniques are also used for tracking
service of the vehicle. Wi-Fi operates in 2.4 and in 5.4 GHz

FIGURE 7. Some examples of access technologies for VANET.

frequency band with the data rate of 11 Mb/s, 54 Mb/s and
even 1 Gigabit/s (data rate of IEEE801.11b, IEEE801.11a,
and IEEE802.11ac respectively). However, as the number of
vehicles increases, the requirement of the access point will
also increase and that leads to the complexity of the deploy-
ment as well as the cost increment. Moreover, it’s shorter
coverage area (around 100 meters), low user mobility and
slow hand-over lead this standard very challenging to cope
up with the fast-fading condition of the high-speed mobility
in the VANET environment [149].

b: VISIBLE LIGHT COMMUNICATION (VLC) FOR VANET
VLC (IEEE 802.15.7) is a promising technology that can
help solve spectrum scarcity. It generally works at infrared
(IR), visible light, and ultraviolet (UV) bands and spectrum
ranges of 430–790 THz [150]. It has several advantages
comparedwith DSRC’s RF technology; for example, it has no
adverse electromagnetic interference (EMI) effect, possesses
low latency, has additional complementary bandwidth for
RF, and is less susceptible to security breaches [151]. The
applications of VLC in VANET can be found in several V2V
communication types, such as lane change information, V2B,
sensing before any crash, and traffic signaling. It can be
used as an alternative solution of DSRC when overcrowding
occurs [152]. The main disadvantages of VLC in VANET are
as follows: it requires line-of-sight (LOS) communication,
it has a very short range capability, it exerts a shadowing
effect, suffers from interference with direct sunlight, absorp-
tion, and scattering, and depends onweather conditions [151].

c: LTE AND DEVICE-TO-DEVICE (D2D) COMMUNICATION
FOR VANET
3GPP (the third generation partnership program) introduced
LTE for the V2I and the D2D communication for the V2V
communication [153]. LTE is one of the potential wireless
access technologies for VANET. It has a high data rate,
low latency, large coverage area, high penetration rate, and
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FIGURE 8. Wireless Access standards for the VANET.

high-speed terminal support [154]. It can provide high band-
width and required QoS for the infotainment of vehicles
on the road. The main constraints of LTE for VANET are
as follows: it requires infrastructure for communication that
limits the communication only to V2I, (V2V communication
via LTE is unsuitable because of the high latency) and in
a dense area, it faces the challenges of network capacity
issue because vehicles and the traditional application of LTE
create heavy traffic load. Araniti et al. in [154] provided a
detailed discussion on the applicability of LTE in VANET.
Ucar et al. also described the potentiality of using LTE in
VANET in [155].

The D2D works as an ad-hoc approach. It’s reusing gain,
proximity gain and hop gain can increase the spectrum effi-
ciency and also reduces the communication delay [153].
But due to the high-speed mobility and frequent topological
changes, it creates a challenge to get reliable V2V commu-
nications [153]. Therefore, a single communication standard
of VANET cannot meet the complex QoS requirements. For
this reason, mixed multiple communication standards such as
the combination of LTE and D2D for VANET are necessary
to improve communication efficiency [153].

d: MILLIMETER WAVE (mmWave) COMMUNICATIONS FOR
VANET
The above-discussed standards cannot provide high-speed
network connectivity to vehicles due to the high-speedmobil-
ity of the vehicles. LTE or D2D provides not more than
100 Mbps while DSRC provides 3-27 Mbps [154]. On the
other hand, the mmWave can provide more than 1 Gbps
for V2V communications [156]. The bandwidth of mmWave

ranges from 30 GHz to 300 GHz. Recently mmWave based
Giga-V2V (GiV2V) has been attracted to the researchers for
VANET communication. They have found mmWave suitable
for the requirement of the rich data of high definition camera,
LiDAR sensors and so on. This communication standard
has limited range, high penetration loss, and poor diffrac-
tion, interfere with nearby electric poles, cellular towers,
WiFi/cellular hotspots [157].

e: 5G COMMUNICATIONS FOR VANET
Spectrum scarcity, poor scalability and less supportive to
provide the required QoS in a dense network are some of the
main concerns of DSRC. As we have discussed earlier, LTE
is one of the major key technologies that is going to undertake
in vehicular communication. Therefore, it is foreseen that
5G would take place as the successor of LTE for vehicular
communication [158]. 5G adds some additional features to
the network, such as Proximity Service (ProSe), Mobile Edge
Computing (MEC), and Network Slicing. ProSe provides the
location information and the trends in communication; these
provide low latency, enhanced resource utilization, and less
congestion. In VANET, the latency for the safety message
communication should be up to 100 ms (though it is 1 ms
for the AV cases). 5G’s MEC feature can help to get such
low and ultra-low latencies. Management of the network by
logical separation is known as network slicing. As we know,
there aremainly two types of applications are there inVANET
communication: i) safety-related applications, and ii) info-
tainment (non-safety) related applications. For the safety
application, low latency and high reliability are two major
QoS requirements while for the infotainment high bandwidth
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is the QoS requirement. By performing the network slicing,
a vehicular network can be divided into two logical networks,
one for the safety applications and another for the infotain-
ment applications as they have different QoS requirements.

To promote the use of 5G for the vehicular environ-
ment, 5G Automotive Association (5GAA) was established
on 27 September 2016 [159]. They have introduced and
developed Cellular-V2X (Vehicle to everything) (C-V2X)
in which cellular network (like 5G) will be used for the
vehicular communications. They showed that 3GPP-based
cellular technology provides better performance and more
robust radio access than IEEE 802.11p [159]. 5G’s (5G New
Radio (NR)) first specification came as Release 15 of the
3GPP. In its upcoming Release 16 which is scheduled to
be published in June 2020. It has planned and target for
5G V2X which would be the advanced use cases beyond
LTE V2X [160]. They have also planned to release the
enhancement of Ultra-Reliable (UR) Low Latency Commu-
nications (URLLC). Nevertheless, large-scale deployment of
5G C-V2X might take few more years as the technology
needs to be more matured and also it is a matter of large
investment [161].

Cellular networks (LTE/ 5G) have some advantages over
DSRC such as higher bandwidth, large coverage area, and
higher data rate. However, cellular networks have some draw-
backs compared to the DSRC standard. They are given below
[161], [162]:
• V2X communication in DSRC is a peer to peer commu-
nication, it does not need any intervention of a network
operator, but in the cellular network, it needs.

• In a cellular network, data is sent through the uplink
and downlink channels to reach their destinations, but
in DSRC, data can be sent directly to the destinations.

• DSRC can operate in any place by sending messages
directly into the air, but for the cellular system, it needs
the network coverage.

• In terms of cost, DSRC is much cheaper than the cellular
network.

• In a cellular network, along with V2X communication,
there are other competitor users (such User Equipment,
UE or mobile users) to share the bandwidth, but in
DSRC, it is completely dedicated to the vehicular com-
munication.

f: BLUETOOTH FOR VANET
Bluetooth is one of the most popular standards for short-
range communications. Many developments have done since
its invention. The latest version of Bluetooth is known as
Bluetooth 5, which operates in 2.4 GHz to 2.4835 GHz
as same as the previous versions but with a higher speed
of 2Mb/s and a wider range of 200 meters [163]. As it
operates in the same 2.4 GHz ISM (Industrial Scientific &
Medical) band of Wi-Fi, Bluetooth uses frequency hopping
(FH) technique to avoid the signal congestion. Bluetooth
Low Energy (BLE) technique was specified in Bluetooth 4
but it remains in its latest version. Bluetooth can be used

as the access technology for the VANET [164]. Bluetooth
technology is mainly used in intra-vehicle applications such
as for infotainment applications, phone calls and navigation
service and so on. Due to some features such as low cost,
low power consumption, robust and low delay of this matured
technology, it can also be used for V2V and V2I communi-
cation [165]. However, the low data rate and the low range
of communication are two major constraints of Bluetooth for
the deployment in VANET environment.

g: SATELLITE COMMUNICATIONS FOR VANET
Another potential access technology for VANET is the satel-
lite radio. It has a very wide coverage area. In general, it can
be used for broadcasting purposes and as the backup tech-
nique if the cellular network cannot cover the area. Satellite
radio’s S-band operates in 2.3 GHz and Ku bands in 12 GHz
and 18 GHz range. Satellite augmentation can be used to
improve the GPS system’s performance or it be used for the
V2V communication [166]. Other applications of satellite
are reported as sensor data exchange, control center commu-
nication, vehicle tracking, real-time communication, safety
related information exchange and so on [167]. SafeTRIP is
one of the successful projects where satellite radio was used
for VANET communication [167]. Satellite radio has higher
bandwidth (90 MHz), wide coverage range, and higher scala-
bility, but it faces severe delay and large antenna size require-
ments. These issues lead to unsuitability for the VANET
environment, especially for the safety message exchange.
It can be used with the integration of other techniques such
as 4G/5G or LTE.

Table 8 shows the comparisons of the access techniques
discussed earlier.

Nevertheless, more researches need to be carried out in
these areas, especially in the combination of the standards
into a single platform (several standards to compensate each
other). CR is one of the major techniques to enable such
integration. It is discussed in the next section.

C. CR
This innovative concept was presented by J. Mitola in [5].
Later, S. Haykin extended the concept with the excellent
insight of CR, which serves as an intelligent wireless commu-
nication system, in [170]. The first standard of CR in wireless
communication is IEEE802.22.

Basically, CR is an intelligent wireless communication
system in which a transceiver can intelligently adapt to
the surrounding radio environment. The limited spectrum
resource is efficiently utilized in CR. The main concept of
CR is to use the under-utilized frequency bands opportunis-
tically by changing the transmission parameters learned in
the surrounding environment. The learning or CR process
includes obtaining information on communication parame-
ters and detecting any unused spectrum by sensing the envi-
ronments. Appropriate utilization of the spectrum is achieved
by adaptive and dynamic reconfiguration of the transmission
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TABLE 8. Comparison of some of the wireless access technologies for VANETs.

parameters, such as transmission power, SNR value, and
modulation scheme [171].

CR consists of software defined radio (SDR) technology.
SDR is a communication system in which software is used
instead of conventional hardware such as mixers, filters,
amplifiers, modulators/demodulators, detectors, etc [172].

An important concept of CRN is the spectrum hole. It is
a band of frequencies allocated to PUs (i.e., users who are
authorized and assigned to use certain licensed channels);
however, at a certain time and in a specific location, this band

may not be used by PUs. In CRNs, the SUs (i.e., users who
use unlicensed bands and temporarily unused or underutilized
licensed bands) can utilize the spectrum hole. When any
PU uses back the spectrum hole, the SUs must release the
respective frequency bands.

CR enables SUs to sense the spectrum holes or the unoccu-
pied spectrum (or vacant spectrum), select the best available
frequency band, coordinate with other users and the spectrum
requirement, adjust to the current situation, and vacate from
the frequency band when PUs reclaim it. Then, the SU must
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FIGURE 9. Cognitive radio cycle [redrawn from [36] ].

sense for other unoccupied licensed bands, and the process
goes on. This CR cycle is illustrated in Figure 9.

Sensing the radio environment includes obtaining infor-
mation, such as channel characteristics, available spectrum,
power consumption, and local policies. Through spectrum
sensing and analysis, the SU detects the spectrum holes (or
white spaces) or the unoccupied portions of the licensed
spectrum and utilizes these holes. Through sensing, the SU
also gains knowledge of the interference level, by which
the SU can ensure that interference does not harm the PUs
when they start using the same spectrum holes. By proper
spectrum management and handoff activity, the SU selects
the best possible frequency bands and routes to achieve QoS
requirements. When the PU uses its frequency bands again,
the SUsmust release the occupied licensed bands and identify
other available bands. The last phenomenon is known as
‘‘spectrum mobility.’’

1) SPECTRUM SENSING
Spectrum sensing (SS) is the process of obtaining spectrum
usage information in a specific time, frequency, and location
by observing the surrounding radio environment. The main
task of SS is channel selection and vacant primary spec-
trum identification. Spectrum sensing is performed via three
primary approaches, namely, cooperative, non-cooperative,
and interference-based detection [173]. They are described
as follows:

a: COOPERATIVE SS (CSS)
It is also known as primary receiver detection; it is a type of
SS where SUs or CR users share their spectrum information
with each other to obtain a combined decision, which is
more accurate than an individual decision [174]. CSS can
be classified into three categories, namely, centralized CSS,
decentralized CSS, and relay-assisted CSS. CSS provides
improved sensing performance but requires the exchange of
extra overheads that result in energy inefficiency and extra
time in sensing. CSS information becomes obsolete rapidly
due to mobility and rapid changes in the environment.

b: NON-COOPERATIVE SS
Here, every SU individually performs SS and decides the
presence or absence of the PUs’ activities in a frequency
band. It is also known as primary transmitter detection.
Non-cooperative detectionmethods include energy detection,
matched filter detection, cyclostationary feature detection,
wavelet-based detection, and covariance matrix-based detec-
tion [173]. Non-cooperative detection methods incur a small
overhead; however, they depend on the network infrastruc-
ture, which may not be available at all places and may
be affected by noise, interference, and the problem of
hidden PUs.

c: INTERFERENCE-BASED DETECTION
FCC imposes a threshold value of interference to PUs.
CR users must limit their transmission power, along with
estimated noise power, to conform to the threshold value
of the interference temperature level [38]. In many cases,
measuring the interference temperature and comparing it with
others is practically infeasible.

2) SPECTRUM ANALYSIS AND DECISION
After sensing and learning about the vacant primary spec-
trum, the best frequency band is selected based on interfer-
ence, path loss, wireless link error, and link-layer delay [33].

3) SPECTRUM SHARING
Spectrum sharing is the management of spectrum distribution
among CR users by maintaining QoS. Spectrum sharing has
several classifications. On the basis of spectrum utilization,
it can be classified as unlicensed and licensed. All users have
the same priority in unlicensed spectrum sharing, whereas
PUs have higher priority than SUs in licensed spectrum
sharing. SUs can access both types of spectrum sharing only
when PU is absent. Spectrum sharing can also be classified
as centralized and distributed. A central node controls spec-
trum allocation and access in centralized spectrum sharing,
whereas every single node controls the same in distributed
spectrum sharing. Cooperative and non-cooperative are other
types of spectrum sharing used in CR.

Spectrum sharing based on access technology is of three
types.

a: INTERWEAVE SPECTRUM SHARING (ALSO KNOWN AS
OPPORTUNISTIC SPECTRUM ACCESS (OSA))
The SUs find spectrum holes that are not occupied by the
PUs and then use the vacant frequency bands restrictively.
Thus, the co-existence of PUs and SUs is not allowed here.
The SUs must vacate the frequency bands as soon as the PU
reappears [175].

b: UNDERLAY SPECTRUM SHARING
The SUs are allowed to use licensed frequency bands together
with the PUs as long as the SUs’ signal power remains below
the predefined acceptable threshold value of interference
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FIGURE 10. Taxonomy of the applications of ML in CR-VANET.

temperature at the receivers of all PUs. In general, the SUs
utilize spread spectrum techniques to keep their trans-
mission power lower than the interference temperature
threshold [175].

c: OVERLAY SPECTRUM SHARING
PUs and SUs can transmit over the same spectrum simultane-
ously on the condition that the SUs must help the PUs’ trans-
mission via cooperative communication, such as cooperative
relaying or coding techniques [176].

4) SPECTRUM MOBILITY
To ensure seamless communication, the SUmust switch from
one frequency band to another vacant band. This spectrum
switching is known as spectrum mobility. It is required when
the PU reappears in a frequency band and the link becomes
broken (e.g., a usermoves out of the transmission range due to
mobility). Spectrum handoff and connection management are
the two main processes in spectrummobility. Several handoff
strategies, such as non-handoff, pure reactive handoff, pure
proactive handoff, and hybrid handoff, are available. CR tech-
nology can adapt to the surrounding radio environment by
adjusting the operating parameters, such as carrier frequency,
transmission power, and modulation scheme [5].

VANET provides a wide range of applications, such as
road safety, congestion control, self-driving, ubiquitous con-
nectivity, and entertainment. CR is expected to become an
integral part of VANET in the coming years for solving the
spectral scarcity issue due to the rapidly increasing number of
vehicles. Various challenges and obstacles must be addressed
by this promising combined technology. ML is expected to
be applied in this amalgamation to solve such challenges and
issues.

III. APPLICATIONS OF ML IN CR-VANET
ML can be used to address several issues of CR-VANET, such
as ensuring road safety and reducing congestion, improving
security and privacy, and enhancing routing and infotain-
ment. This section discusses such applications of ML in
CR-VANET. Figure 10 shows the taxonomy of the applica-
tions of ML in CR-VANET.

Figure 11 shows how ML can be used in a CR-VANET
scenario. Except for DSRC, which is allocated for VANET,
other frequency bands (or channels) from TV, cellular, or
Wi-Fi networksmay be freely used by vehicles. Every vehicle
must obtain information on vacant channels. Suppose that n
channels are available in TV networks, and m and p channels
are available in Wi-Fi and cellular networks, respectively.
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FIGURE 11. Machine learning is incorporated into cognitive radio-based VANET.

A car must sense the spectrum to identify the best available
vacant channel. For example, after sensing all the channels in
the spectrum, a car user finds that the k th channel is the best
possible vacant channel. Thus, this channel is selected and
used for data exchange in this car. Figure 11 also shows that
different data requirements are needed by different vehicles.
Several vehicles need to exchange real-time data, such as data
on GPS, radar, camera, LIDAR, and sonar, whereas other
vehicles need to exchange entertainment data or safety mes-
sages. Hence, different data types have different QoS require-
ments, such as safety messages that need to be exchanged
without unacceptable delay. In summary, multiple vehicles
on the road have different types of QoS requirements and
exchange different volumes of data.

Sensing all these channels every time is highly ineffi-
cient because it consumes much time and energy. ML can
be applied here for fast and improved cognitive processes.
By using ML, the car can learn about the vacant channel at
a specific place and time and hence does not need to sense
all the channels again when it passes the same area at the
same time. This approach reduces network overhead, delay,
and energy consumption. ML also helps adjust CR-VANET
based on the heterogeneous QoS requirement, the data vol-
ume requirement, and the priority of various data types.

A vehicle may provide wrong information to other vehicles
or pretend to be PU. This security issue can be solved by
using ML. In a minimally congested zone, a vehicle can
obtain ubiquitous connectivity for infotainment. However,
in a seriously congested zone, a vehicle may not obtain
the required information due to bandwidth scarcity; conse-
quently, road accidents could occur. For example, a vehicle
that is in front must send an immediate safety message to

the vehicle behind it. However, the bandwidth is scarce, and
the message is not sent; as a result, accidents occur. ML can
accelerate such action by vehicles. The movement patterns
of pedestrians can also be learned to avoid accidents. ML is
the best tool to learn such patterns. Moreover, a vehicle
can take the best route from the source to the destination,
thereby avoiding congested roads, by determining the pat-
tern of traffic conditions. ML can be used here for fast and
improved decision making. Further details on these issues
will be discussed in the following subsections.

Several issues (shown below) should be addressed in
CR-VANET.

A. ML IN SPECTRUM SENSING AND MOBILITY
MANAGEMENT IN CR-VANET
This subsection discusses the usage of ML for spectrum
sensing and spectrum mobility management in CR-VANET.

1) SPECTRUM SENSING
Only 75 MHz bandwidth is allocated for VANET. The same
allocation applies to European countries. Japan has allo-
cated 10 MHz bandwidth for ITS in 700 MHz bands along
with 10 MHz for DSRC at 5.8 GHz bands. An advantage
of CR-VANET over other traditional CRN is that it has
a DSRC channel in which stable CCC can be formed for
sharing spectrum sensing information among vehicles [18].
Nevertheless, this bandwidth is insufficient to accommodate
the huge demand for growing VANETs. Dynamic spectrum
access (DSA) of CR is a promising solution to overcome
spectrum scarcity. Several TV channels are currently under-
utilized, such as ultra-high frequency (UHF) that ranges
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between 300 and 3 GHz and very high frequency (VHF)
that ranges between 30 and 300 MHz, due to the aggres-
sion of the digital TV. Therefore, FCC allows these TV
white spaces (TVWS) to be used by SUs (i.e., vehicles)
through CR (e.g., IEEE802.22) when these channels are
not in use. Wi-Fi’s 2.4 and 5.8 GHz are the two other
options for unlicensed users. However, the coverage range is
small, and they are unsuitable for vehicles moving at more
than 20 m/s [177]. FCC also proposed Citizens Broadband
Radio Service (CBRS) to overcome spectrum scarcity issues.
CBRS is a three-tiered spectrum-sharing scheme for the
3550–3700 MHz band [178].

Several studies on CR-VANET have dealt with TVWS and
Wi-Fi signals for DSA [179]. Figure 11 shows the typical
CR-VANET scenario. Vehicles can communicate with each
other or with RSU by using the dedicated DSRC link or
TVWS, Wi-Fi, or even cellular network links with the help
of CR.

Figure 12 shows some of the challenges of SS in
CR-VANET where ML can be applied. One of the challenges
of CR-VANET is that channel availability depends on the
presence of PUs and vehicle speed. The functions, such as
spectrum sensing and spectrum switching, occur frequently
in CR-VANET. Therefore, spectrum availability can change
dynamically, and spectrum sensing must be performed con-
tinuously to detect spectrum holes. The network environment,
which is characterized by wireless propagation channels,
network topologies, and traffic dynamics, for a vehicle, can
change rapidly due to high-speed mobility. ML can be used
to learn about the network environment so that rapid changes
would not cause any problem to vehicles. Several Bayesian
models (e.g., hidden Markov models), RL, DNN, or artificial
neural networks can be used for vehicles’ adaptation to the
dynamicity of the complex environment [180], [171].

FIGURE 12. ML can be applied to tackle the challenges of spectrum
sensing in CR-VANET.

A vehicle might need to exchange reliable safety-critical
messages that are strictly delay-sensitive. Meanwhile, a vehi-
cle might exchange entertainment data that are delay-tolerant.
Here, priority is provided to the first vehicle. In sum-
mary, different vehicles have different QoS requirements.
ML approaches can be applied to determine the requirements

of services by vehicles and provide priority in spectrum
sharing accordingly.

Another challenging issue in spectrum sensing is security
threats or attacks. Various security attacks, such as jamming,
SS data falsification, primary user emulation, or bias attacks,
affect spectrum sensing in CR-VANET. Further details on
these attacks and their mitigations are described in the fol-
lowing subsection III.B. ML methods are useful in detecting
malicious attacks and contribute to mitigation [6]. Another
challenge in SS is the dynamicity of PU activities that affect
the performance of spectrum sensing [19]. The high-speed
mobility of vehicles and PU spectrum occupancy activities
exert considerable effects on the probability of detection.
ML can be a powerful tool to model PU activity and solve
these issues. The authors in [181] used deep learning to
predict PU activities. This learning is utilized by the SUs for
appropriate spectrum sensing, which reduces the false detec-
tion of PUs’ presence. In CSS, several vehicles provide sens-
ing information to the fusion center, to the RSU, or to other
vehicles. Appropriate synchronization should exist between
these sensing data. The three types of fusion techniques are
as follows: (i) hard fusion (AND rule, OR rule, etc.), (ii) soft
fusion (maximum ratio combining), and (iii) learning-based
fusion. Learning-based fusion by using ML outperforms
other fusion techniques due to the rapid adaptation to the
environment and high predictive capability [182]. In the same
study, the authors used K-means clustering, Gaussian pro-
cess, SVM, and weighted KNN learning methods to imple-
ment CSS. They found that learning-based fusion is better
than conventional CSS. Therefore, ML can be very useful
in synchronizing various sensing results provided by several
vehicles.

ML can be utilized to provide dynamic information
exchange with minimum overhead and delay and for
real-time resource allocation (RA) with low complexity.
Instead of sensing the entire available channel, a portion
of the channel can be sensed to find the spectrum hole,
thereby providing energy efficiency to the network. By using
ML, a vehicle can learn the portion to be sensed even with-
out sensing the channel that can be accessed opportunis-
tically [183]. ML reduces the spectrum sensing time and
increases the probability of PU detection while reducing the
probability of false alarm (inaccurately assuming the pres-
ence of PU). Through collaboration, vehicles can exchange
spectrum availability information to improve their spectrum
knowledge. ML can help proliferate this learning as well.

Several studies were conducted on spectrum sensing in
CR-VANETs by using ML methods. The authors in [15]
discussed the use of variousML approaches in spectrum sens-
ing issues of CR-VANETs. They discussed RL, case-based
reasoning, SVM, and ANN in terms of spectrum sensing
along with several challenges and opportunities.

In [183], the authors showed how ML can be used to
obtain energy-efficient spectrum sensing. When the number
of channels is sensed, more time and energy are required.
In full sensing (without using ML), CR senses every target

78074 VOLUME 8, 2020



M. A. Hossain et al.: Comprehensive Survey of ML Approaches in CR-Based VANETs

channel on a random basis. In restricted sensing, CR only
senses the best available channels learned using RL, thereby
providing enhanced bandwidth efficiency. Minimum sensing
is a scheme in which sensing can be stopped if the avail-
able spectrum is fully partitioned by learning. Here, after
1900 events, the total energy consumption was only approx-
imately 1.72% of the full sensing scheme, assuming that
energy consumption increases with the number of channels
sensed.

In [18], the authors used data mining with historical data
and ML approaches of the Dirichlet process for spectrum
sensing in CR-VANETs. They used AP at the start and end of
the road to collect and update sensing data from vehicles for
improved spectrum sensing. In [66], a Bayesian classifier was
used for centralized spectrum sensing, and in [97] and [184],
non-parametric Bayesian was used for efficient cooperative
spectrum sensing. Game theory approaches were utilized
in [185] and [186] for the channel selection issue. In [177], the
author proposed an architecture by using RL and case-based
reasoning for VANET to enable automatic learning of the
radio environment by vehicles. By using several ML tools,
the authors in these studies obtained very good performance
in spectrum sensing as evidenced by a high probability of PU
detection and low probability of false alarm.

In [187], the authors used deep Q-learning to design an
optimal data transmission scheduling scheme in CR-VANET
for minimizing transmission costs. They used cache mem-
ory for the decision. Their scheme’s convergence took place
after 13,000–20,000 iterations at 28 m/s vehicle speed.
Morozs et al. [188] proposed a scheme that integrates dis-
tributed Q-learning and CBR to facilitate several learning
processes running in parallel. The RLmethod was considered
for the CR network with RF energy harvesting in [189]. The
proposed scheme was used for optimum switching between
the transmit mode, energy harvesting mode, and receiving
mode of the SUs. (To know more about energy harvesting
and related technologies, refer to [190]). In [191], the authors
proposed a two-stage learning algorithm to reduce the chan-
nel sensing period. They used RL and the Bayesian method
for learning. Their algorithm selected the best spectrum by
using RL and multi-armed bandit and then identified the
interval duration between two sensing operations by using the
Bayesian method. They aimed to reduce the overall sensing
time by determining how much time can be skipped without
sensing the channel again for any PU presence.

Table 9 summarizes these studies and other relevant
research.

2) SPECTRUM MOBILITY MANAGEMENT
Spectrummobility management, which refers to the spectrum
handoff or stay-and-wait phenomenon, is one of the major
tasks in CR-VANET. Spectrum handoff means that the SU
has to switch to another vacant spectrum to release the cur-
rently using spectrum when any PU appears or reappears.
Stay-and-wait refers to the situation in which the SU pauses

its transmission for a moment until the condition improves
again [192].

For a smoother transmission of safety and non-safety
messages, appropriate spectrum mobility management is
required. It also has to have a long-term impact on net-
work performance. Several challenging issues (e.g., handoff
in dynamic radio environment or handoff in multiple radio
access networks) can be tackled using ML. In [193],
the authors focused on spectrum adaptation (SUs’ trans-
mission behavior adjustment, such as packet transfer rate)
and spectrum handoff. For the spectrum adaptation issue,
they used the raptor codes. For the handoff issue, they used
transfer ML in which a learned node teaches or transfers
its knowledge to the learning node. This transfer learning
reduces the learning time and increases the converge rate.
They used transfer actor-critic learning (TACT) for this issue.
Here, a ‘‘student’’ or learning SU learns from the ‘‘teacher
or expert’’ SU regarding the spectrum decision. In [192],
the authors used TACT for spectrum mobility management.
They obtained better results compared with the results of
the traditional Q-learning approach. Their primary goal was
to design an intelligent spectrum handoff and stay-and-wait
decision for rate-less multimedia transmissions in dynamic
CRN. They calculated the channel utilization factor to gain
knowledge on channel quality and used CDF-enhanced raptor
codes to adapt to dynamic channel conditions.

B. ML IN THE SECURITY ISSUES OF CR-VANET
Security is one of the most serious concerns in CR-VANET.
Wrong information provided by a malicious vehicle or com-
promised RSU to legitimate vehicles causes severe damages.
For example, wrong information does not allow a vehicle
to perform an appropriate projection of the vehicles ahead
and might cause accidents. A vehicle can provide wrong
information regarding the presence of PU to other vehicles for
the exclusive use of the spectrum. A pedestrian might obtain
inaccurate information from the vehicle, make an inappropri-
ate decision, and eventually face an accident. Several types
of attacks occur in CR-VANET scenarios. Similar to other
networking systems, the security issues of CR-VANET can
be classified into the following major areas [195], [196]:
1) Confidentiality: Communication should be secret, and

only the sender and genuine receiver should understand the
message. Third-party users cannot intercept or understand the
message.
2) Authentication: The identification of legitimate users is

ensured.
3) Authorization or access control: It controls the rights,

privileges, and access domain of users.
4) Non-repudiation: The sender cannot deny sending the

message, and the receiver cannot deny receiving it.
5) Data integrity: The message sent by the sender should

not be altered.
6) Network availability: The network and its services

should always be available for users.
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TABLE 9. ML for spectrum sensing in CR-VANETs.
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TABLE 9. (Continued.) ML for spectrum sensing in CR-VANETs.
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7) Privacy: Private and confidential data should not be
available to the public.

Alexandros et al. in [197] surveyed several security threats
in CR and CRN and their mitigation techniques. The authors
in [6] described numerous security threats encountered in the
CR environment. They reviewed the usages of RL to solve
these security issues. Layerwise taxonomies and descriptions
of various security aspects of CRN were presented in [198].
Engoulou et al. provided state-of-the-art security issues and
challenges in VANET in [196]. Various routing-related secu-
rity issues were surveyed in [199].

Other survey studies based on the security issues of
VANET are available, such as [200], [201], and [202].

A summary of several important security threats identified
in the literature on the CR-VANET scenario is presented
in Table 10. Several attacks are found only in CR, others are
only in VANET (indicated in the table), and a few occur in
both networks.

Figure 13 shows a typical scenario of PUEA in the
CR-VANET scenario. For example, the TV spectrum is used
by a vehicle for DSA purposes if no DSRC is available.
An attacker wants to use this vacant TV spectrum selfishly.
For this reason, it pretends to be a PU and sends a similar
signal of PU to the SUs. The vehicles or the SUs consider this
the presence of a PU and then release the spectrum to avoid
interference. After the legitimate SUs release the spectrum,
the attacker grabs the chance to use this vacant TV spectrum
selfishly.

FIGURE 13. PUEA in CR-VANET.

ML can play a crucial role in mitigating these security
issues. The pattern of the attacks or the attackers can be
detected using ML. In [16], the authors proposed a two-level
authentication of PUs and used SVM to train the system to
detect the PUEA attacker. Li and Peng [17] used an unsuper-
vised ML approach to solve PUEA and SSDF attacks. They
assigned an adaptive identity value for identifying each SU
to overcome the identification error and increase reliability.
A malicious traffic detection technique that uses an AI-based
jamming detector was proposed in [204]. The authors used

deep learning to ensure malicious-free cooperative awareness
message (CAM) communication.

To mitigate jamming attacks, learning about the radio
channel model and the methods used for jamming is required.
Otherwise, it becomes a challenging and complex task.
According to previous observations, a user can learn an opti-
mal policy by usingML to address such a challenge. In [220],
the authors proposed a 2D anti-jamming communication
scheme for CRN. In their scheme, an SU exploits the spread
spectrum and user mobility to address this attack. They used
deep Q-network or learning (DQN) to enable an SU to learn
the optimal frequency hopping policy and decide whether to
leave the jamming area. In [221], Xiao et al. formulated
the power interaction between two SUs and a jammer as
an anti-jamming transmission game. Given that the learn-
ing process of Q-learning is slow, they used Q-learning and
‘‘win or learn fast’’ principle with the hill-climbing principle
(WoLF-PHC), which is a multi-agent scenario of Q-learning,
to mitigate the jamming problem with the help of the relaying
concept. The authors in [222] discussed the exploitation of the
MDP model and the Q-learning algorithm to solve jamming
attacks. They also emphasized on the Q-learning algorithm
to make it achieve rapid convergence. Another approach
was found to accelerate the learning speed of Q-learning
as a jamming mitigation technique in CRN in [223]. The
authors usedQV learning (a value function-basedQ-learning)
and SARSA to replace minimax-Q learning (a variation of
Q-learning). Q-learning was also used to mitigate jamming
attacks in [224], [225].

RL can be used to solve security issues related to the
cooperation in CRN, such as Byzantine attack, SSDF, and
CCDA. The authors in [226] used RL to teach each CR
user to autonomously decide with whom to cooperate by
learning cooperator behavior. The RL algorithm defines the
appropriateness of the available cooperators and selects the
most suitable ones to cooperate with. In [227], a reputation
scheme was proposed with the help of the RL algorithm and
on-policy Monte Carlo method to avoid malicious users.

In VANET, an attacker can inject wrong information
(it may be spectrum-related or routing-related). The attacker
can also compromise the roadside sensors to inject faulty
data to legitimate vehicles. As a result, vehicles might mis-
calculate the safe spacing among them, which and eventually
leads to accidents. For example, as illustrated in Figure 14,
the attacker injects malicious code to the sensors to compro-
mise them. As a result, these sensors and the attacker send
the wrong message to the bus. The bus miscalculates the
safety spacing and might cross the safety spacing with the
ambulance, eventually colliding with it.

Several studies, such as [228], were performed to solve this
issue. The authors focused on wrong message detection and
proposed to impose a fine onmisbehaving vehicles. However,
in these algorithms, the attackers’ actions are assumed stable.
This is unsuitable for practical implementation. ML can be
used by the vehicle to learn about the attackers’ actions based
on their time-varying observations [229]. The pattern of the
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TABLE 10. Various security threats in CR-VANET [6], [203].
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TABLE 10. (Continued.) Various security threats in CR-VANET [6], [203].

FIGURE 14. Security attack in CR-VANET scenario.

attacks can be tracked by using ML. Therefore, if any similar
situation occurs, the attack can be easily detected. Similarly,
the attacker’s history can be recorded; therefore, if the same
vehicle sends any messages, detecting and discarding such
messages would be easy. The authors in [210] proposed an
ML approach to classifying various misbehavior in VANET.
They used concrete and behavioral features of each vehicle
that transmits safety messages. Their designed framework
was used to differentiate a malicious vehicle from a legitimate
one. Their scheme can be adopted to solve several security
issues, such as Sybil, position forging, and identity spoofing
attacks. They analyzed the features of vehicles, such as their
geographical position, accepted range with respect to RSU,
speed deviation, received signal strength, packet drop and
capture ratio, and error rate. Another misbehavior detection
scheme using the ML method was introduced in [230]. The
authors used the feed-forward back-propagation ANN clas-
sification method in their proposed scheme. Zhang and Zhu
proposed a privacy-preserving ML-based collaborative intru-
sion detection system (PML-CIDS) architecture [231].
This approach enables vehicles to collaboratively exchange

information and share knowledge to detect the misbehavior
of malicious vehicles. Tomitigate several malicious attacks in
VANETs, SVM was used in [77]. The developed framework
can determine the boundary between malicious and legiti-
mate vehicles. The authors modeled contextual information,
such as velocity, temperature, and altitude, as SVM’s feature
vector. The authors in [232] used KNN and SVM to detect
and classify the misbehavior of malicious vehicles. Another
misbehavior detection approach using SVM was proposed
in [233]. An IDS was developed by using ANN and fuzzified
data to detect black hole attacks [234]. The system, which can
detect misuse and anomaly, utilizes features extracted from
the trace file as auditable data.

In [235], the authors proposed a collaborative secu-
rity attack detection mechanism by using multi-class SVM
to detect various types of attacks dynamically. In their
scheme, a group of vehicles analyzes the incoming flow
and sends flow information to the controller, which trains
the multi-class SVM in a centralized manner. Subsequently,
the controller creates an SVM classifier and directs it to
all vehicles. As a result, the vehicles can classify the types
of attacks from the new incoming flow. This approach
can protect against any attack. In [206], the authors used
supervised learning to mitigate DoS or DDoS attacks. They
employed two open-source network intrusion detection sys-
tems (NIDS), namely, Bro and Corsaro, and two supervised
ML approaches, namely, classification and regression tree
(CART) decision tree and naive Bayes classifier. Aneja et al.
proposed a hybrid IDS using ANN as a classification engine
and a genetic algorithm as an optimization engine for feature
subset selection to mitigate flooding attacks [236]. Yang et al.
proposed a Sybil detection scheme based on mobility similar-
ities among vehicles by using threeML classificationmodels,
namely, naive Bayes classifier, SVM, and decision tree [237].
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They extractedmobility features from vehicle trajectories and
trained to differentiate the attacker from an honest vehicle.
To counter location forgery, they utilized base stations (BS)
as the location certifiers.

In [238], the authors used hotbooting (a type of transfer
learning) policy hill climbing (PHC, a model-free RL tech-
nique for the mixed-strategy game) based unmanned aerial
vehicles (UAVs) to relay messages of vehicles to mitigate
jamming attacks in VANET. A location verification sys-
tem using DNN was proposed in [239] to mitigate several
routing falsification attacks, such as position forging attack,
wormhole, and gray hole. The authors proposed their scheme
based on time of arrival (ToA) measurements from several
verifying BS in vehicular networks. Another study [240]
used swarm algorithms of AI to detect several routing-related
security threats. In [241], a physical layer rogue edge detec-
tion (RED) scheme was proposed by using a Q-learning-
based authentication system to mitigate MITM attacks. The
authors used ambient radio signals and the received signal
strength indicator (RSSI) of packets, by which they modeled
the RED process as a dynamic spoofing detection game.
Here, Q-learning was used to enable a vehicle to achieve
the optimal authentication policy. Security is one of the most
serious concerns and challenges in the CR-VANET scenario
because spectrum sensing and data transmission attacks can
occur simultaneously. CR-VANET is more vulnerable than
CRN and VANET individually. Therefore, the combined mit-
igation policy should be considered. A very small error or
minor mistake can lead to a massive accident. A vehicle
might collide with another vehicle just because of wrong
message reception or when compromised. ML can be used
with CR-VANET to alleviate several security threats. It can
be utilized to identify malicious vehicles, the misbehavior of
vehicles, and the pattern of attacks and for original and fake
message identification.

Table 11 summarizes several of the works mentioned
above.

C. ML IN ROAD SAFETY
This subsection discusses various road safety aspects where
ML can be applied to ameliorate the overall performance.
Figure 15 shows various applications of ML to ensure road
safety.

VANET is mainly applied to reduce road accidents and
fatalities. Every year, approximately 1.25 million people die
due to road accidents. A report showed that around 90% of
these accidents is due to human errors (speeding, not detect-
ing the risk, slow response of drivers, abrupt lane change,
drowsiness, and so on). Therefore, 90% of road accidents
can be avoided by using several intelligent vehicle assistant
technologies [242].

A total of 60% of road accidents can be avoided if the
driver receives the safety message even before 0.5 seconds
of the accident [243]. ML has significant contributions to
advanced driver assistance systems (ADAS) for the AV
system. Intelligent vehicles using ML can inform the driver

FIGURE 15. Various usages of ML to ensure road safety.

or warn of severe dangerous situations prior to an accident.
Safety messages might not be exchanged due to the shortage
of DSRC. Therefore, dynamic spectrum access is required to
allocate an emergency spectrum for safetymessage exchange.
The integration of CR and VANET plays a crucial role in
reducing road accidents. However, the CR process (sensing,
selecting, adapting, and mobility) should be rapid to ensure
on-time safety message reachability. In this regard, ML is
the best candidate to ensure such QoS for safety messages.
Falsified information, jamming, and other security issues also
lead to road accidents. ML is the optimal counterpart to tackle
these security threats (discussed in the last subsection) and
eventually contributes to reducing road casualties.

1) BARRIER DETECTION, CRUISE, AND LONGITUDINAL
CONTROL
Obstacle detection is one of the essential elements to reduce
road accidents. The position of obstacles or any other front
or back vehicles can be measured by using various sensors
(RADAR, LIDAR, and camera) embedded into cars, roadside
sensors, and GPS. A collision can be avoided if a safe space
exists between vehicles. By gathering data from these sources
and by using ML, a warning message can be sent to the driver
or vehicle (for AV) for emergency braking or slowing down
(or steering to the left or right) if any barrier or obstacle is
encountered.

Figure 16(a) shows that vehicle A senses its surroundings
for obstacle detection. If A speeds up, then it would collide
with C; if it suddenly brakes, then it would collide with B.
Besides, it cannot go left or right due to other obstacles. In this
scenario, the speed of A should be balanced to provide a
warning message to B and keep a safe distance from it.

ML is useful in training vehicles in these scenarios.
In [244], the authors proposed a general framework for
robust on-road pedestrian and vehicle detection, recognition,
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TABLE 11. ML to mitigate security threats in CR-VANET.
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TABLE 11. (Continued.) ML to mitigate security threats in CR-VANET.
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TABLE 11. (Continued.) ML to mitigate security threats in CR-VANET.

FIGURE 16. (a) Barrier detection, (b) emergency braking, (c) lane changing, and (d) signal detection.

and tracking based on a deep learning approach. For their
framework, they initially produced a robust disparity map
under various driving conditions by using the adaptive U-V
disparity algorithm (refer to [245] for details on U-V dis-
parity). After detection, they classified obstacles into vehi-
cles, pedestrians, and unknown objects by using the tile
convolution neural network. Then, another deep learning
algorithm was developed to track detected obstacles in the
consequent frame. Dairi et al. in [246] proposed a detection
scheme by using a stereovision-based method for an urban
vehicular network. They used a deep-stacked auto-encoder
(DSA) model with the KNN classifier to accurately and
reliably detect the presence of obstacles. They utilized three
real-life datasets, namely, the Malaga stereovision urban
dataset (MSVUD), the Daimler urban segmentation dataset
(DUSD), and the Bahnhof dataset. Another comprehensive
work is [247]. Here, the authors proposed a learning-based
driving event classification method by using decision trees
and linear logistic regression to detect obstacles.

Figure 16(b) shows that vehicle C detects a pedestrian in
front; thus, it needs to perform emergency braking. However,
if C presses the brake, it would collide with A and A with B.
Therefore, C should send a warning message to A to slow
down or to brake, and similarly, A should send the message

to B. These emergency braking and warning message transfer
should be performed first. This situation can be trained to
the vehicles by using ML. As a result, they receive an auto-
matic warning message to brake or to slow down. In [248],
Chae et al. used DQN to design a system for autonomous
braking. Their system automatically decides whether to apply
the brakewhen facing the risk of an accident by using obstacle
information obtained by sensors. In their proposed system,
the reward is achieved when the vehicle eliminates the danger
as early as possible.

Adaptive cruise control (ACC) is a system where the vehi-
cle’s speed and acceleration are maintained automatically.
This is done based on the obstacle ahead or to keep a safe
distance from the front vehicle. Initially, the system sends a
warning message to the driver (for the driving vehicle), and
if the driver takes no action, then it automatically adjusts the
speed. For a driverless vehicle, the entire process is executed
automatically. In [249], a cooperative ACC (CACC) system
with the help of RL was proposed. The authors emphasized
on V2V communication to exchange the safety message
for ACC. They used RL to design a controller for the safe
longitudinal following of a front vehicle. Another CACC
work is found in [250]. Here, the authors used supervised
learning (trained with real driving data) and actor-critic RL
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(in this RL, the value function and action policy are approxi-
mated and suitable for problemswhere themodel information
is minimal; it is also known as neural dynamic programming)
to obtain an adaptive system. Zhu et al. proposed an adaptive
longitudinal control method by using actor-critic RL in [251].

2) LANE CHANGING ASSESSMENT
Another reason for road accidents is uncontrolled lane chang-
ing and keeping. This lateral control is highly required in
road safety. Figure 16(c) shows that car A should change lane
from the current lane to the left to maintain its speed and
avoid collision with C. In the autonomous car system, this is
performed by assessing the obstacles surrounding the car and
other vehicles’ position, speed, acceleration rate, and steering
torque. A vehicle might have to change its lane to free that
lane for an ambulance or emergency vehicle. Further details
on this issue can be found in [252].

Several studies have found that variousML approaches can
be used to train vehicles in terms of lane changing. In [253],
the authors used DQN to train a vehicle to handle speed,
overtaking, and lane change decisions. They compared their
work with the reference model consisting of IDM (used for
modeling the longitudinal dynamics of a vehicle) andMOBIL
(used for lane changing decision) models and found that their
work is better. Kim et al. used ANN and SVM to design an
algorithm for the accuracy improvement of the classification
of the lane change intention of a driver [254]. They used
various onboard sensors for the basicmeasurements. In [255],
SVM was used to classify the driver’s intention of lane
changing. The authors in [256] compared the accuracy per-
formance of various supervised learning approaches, such as
SVM, naive Bayes, logic regression, nearest neighborhoods,
decision trees, extra trees, and random forest classifiers,
in lane changing modeling.

3) MITIGATING SECURITY ISSUES
A security vulnerability is one of the major reasons for road
accidents, especially in autonomous smart vehicles. A vehicle
might be affected by wrong information due to various secu-
rity attacks. As a result, it might take inappropriate decisions
(inability to detect obstacles, a miscalculation in longitudinal
and lateral control, and dangerous lane changing) that lead to
severe road casualties. ML can play a significant role in miti-
gating the security threats that affect road safety. Section III.B
has discussed these security threats and the usages of ML for
their mitigation.

4) DRIVER VIGILANCE MONITORING
One of the main causes of road accidents is the distraction of
drivers. Appropriate intelligent driver vigilance monitoring
is mandatory to secure roads. In this monitoring system,
cameras and embedded sensors are used to monitor real-time
facial expressions of drivers. The data are processed to assess
drivers’ emotions (stress, anger, etc.) or whether or not
they are sleepy On the basis of this assessment, an intel-
ligent vehicle takes appropriate actions (may send warning

messages, slow down the car, or slowly park on the roadside
safely) [257]. ML is a tool to train vehicles regarding drivers’
vigilance monitoring. Similar to [258], the authors used
SVM with Hu invariant moments to design a real-time eye
detection method. This method can assess whether or not the
driver focuses on the road (by judging eye movements and
openness). If the driver is not focused, then the vehicle would
send an alarm to the driver. Ding et al. proposed a method to
detect drivers’ postures by using pressure sensor data and the
SVM classifier [259]. They placed pressure sensors between
the driver and the driver’s seat to collect data. The method can
assess a driver’s movement and activities (whether or not the
driver is drowsy or inattentive to driving) by classification.
In [260], an SVM-based drowsiness prediction method was
proposed. The authors used eyelid-related parameters to
design their prediction models.

5) ROAD SIGN AND TRAFFIC SIGNAL IDENTIFICATION
Appropriate identification of road signs and traffic signals is a
key issue in road safety. If the detection is inaccurate, then the
vehicle will take inappropriate actions that lead to accidents.
Therefore, accurate identification and exact action based on
road signs or signals are crucial to ensure road safety. For
example, as shown in Figure 16(d), if car A cannot detect the
red signal and does not stop, then it would collide with B.
Then, car C has to detect the speed breaker in front of it to
avoid any casualty. For AVs, road signs and traffic signals
must be appropriately learned; otherwise, severe accidents
would occur.

In [261], the authors used ANN for real-time traffic sign
classification and identification. They classified signs into
different shapes (triangle, square, etc.) and colors. Then,
based on the shape and color combination, they classified
signs into different classes, such as danger, information,
obligation, or prohibition. After appropriate sign detection,
it sends an alert to the driver or vehicle to take the appro-
priate action. A convolutional neural network (CNN, a deep
learning method) was used to recognize traffic signs in [262].
In [263], a traffic light and sign detection mechanism were
designed. The authors used modified CNN in their real-time
experiments and a mini-batch selection mechanism to train
vehicles on a traffic light and sign datasets simultaneously.

6) SAFETY MESSAGES AND QoS
These accident reduction schemes are dependent on safety
message exchange. If a message does not reach the driver
or the system, then the vehicle cannot operate at all. For
example, if the vehicle does not receive any safety message
from the front vehicle to slow down or to stop, then it will
collide with it and result in casualties. Safety messages are
of two types, namely, alarm and beacon; such messages
must be reliable and have very low latency. For safety mes-
sage exchange, the latency must be less than 100 ms [264].
However, in high-traffic situations or serious traffic conges-
tion in urban areas, the allocated DSRC might be exhausted.
Therefore, the CR concept was introduced. Under this
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condition, a vehicle searches for a vacant spectrum and
accesses this spectrum opportunistically. Therefore, CR with
VANET plays a very significant role in accident reduction.
A vehicle must execute the CR process in a fast mode because
the message latency is very low. The timely delivery of safety
messages is a challenging task in VANETs due to vehicles’
high-speed mobility and random traffic environments. ML is
an effective tool in this regard. We have discussed the roles
of ML in spectrum sensing issues in Section III.A. We have
observed that several ML methods are used for fast spectrum
sensing so that a vehicle would receive the spectrum rapidly
and can communicate without any delay. We now focus on
other issues related to safety messages and the roles of ML in
such.

In [13], the authors addressed safety and QoS concerns
in a V2I scenario. They used DQN that learns an energy-
efficient scheduling policy from inputs corresponding to the
characteristics and requirements of vehicles located within
the range of an RSU. Aside from having road safety and
acceptable QoS, their policy is expected to prolong the life-
time of battery-powered RSU. In [265], the authors pro-
posed a data collection protocol by using the distributed
Q-learning algorithm. They used the relaying technique in
their proposed scheme. Unnecessary network overhead can
cause congestion in the radio network of VANET. Therefore,
message exchange methods should use reduced overhead and
communication costs. A clustering-based learning algorithm
was proposed to ensure such a low communication cost and
network overhead in [266].

7) DATA CONGESTION
On roads, especially in urban areas, the presence of many
vehicles creates data congestion. Data congestion occurs, par-
ticularly at the intersection points of roads. Network conges-
tion occurs when all channels are occupied in a highly dense
network; as a result, packets are lost and face delay, which
eventually degrades the network performance. An appropri-
ate congestion control mechanism is required to overcome
this problem. In [90], the authors proposed an ML-based
congestion control mechanism. They used RSU to control
congestion with the proposed hybrid centralized and local-
ized strategy by using a k-means algorithm. Their mechanism
was used to cluster the messages used in VANETs. The
parameters included the size, duration, type, and directions of
the messages and the distance between the vehicles and RSU.
The authors in [187] used deep Q-learning to propose a data
transmission scheduling strategy forminimizing transmission
costs and delays. They considered the CR spectrum, vehic-
ular caching, the link between various transmission modes,
the vehicle’s mobility, and the QoS requirement.

8) VEHICLE’s HEALTH MONITORING
Accidents sometimes occur due to the system failure of
vehicles. Several subsystems of a vehicle can fail at any
time and can lead to accidents. These subsystems include
fuel, ignition, exhaust, braking, and cooling systems [269].

For example, if the braking system suddenly fails while a
vehicle is on the move, then a fatality might take place. If the
driver can monitor the braking system early or is notified of
the fault of the system early, then he could avoid the accident.
Therefore, an appropriate vehicle health monitoring system is
required. The system must have the ability to detect, correct,
and predict failure and provide an appropriate messaging
system.

A fault detection, prevention, and correction mechanism
can be designed using several sensors and ML. In [269], the
authors presented a vehicle monitoring and fault predicting
system. For fault detection, they used four classifiers, namely,
decision tree, SVM, random forest, and KNN. To collect
the data, they utilized various sensors in a Toyota Corolla
car. A driver can know about the internal conditions of sys-
tems and becomes aware of any future failure by using the
system. An engine fault detection mechanism was proposed
in [270] by using the Hilbert–Huang transform (HHT) and
the SVMML approach. Engine faults can be detected by ana-
lyzing the current performance, lubricating oil, vibration, and
noise.

Table 12 summarizes the papers mentioned in this
subsection.

D. ML TO REDUCE TRAFFIC CONGESTION
We have discussed the impacts of traffic congestion. It does
not only affect the economy but also our daily social lives.
It cost approximately $305 billion in 2017 in the U.S.
alone [3]. Approximately 4.8 billion hours are wasted cumu-
latively, and 1.9 billion gallons of fuel are wasted glob-
ally [271]. It increases the stress level of drivers, thereby
leading to road accidents. VANET has emerged as a solution
to reduce the level of congestion, and CR is an integral part
of it. Therefore, CR-VANET greatly affects traffic jam reduc-
tion. ML is a potential candidate to enhance the performance
of all aspects of CR-VANET. Figure 17 shows the areas
of CR-VANET where ML can be applied to reduce traffic
congestion.

FIGURE 17. Applications of ML for congestion reduction.
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TABLE 12. Summary of the usages of ML to ensure road safety.
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78088 VOLUME 8, 2020



M. A. Hossain et al.: Comprehensive Survey of ML Approaches in CR-Based VANETs

TABLE 12. (Continued.) Summary of the usages of ML to ensure road safety.

1) TRAFFIC FLOW PREDICTION
Retrieving live traffic information has become easy with the
help of ITS and the advancements of the Internet of Things
(IoT). Live and stored historical data can help predict traffic

flow,which is h important for congestion reduction. They also
help reduce fuel consumption and carbon emission. ML is a
proven tool to achieve high prediction accuracy in real-time
environments. In [272], the authors used big data and the
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deep learning (deep-layered hierarchical NN) approach for
traffic flow prediction. They utilized stacked autoencoders to
determine generic traffic flow features and the greedy layer-
wise algorithm for training purposes. They compared the
results with those of other supervised learning approaches,
such as SVM, backpropagation NN and random walk fore-
casting model, and radial basis function NN. They claimed
that their proposedmethod provides better results than others,
with over 90% forecasting accuracy.

In [273], Ide et al. designed a model for traffic flow
prediction. They correlated LTE data traffic with vehicu-
lar traffic to design their model. After the analysis, they
identified Poisson regression trees as the best candidate for
traffic flow prediction. The online learning weighted SVR
approach was proposed for short-term freeway traffic flow
prediction in [274]. In [275], the authors proposed a deep
learning method for traffic speed prediction. They used CNN
in its proposed scheme. A Bayesian model was adopted to
design a model for traffic flow prediction and used it for
experimentation in the urban area of Beijing [276].

2) ROUTING AND LOAD BALANCING
Routing and load balancing of traffic is another solution to
reduce traffic congestion. The VANET environment, despite
its challenges, has advantages, such as a depiction of potential
patterns of everyday traffic. By using ML, these patterns can
be further exploited to establish a proper routing of traffic and
for load balancing to reduce traffic congestion.

Road traffic conditions can be determined by using and
analyzing satellite images, GPS measurements, various sen-
sor data, and drivers’ cell phone data. As a result, a driver can
be informed about road traffic and can avoid congested roads.
Deep RL can be used to analyze these data.

Berkeley Laboratory scientists, in collaboration with UC
Berkeley, used deep RL to achieve congestion-free roads.
Their traffic congestion reduction project was known as Con-
gestion Impact Reduction via Connected and AV-in-the-loop
Lagrangian Energy Smoothing (CIRCLES). This project was
based on the open-source software framework called ‘‘Flow.’’
Their aim was to reduce traffic jams and save energy. ‘‘Flow’’
trains vehicles to learn about the behavior of the front and
back vehicles and take appropriate actions. They have another
project called ‘‘DeepAir,’’ in which they used deep RL and
satellite imaginary to estimate air quality impact (wind speed,
pressure, precipitation, and temperature). This project pro-
vides an insight into the sources of pollutants and helps
design appropriate routing and load balancing of traffic [277].
In [278], the authors used Q-learning and ANN to assess
policies regarding the maximum driving speed allowed on
highways so that traffic congestion is avoided. They consid-
ered traffic prediction in their scheme.

3) SMART PARKING
In many situations, an inappropriate parking system causes
serious traffic congestion, especially in crowded urban areas.
A driver takes a long time to park due to the lack of knowledge

regarding the parking space; as a result, a long queue is
created. On average, vehicle users spend 7.8 minutes for
parking purposes. This leads to approximately 30% of the
traffic flows in cities and this causes traffic congestion espe-
cially in peak hours [279]. Moreover, inappropriate parking
hampers normal traffic flow. Therefore, appropriate parking
management is required to alleviate traffic congestion.

Existing manual methods for parking management
are inefficient, time-consuming, and annoying. Therefore,
researchers have selected various ML approaches to achieve
a smart and effective parking system. ML-based parking
systems provide accurate and real-time parking information
without the need for expensive infrastructure. Automated
smart systems such as the Parking Guidance and Informa-
tion (PGI) system integrated with the ML can alleviate such
issues. Camera and sensor-based systems are widely studied
in the literature. Incorporating ML with these systems would
provide more accurate, robust and faster detection for the
free and occupied parking lot [280]. ML is also capable
of offering predictions of parking occupancy in advance.
ML provides more accurate parking occupancy forecasts, this
gives improved parking guidance for the vehicle users and
reduces the time needed for the parking purpose.

A parking guidance and information (PGI) system was
designed by using deep CNN and binary SVM classifiers
in [281]. The authors used public datasets (PKLot) with
variations of illuminance and weather conditions. In PKLot,
12,417 images of three parking sites are available, thus gen-
erating 695,899 segmented parking spaces that are labeled
in the package. Deep CNN was also used in [282] to detect
vacant parking spaces. In [283], the authors proposed an
illegal vehicle parking detection system by using deep learn-
ing. They utilized the single shot multibox detector (SSD)
to design their detection model. Their system analyzed the
state of tracked vehicles to determine whether a vehicle
is illegal or not. A visual parking lot occupancy detection
system was proposed by using CNN in [284]. The system
only requires smart cameras; hence, it is simple and cost-
effective. The authors performed experiments on PKLot and
their dataset (now publicly available). A Bayesian framework
was designed to detect vacant parking spaces in [285]. The
proposed plane-based method adopts a structural 3D parking
space model, which has abundant planar surfaces.

4) ADVANCED TOLL SYSTEM
Traffic congestion is a regular phenomenon at tolling sta-
tions. A long queue is created due to the manual and/or
slow tolling system, thereby leading to traffic congestion.
Therefore, the tolling system can be developed by using
advanced techniques, such as IoT and ML. Another approach
to reducing traffic congestion is to implement a congestion or
cordon fee (i.e., every vehicle is charged a toll when it uses
the specified cordon or road of an urban area where traffic
congestion is very high). For example, Singapore has intro-
duced electronic road pricing to charge vehicles when they
enter a certain cordon, and London charges vehicles operating
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within the Congestion Charge Zone [286]. To obtain a smarter
congestion fee system, the authors in [286] used the RL
algorithm to model a distance-based dynamic tolling system.
In their model, no specified toll station is available to collect
tolls; instead, roadside sensors are used. Here, vehicles can
freely enter the toll lane at any point. The toll is calculated
based on the vehicle’s entry location and is controlled by the
tolling system.

For automated toll collection, vehicles need to be appro-
priately classified and verified. This task is challenging,
especially for heterogeneous vehicular traffic environments.
The authors in [287] used SVM to classify vehicles and
k-means to cluster vehicle signatures (where the class
labels of vehicles are unavailable). Their methodology had
four phases, namely, signal denoising, signal segmentation,
feature extraction, and classification.

5) ADAPTIVE TRAFFIC SIGNAL CONTROL
Traffic congestion occurs due to the inefficient control of
traffic signals. To reduce congestion, an adaptive and intel-
ligent traffic signal mechanism is required. Gao et al. [288]
proposed a deep RL algorithm that automatically extracts
useful features from raw and live traffic data (position, speed
of vehicles, vehicle queue length, etc.) and learns the optimal
policy for adaptive traffic signal control. They used machine-
crafted features instead of human-crafted ones.

In [289], an intelligent traffic light control system based on
Q-learning and neural networks was proposed to determine
signal light times to minimize total delays in an isolated
intersection. The authors used detectors to calculate current
traffic at an intersection and extended or terminated the green
time based on this information. In [290], the authors proposed
a scheduling scheme for traffic signals in multi-intersection
vehicular networks by using Q-learning and feedforward
neural networks for value function approximation. A similar
workwas presented in [291] by usingQ-learning. The authors
also implemented their algorithms on open-source Java-based
software called Green Light District (GLD).

Table 13 summarizes the papers mentioned in this
subsection.

E. ML IN RESOURCE ALLOCATION IN CR-VANET
The number of vehicles is increasing rapidly. Substantial
amounts of messages should be exchanged because several
new services and features are added regularly. However,
the allocated resources (time, frequency, etc.) are limited.
An appropriate resource management system is required to
accommodate such a massive number of vehicles and their
services with the minimum required QoS. ML has great
potential to perform this RA job for CR-VANET.

Learning RA strategies directly by gathering experiences
from the dynamic environment is more practically suit-
able and effective than traditional heuristic-based schemes.
Concerning the research question, ‘‘Can systems learn to
manage resources on their own?’’, the answer can be found

in [292], in which an experiment was conducted using deep
RL and DNN.

In [293], the authors used DQN to formulate the RA strat-
egy as a joint optimization problem for CR-VANET. They
jointly addressed three underlying resources enabling vehic-
ular applications, namely, networking, caching, and comput-
ing, to enhance the performance of vehicular networks. Their
proposed framework used the ideas of information centricity,
which originated from information-centric networking. Their
framework could enable dynamic adaptation of networking,
caching, and computing resources to satisfy the QoS of dif-
ferent services of VANETs. The same work was extended
in [294] with more analysis.

The cumulative energy consumption by the information
and communication technology industry reached 616 TWh
in 2013, and it is predicted to grow to 910 TWh by 2020;
the annual carbon emission is expected to reach 235 Mto
by 2020 [190]. We already discussed the spectrum short-
age issue. Energy- and spectrum-efficient RA strategies are
required. Zhou et al. [295] proposed an RA scheme for
real-time performance with a simple implementation method.
They designed their system by using DNN, and they pre-
sented a training method to train neural networks. In [296],
the authors considered the input and output of the RA algo-
rithm as an unknown nonlinear mapping. If it is learned
accurately and effectively by using DNN, then real-time RA
is possible and requires only a few operations. An interesting
DNN-based hierarchical predictive RA scheme was proposed
in [297]. Prediction can be made based on the mobility and
traffic load related to user behavior. The end-to-end predic-
tion method accelerated the performance of under-utilized
networks by predicting behavior-related information from
historical data.

In [298], a DQN-based decentralized RA mechanism was
presented for V2V communication. In this work, each V2V
link is regarded as an agent and can make its own decisions
to find the optimal spectrum and power for transmission. The
proposed scheme did not require any global information for
the agent, needed a minimal transmission overhead, and over-
came the issue of the latency constraints of V2V messages.
These advantages are difficult to achieve in traditional RA
schemes where ML was not used.

V2I or V2R links require appropriate RA schemes that can
tackle the inherent challenges of heterogeneous demands for
resources and strict QoS requirements. The work in [299]
focused on these issues. They used MDP in the RA scheme,
in which the resources allocated for the long term are mini-
mized. They also provided a state-of-the-art vehicular cloud
model that combines resources from individual devices and
systems in VANET and traditional cloud.

F. ML IN SPECTRUM-AWARE ROUTING IN CR-VANET
VANET routing is used to select the best path between the
source and destination vehicle through a set of other nodes
(might be other vehicles, RSU, and so on); thus, the message
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TABLE 13. (Continued.) Summary of the usage of ML to reduce traffic congestion.

can be transferred with the best QoS (minimum allowed
latency, maximum possible throughput, etc.)

This routing is required especially for vehicular safety
message exchange where the end-to-end delay must be less
than the threshold value and the reliability must be high. The
VANET network is changed frequently because the mobility
of vehicles is high. This rapid change in network topology
causes a delayed transfer of messages and data losses. The
traditional routing protocol cannot cope with the dynamicity
of VANETs. Therefore, robust and adaptive routing protocols
should be. available for VANET [300]. More details on the
routing in VANET can be found in [301], [45].

Software defined network (SDN) is the blessing technol-
ogy for the CR-VANET. SDN is a technology that canmanage
the whole network efficiently and transform the complex
network architecture into a simple andmanageable one [302].
Non-SDN supports only vendor-specific policies and offers
no flexibility for dynamic network environment but SDN is
capable of these. A network administrator can control traffic
from a centralized control console without having to touch
individual switches, routers or other devices in SDN. Due
to SDN, the control of the routing processes in CR-VANET
become very easy.

For CR-based routing, the routing modules must be aware
of the surrounding radio environment. The cooperation
between routing modules and spectrum awareness must be
strong. The routing of CR depends on how spectrum informa-
tion is gathered. The routing engine is providedwith spectrum
information in three ways, as follows [303]: i) by the external
entities or database, ii) locally by each SU, and iii) hybrid
(a mixture of i and ii).

The routing in CRN is highly dependent on the entire
CR cycle and the behavior of PUs. It is also influenced by
QoS metrics, such as nominal bandwidth, throughput, delay,
and energy efficiency, with path stability and the presence of
PUs [303].

For example, if the activity of PU is from moderate to low,
then the topology of the SUs is relatively static. As a result,
maximum QoS is achieved. On the contrary, the sudden
arrival or re-arrival of PUs causes unexpected route failure.
Instant rerouting is required for seamless communication.
Therefore, the routing of CRN should be dynamic, adaptive,
and intelligent. ML can be used to find the vacant spectrum
rapidly and can predict the PU’s behavior (when the PU is
absent or when it reappears). These tasks are necessary for a
stable and effective routing protocol for CRN. To determine
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FIGURE 18. Routing in CR-VANET.

the various types of CR routing with their features, advan-
tages, and disadvantages, interested readers should refer
to [303], [304].

CR-VANET is dynamic in nature, and route selection is
one of its biggest challenges. Finding the spectrum hole and
high speed of vehicles is among the major issues considered
for selecting the routing protocol in CR-VANET.

Therefore, routing protocols specifically for VANET or
routing protocols for CRN are not directly applicable to
CR-VANET cases. Unstable and inappropriate routing leads
to delay in the network, thereby reducing the overall per-
formance of the network. To ensure stable routing, which
provides improved QoS and energy efficiency by reducing
end-to-end delay, ML tools can be used in CR-VANETs.

Figure 18 shows a typical routing situation. By using a
routing mechanism, the source selects the path SU1→SU2→
SU4→SU6→SU9→SU10 as the best path because it has
high bandwidth, low delay, low presence of PU, and high
reliability. The route SU1→SU3→SU8→SU10 has a small
number of hops and high throughput, but it is avoided because
it is prone to the presence of PUs. On the contrary, due to
the high-speed mobility of SU4, it might stay out of the
range of SU2 for the transmission because the best route
might fail. In this case, the best alternate route might be
used, i.e., SU1→SU2→SU5→SU8→SU10. In summary, the
overall routing in CR-VANET is different from traditional
VANET or CR routing. Therefore, this CR-VANET routing
is challenging to tackle.

In [305], the authors proposed an SDN-based routing
protocol by using the belief propagation algorithm for
CR-VANETs. They found that their routing protocol is more
stable and performs better than the traditional routing pro-
tocol for CR-VANETs. In this scheme, two vehicles can
only communicate when they have agreed to use the same
vacant channel. This scheme considers spectrum sensing and
routing simultaneously. To solve the routing issue, the authors
in [306] used a clustering technique that improves the net-
work by reducing the excess routing overheads. It is also used
to obtain a stable network because it reduces the effects of
the dynamicity of channel availability. The authors designed

a cluster-based routing protocol using RL and named it
SMART. The authors in [307] used the RL algorithm to
design a routing scheme (they called it weighted cognitive
radio Q-routing or WCRQ-routing) for CRN. They investi-
gated the effects of various attributes of RL, such as reward
function, trade-off between exploitation and exploration, and
convergence rate.

Experiments to validate VANET routing studies are diffi-
cult to conduct in real-life scenarios due to the high cost and
risk involved. Therefore, to model and simulate the VANET
environment, several mobility models were proposed.
Prominent mobility models for VANETs include random
waypoint, random walk, Manhattan grid, freeway, reference
point group, and Gauss–Markov mobility models [300].

G. ML IN INFOTAINMENT IN CR-VANET
Infotainment refers to information and entertainment
broadcasting. In VANET, value-added services, such as enter-
tainment and advertising, are provided along with the safety
message communication. Live streaming video communi-
cation, for example, is not only used for entertainment/
advertising but also accident management. By watching the
live video of an accident case, traffic police or rescuers can
make robust and effective decisions. Meanwhile, passengers
can enjoy online services. For example, they can use any
social media, video streaming websites, and navigation sys-
tems. Roadside companies can send an advertisement to vehi-
cles to market their products or services. Nearby authorities
can also provide warning or safety instructions directly to
vehicles. Real-time parking navigation information can be
obtained from a nearby parking lot. The potential services
of VANET can also be applied to road entertainment or
gaming between vehicles. Besides, other user services, such
as LIDAR, OBU’s sensors, and GPS, should exchange a sub-
stantial amount of data. Figure 19 displays such a situation,
where a car or the car user can simultaneously experience
such services.

The current standards of VANET are WAVE and DSRC
that suffer from large packet delay and spectrum scarcity.
To overcome these issues, DSA of the vacant license
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FIGURE 19. Infotainment in CR-VANET.

spectrum provides a promising solution. Several channels
and relay node selection (intermediary vehicle(s)) mecha-
nisms should be available for smooth infotainment services.
Some data include delay tolerance and non-tolerance.
Therefore, various applications have various QoS require-
ments. ML methods can be applied to train vehicles to learn
the surrounding radio environment for the spectrum informa-
tion, the diverse QoS requirement, and the best candidate for
relaying appropriate infotainment services.

In [308], the authors proposed a channel selection mecha-
nism for video transmission. They prioritized safety applica-
tion messages and selected the best DSRC and CR channels
for smooth video transmission. They selected the CR channel
in which the PU activity is minimal. They also chose a subset
of strategic nodes (rather than selecting all) for rebroadcasting
the content. Q-learning or DQN can be applied to acceler-
ate the performance of this proposed mechanism. A vehicle
would be trained usingML on the behavior of the PU to select
the best channel and suitable nodes for the rebroadcasting.

The quality of the transmission for infotainment depends
on channel selection, RA schemes, schedules, appropriate
routing, and traffic prediction capability. The previous sec-
tions and subsections discussed the applications of various
ML methods on these dependencies. From such discus-
sions, we conclude that ML is a promising tool to provide
the best infotainment experiences to users. The authors
in [187] proposed a data scheduling method by formulating
an MDP model to analyze the transmission performance
of CR-VANET. They considered CR, states of vehicular
caching, a correlation between various transmission modes,
mobility of vehicles, and QoS data requirements. In their
proposed optimal data transmission schedule scheme, they
used the deep Q-learning method and the vehicle’s caching
to minimize the overall transmission costs.

In [309], the authors proposed a content-aware and
on-demand clustering technique for video streaming in
VANET. Here, vehicles with the same video requirement
and mobility features are clustered. The authors constructed
an overlay tree based on the relation between supply and

demand of the videos in the VANET scenario. Various ML
clustering techniques (e.g., k-means or Dirichlet process) can
be integrated into their approach to enhancing performance.
ML-based video admission control and resourcemanagement
algorithms were proposed in [310]. The authors developed
a scheme by using ML that can extract the quality-rate
characteristics of unknown H.264-encoded video frames.
They used unsupervised feature learning with supervised
classification techniques. Then, they were able to estimate
the QoE parameters that characterize each video. In [311],
the authors proposed a framework called cognition-based net-
works (COBANETS) that includes cognitive network nodes
with an infrastructure for learning. They used modified DNN
(called generative DNN or GDNN) and RL to develop the
learning tool, by which the quality-rate characteristics of
video flows were estimated and QoE-aware RA schemes
were exploited.

The medium access control (MAC) standard for V2V com-
munication is IEEE 802.11p (a member of IEEE802.11 or
WLANs family). V2V is an ad hoc-based communication
technique for vehicles in VANETs. VANETs’ vehicle density
varies from sparse to hundreds, and all of them are contending
for limited channel access. An appropriateMAC is required to
cope with this situation, especially for a dense urban network.
In [312], the scalability problem of the IEEE 802.11p MAC
protocol was discussed. The authors used the RL algorithm
to modify MAC for IEEE802.11p to solve such issues. Their
proposed MAC was claimed to reduce the packet collision
probability and bandwidth wastage.

IV. OPEN ISSUES AND FUTURE RESEARCH DIRECTIONS
CR-VANET is a promising field for future research. ML
is another potential area for research. Several works in the
area include CR-VANETs, ML in VANETs, and ML in CR;
however, studies on ML in CR-VANETs are few. Therefore,
researchers should explore this area. This section presents
several open issues and future research challenges.

A. ADVANCED SPECTRUM SENSING AND MOBILITY
MANAGEMENT ISSUES
The application of ML in these issues has been discussed
in Section III.A. However, substantial work should still
be conducted. For example, most current studies focus on
TVWS, but in reality, other radio access networks or RANs
(Wi-Fi, WiMAX, LTE, or 5G) are available and coexist in
overlapping.

These RANs have different characteristics and attributes.
In CR-VANET, vehicles should have the capability to per-
form two or more non-safety message (audio or video)
transmission simultaneously. However, selecting the optimal
network for spectrum handoff is a challenging job for a
vehicle. The authors in [313] proposed multiple-attribute
decision-making (MADM) methods to solve these issues.
However, the use of ML accelerates the performance of
the method. Therefore, adaptive ML-based algorithms and
frameworks are required to solve these issues. For the best
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spectrummanagement, multiple MLmethods can be merged.
For example, CBR, deep learning, and RL can be merged to
perform the SS job in a dynamic manner.

For CR-VANET cases, vehicles or SUs have high-speed
mobility, but in most of the cases, the PUs are considered sta-
tionary devices or nodes. The simultaneous mobility effects
of SUs and PUs should be considered for improved and realis-
tic results. Interferences occur due to PUs and SUs’ activities.
Shadowing or the hidden terminal problem is another issue
for spectrum sensing. Therefore, further work is required
to alleviate such an interference and shadowing problem by
using ML.

B. SLOW CONVERGENCE OF RL
For CR-VANET, the RL algorithm, especially Q-learning,
is the most suitable because it does not require any environ-
mental model or training dataset and has high adaptability
to the dynamic environment. However, the main problem of
Q-learning is its slow convergence. A longer time is needed
for learning purposes. To solve this issue, researchers have
suggested combining Q-learning with other ML schemes,
such as CBR. Prolonged learning time for vehicles is unac-
ceptable. This issue can be a potential topic. The slowness
of Q-learning is due to its inherent functionalities. It learns
everything by itself without taking any help. It faces a tradeoff
between exploration and exploitation. To obtain rewards, fur-
ther exploration is needed, and as a result, it consumes much
time. Transfer learning is an interesting learning method.
It can be applied to reduce the learning time of Q-learning.
In this transfer learning (such as TACT, teacher-student
learning approach, or docitive learning approach), a vehicle
can learn about the surrounding radio environment from
other vehicles that have already learned about this envi-
ronment [193]. For example, a vehicle requires 1000 iter-
ations to learn one maximum-rewarded state-action value.
Meanwhile, the state–action pair value for the maximum
reward is already known. If this vehicle can transfer this pair
value knowledge to the previous vehicle, then it could skip
those 1000 iterations. To learn the same Q-value, it does not
need to iterate every vehicle. Transferring and sharing can
accelerate learning and provide fast convergence. A vehicle
might transfer wrong or false learning to the new learning
vehicle. As a result, this learning vehicle would bemisguided.
Therefore, security issues regarding this transfer learning
should be explored.

C. OTHER COMBINED SECURITY ISSUES TO BE SOLVED
Along with the individual security threats in CR and VANET,
other combined security threats (e.g., JSSDT attacks) should
be investigated. For the infotainment issue, several studies
were conducted based on V2V communication. Here, ensur-
ing privacy is one of the major challenges. Most security
mitigation techniques are based on learning from experiences
(e.g., by exploiting the attacker’s behavior). Therefore, these
techniques cannot solve the zero-day attack (newly invented
attack, not stored or experienced previously by the network or

vehicles). This zero-day attack can be solved by using clas-
sifiers, such as SVM or naïve Bayes, and an expert-labeled
dataset[314]. Further studies are required to implement this
approach in the CR-VANET scenario.

When using RL, most previous studies considered a small
state space, but in reality, the state space is large and dynamic.
Multi-agent RL faces the curse of dimensionality (increases
the state-action pairs exponentially). As a result, performing
functions, such as determining malicious attacks, becomes
slow. More work is required to solve ‘‘the curse of dimen-
sionality’’ issue so that attack mitigation can be improved.
Several attackers also use ML to design their attacks [6].
Highly sophisticatedML algorithms are required to fight such
attacks.

MLs are vulnerable to adversarial attacks. In this type of
attack, the ML models are fooled by malicious input. For
example, if a fake toxic traffic sign is placed on the road,
an AV might perform misclassification. The human driver
might consider the sign as a ‘‘no overtaking’’ sign, and the
AV might view it as a ‘‘speed limit’’ sign. This misclassifi-
cation could lead to the cause of fatal road accidents [315].
This type of adversarial attacks can occur in three stages,
namely, training, testing, and model deployment. The three
categories to defend against this attack are modifying data,
modifying models, and auxiliary tool usage [316]. To know
more about this attack, the last reference is recommended.
This attack is new and highly threatening to the usage of MLs
in CR-VANET. Therefore, extensive studies must be carried
out in this field.

D. INTELLIGENT AND ACCURATE AVs
In Section III.C, we discussed several vehicular safety-
related issues that can be solved with the help of ML.
We focused on AVs’ smart services, such as ADAS,
barrier detection, road sign detection, and lane changing,
using ML. Several companies work with autonomous or
driverless vehicle systems and their intelligence services.
Examples include Waymo (formerly known as the Google
self-driving project) [317], Tesla’s Autopilot [318], and
UBER’s driverless car project [319]. Although they have
revealed the excellent performance of self-driving vehicles by
using variousML approaches, they still facemany challenges.
Their vehicles are still not as intelligent as human drivers.
Several casualties have been reported due to these self-driving
vehicles. A fatal incident occurred at Tesla in May 2016 in
Florida; the driver was killed while the car was in autopilot
mode. The incident was due to wrong detection (the car’s
sensor system failed and could not differentiate between the
white bright sky and a large white truck) [320]. UBER’s self-
driving car killed a pedestrian woman in March 2018 because
it could not detect the pedestrian [321]. The reason for these
incidents was the lack of detection accuracy.

Therefore, increased accuracy is needed for real-life
experiments. The algorithms, such as DNN or CNN,
used for detection purposes must be highly robust to
fast-paced vehicles. Highly effective debugging, testing, and
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FIGURE 20. UAV-based detection system.

verification techniques should be developed using several
ML algorithms.

For the high-speed mobility of vehicles, the processes
of detection and taking appropriate actions after detection
are challenging (especially because these processes must be
performed instantly, i.e., without any delay). Moreover, most
AVs use onboard cameras for barriers or pedestrian detection.
Therefore, it can predict only those barriers or pedestrians
that can be captured by the cameras. Unmanned aerial vehicle
(UAV)-based, drone-based, or satellite-based imagery can be
used to detect any barrier (any other vehicle or obstacle) or
pedestrian in advance or can be adopted in curved road areas
where the vehicle’s visibility might be obstructed. For exam-
ple, in Figure 20, the left-side car is unable to see the pedes-
trian and the right-side vehicle in advance. The high-speed
instant detection and taking an inaccurate action might lead
to an accident. Now, suppose that a UAV captures images
of the pedestrian and vehicles and obtains GPS values of
these. After capturing the images andGPS values, it sends this
information to the vehicular clouds for processing. After swift
processing, the cloud sends a warning message to the left-
side car that a pedestrian and a car are located in front. After
obtaining this warningmessage, the car becomes cautious and
takes appropriate actions (slowing down or changing its lane).
These detection processes would become more effective and
accurate if Drone2Map (an app that processes raw images
captured by drones or UAVs into precise information by using
cloud-basedmapping and analysis tools, such as ArcGIS) and
TensorFlow tool (an open-source ML library) is used with
CNN and regional CNN. These techniques can also be used
for the smart parking system. UAVs or drones can also be
adopted to provide spectrum information to nearby vehicles.
As a result, these vehicles are not required to undergo CR
processes. These areas require further exploration.

E. SIMULATION TOOLS, TESTBEDS, AND DATASETS FOR
ML IN CR-VANETS
Real-life experiments on CR-VANET are complex, risky, and
expensive. Nevertheless, a complete testbed for CR-VANET
and ML remains lacking. Thus, most studies found in the
literature are based on simulations. However, suitable sim-
ulation tools that can provide several features (e.g., spectrum
sensing, mobility models, traffic classification or regression,
or applying any other ML) in an integrated form are lacking.

The three main parts of ML-based CR-VANET simulation
are traffic simulation, network simulation, and data analysis.
Several separate traffic simulators are available for traffic
simulations, namely, network simulators for network simu-
lations and VANET simulators for both traffic and network
simulations. Figure 21 displays the simulation tools used for
traffic simulations, network simulations, and data analysis.

ML and data analysis tools are used for ML in the
CR-VANET perspective. For traffic data and mobility pat-
terns, various traffic simulators, such as SUMO and MOVE,
are used [322].

To add the CR features in VANET to VANET network
simulation, various network simulators can be utilized, such
as NS2/3, NetSim, and OMNet++ [323]. Other simulators,
such as Veins and TraNs, are used for both traffic and network
simulations. Several tools are employed for ML and data
analysis, such as Python’s ML libraries, TensorFlow, and
MATLAB’s ML toolbox. This discussion indicates that for
experimenting with ML in the CR-VANET scenario, two
or three tools should be used. This arrangement is complex
and difficult. Therefore, a single simulation and ML plat-
form is required. Moreover, numerous practical features of
CR-VANET (such as security, Doppler effects, interference
level, and shadowing issue) should be added in the simulation
tools.
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FIGURE 21. Simulation tools for ML in CR-VANET.

Few testbeds are available for CR experiments, such as
USRP-N210 (or other versions) [334], GNU radio (a free
open-source software development tool for SDN) [335], and
VT-CORNET [336]. These testbeds can be used for sta-
tionary cases or along with a vehicle to obtain spectrum
information on real-life scenarios [340]. These testbeds are
utilized for the CR perspective only. The data captured by
these testbeds are ultimately analyzed using software or data
analysis tools. Other testbeds for CR and CR-VANET include
Virginia Tech’s CORNET [341], cognitive cars testbed [337],
ORBIT [338], andUCLA’s C-VeT [339]. Building a complete
testbed for ML, CR, and VANET is still an open issue.
Several real-life datasets are available individually for CR and
VANET. Table 14 presents several datasets used for CR and
VANETs along with the simulation tools and testbeds. These
individual datasets are for CR and VANETs. The real-life
implementation of CR-VANET by using ML requires many
combined datasets. Moreover, a dataset varies from place to
place (due to different policies, requirements, etc.). There-
fore, further experiments on dataset generation are required
for realistic studies.

F. INTEGRATION WITH BLOCKCHAIN TECHNOLOGY
Blockchain, which was introduced by Satoshi Nakamoto in
2008, was invented to serve as a public transaction ledger of
the cryptocurrency called ‘‘bitcoin’’ (also known as virtual
currency) [342]. It provides a distributed peer-to-peer net-
work where non-trusting members can interrelate with each
other without a trusted third party but in a strictly secured
manner. Although this technique was intended only for finan-
cial transactions, it is currently used in several areas, such
as network security. This technique can also be applied with
ML-based CR-VANET. A few works are available on these
integrated techniques. For example, in [343], the authors used
a permissioned blockchain approach to reach a consensus in
distributed SDN-based VANET. To overcome the existing
drawbacks of the permissioned blockchain, they used deep
Q-learning. In [344], Dai et al. used blockchain technology
and Q-learning to secure VANETs. In their proposed frame-
work, OBUs in VANET help each other mitigate possible
attacks.

In permissioned blockchain, resource caching is a cru-
cial issue. Future work with virtual caching resources can
be performed to overcome the drawbacks of blockchain
technology. This technology and deep learning can bemerged

TABLE 14. Simulation tools, datasets, and testbeds for CR and VANET.

to solve several aspects of CR-VANETs, such as creating
strong trust management to reduce falsification or other
attacks. Blockchain is used as the decentralized database,
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TABLE 15. MLs covered in this paper.
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and ML is adopted to process the data. This approach pro-
vides more trusted and reliable results. In general, ML and
blockchain can help each other and can accelerate their
individual performance. For example, ML can be utilized to
provide energy efficiency, rapid computation, and security to
blockchain technology. Meanwhile, blockchain can alleviate
the flaws of ML, such as providing data and model reliability
and tracing the decision-making process of machines (for fur-
ther improvement). Therefore, working with this blockchain
technology in ML-based CR-VANETs is essential.

V. CONCLUSION
VANET has emerged as a solution to ameliorating road
safety and traffic congestion, supporting infotainment, and
improving the QoE of users. CR was proposed to alleviate
the spectrum scarcity issue caused by the exponential growth
of VANETs. Therefore, CR-based VANETs or CR-VANETs
were considered major research domains in recent years.
ML has become an integral part of CR-VANETs to ease
complexities and enhance network performance. The amal-
gamation of ML in CR-VANETs is still at its infancy, but it
has great potential to be used in the near future. This survey
presented the applications of ML in emerging CR-VANETs.
An overview of VANETs and CR was provided. Various
ML tools and their taxonomies, applications, and limitations
were presented. The usages and recent advancements of ML
methods in various aspects of CR-VANETs, such as spectrum
sensing, resource allocation, security, and routing, were dis-
cussed. The roles ofML in reducing road accidents and traffic
congestion were elaborated, and several aspects of the usages
of ML in AVs were described. Using ML tools to leverage
the benefits of CR-VANETs was also explained. Many other
scopes need to be explored given that these fields are still in
the preliminary stage. Several of these scopes, open issues,
and future research trends were discussed in this paper.

APPENDIX
Table 15 shows theML algorithms used in this study and their
corresponding topics and reference numbers.
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