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ABSTRACT Due to their ability to multiplex users on a resource element (RE), Non-orthogonal multiple
access (NOMA) techniques have gained popularity in 5G network implementation. The features of 5G
heterogeneous networks have necessitated the development of hybrid NOMA schemes combining the merits
of the individual NOMA schemes for optimal performance. The hybrid technologies on 5G networks make
complex air interfaces resulting in new resource allocation (RA) and user pairing (UP) challenges aimed
at limiting the multiplexed users interference. Furthermore, common analytical techniques for evaluating
the performance of the schemes lead to unrealistic network performance bounds necessitating alternative
schemes. This work explores the feasibility of a hybrid power domain sparse code non-orthogonal multiple
access (PD-SCMA). The scheme integrates both power and code domain multiple access on an uplink
network of small cell user equipments (SUEs) and macro cell user equipments (MUEs). Alternative
biological RA/UP schemes; the ant colony optimization (ACO), particle swarm optimization (PSO) and
a hybrid adaptive particle swarm optimization (APASO) algorithms, are proposed. The performance results
indicate the developed APASO outperforming both the PSO and ACO in sum rate and energy efficiency
optimization on application to the PD-SCMA based heterogeneous network.

INDEX TERMS Codewords, codebooks, NOMA, SCMA, particle swarm optimization, ant colony
optimization.

I. INTRODUCTION
Non-orthogonal multiple access (NOMA) has emerged as a
viable candidate for 5G access network protocols. Normally,
Orthogonal multiple access (OMA) schemes have exclusivity
constraints when allocating users to a resource element (RE)
namely; timeslot for frequency division multiple access
(FDMA), subcarrier frequency for orthogonal frequency divi-
sion multiple access (OFDMA) and spreading code for code
division multiple access (CDMA) based schemes. The sig-
nificance of NOMA is co-multiplexing users on the same
spectrum resource elements (SREs) via power domain (PD)
or code domain (CD) at the transmitter and successfully sep-
arating them at the receiver by multi-user detection (MUD)
schemes. This culminates in enhanced spectral efficiency
when compared to conventional OMA techniques. NOMA
schemes permit controllable interference by non-orthogonal
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resource allocation albeit increase in receiver complexity [1].
However, the multiplexing of multiple users on limited REs
results in cross-tier and inter-tier interference for heteroge-
neous networks necessitating the development of new optimal
radio resource allocation (RRA) algorithms to alleviate the
user pairing problems.

Two main classes of NOMA are identified as [2]; power
domain NOMA (PD-NOMA) and code domain NOMA
(CD-NOMA). In PD-NOMA, different power levels based
on each user’s channel quality conditions are used to mul-
tiplex multiple users on the same time-frequency resources.
At the receiver of PD-NOMA, users are distinguished by
their power levels using successive interference cancellation
(SIC). CD-NOMA is grounded on classic CDMA principles
that apply sparse spreading sequences or non-orthogonal low
cross-correlation sequences. In [3], multiple NOMA schemes
based on low density spreading (LDS) sequences such as
sparse code multiple access (SCMA), multi-user shared
access (MUSA), pattern divisionmultiple access (PDMA) are
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presented. Among various NOMA schemes SCMA exhibits
improved link-level performance compared to other code
domain methods [4]. In [5], the performance of two NOMA
schemes (PD-NOMA and SCMA) is compared. Considering
resource allocation in heterogeneous network scenarios for
both multiple access (MA) techniques, SCMA is observed to
outperform PD-NOMA. A joint RRA and SIC ordering algo-
rithm is proposed for downlink power domain sparse code
multiple access (PSMA) based wireless networks [6]. Match-
ing theory and sub-modularity principles are applied to max-
imize sum-rate over codebook assignment. An investigation
of RRA in multiple input multiple output (MIMO)-SCMA
in cloud radio access networks is done in [7]. Beamforming,
joint codebook allocation and user association are separately
implemented to solve the developed sum-rate maximization
optimization problem. To further improve the performance
of the traditional NOMA schemes and optimize their per-
formance on heterogeneous networks by combining their
individual merits, hybrid schemes are required. This work
proposes a hybrid NOMA scheme that integrates PD-NOMA
and SCMA on the uplink of the 5G heterogeneous net-
work called power domain SCMA (PD-SCMA). The fea-
sibility of such a system, especially so the development of
a hybrid-generalized-SIC (HG-SIC) receiver that combines
both power and code diversity, the RRA schemes and the
pairing of both MUEs and SUEs, on such a hybrid access
technology network, is a challenging task that needs to be
undertaken.

Mathematical based algorithms have been applied for
resource allocation in SCMA NOMA networks [2]. There
are numerous works that have solved the resource alloca-
tion (RA) problem in SCMA using analytical Lagrangian
optimization based approach. This generally involves defin-
ing the Lagrange function and solving the corresponding
dual problem. Lagrangian optimization can provide optimal
solutions although it is mathematically rigorous. One of the
challenges of Lagrangian optimization is the difficulty that
arises when dealing with non-convex problems which usually
requires relaxation to be transformed into convex problems
leading to approximate boundary solutions. More accurate
alternative methodologies are required, hence the proposal
of applying biologically inspired algorithms. Biologically
inspired algorithms are seldom applied for RA in NOMA,
despite the fact that they can provide optimization solutions
in NOMA networks. Their adaptive characteristic makes
them appropriate for the constantly changing wireless net-
work conditions. Meta-heuristic algorithms have the advan-
tage of simple implementation once optimization solutions
can be formulated into the algorithms’ framework. However,
it can be challenging to represent feasible solutions into
meta-heuristic algorithm structures.

Ant colony optimization (ACO) [8] emulates the behaviour
of ants rummaging for food in nature. During their searching
expeditions ants communicate with each other using indirect
communication, referred to as ‘‘stigmergy’’. They accom-
plish this by leaving pheromone trails for other ants to follow

towards food sources. The paths generated by ants during
their tours represent potential solutions to the optimization
problem. ACO has an inherent parallel and positive feed-
back mechanism which makes it attractive for finding user
multiplexing in NOMA. Random tours in the beginning of
the algorithm can reduce its performance. Introduced in [9],
Particle swarm optimization (PSO) is based on simple social
interaction of birds. Birds often search for food as a swarm
and communicate information regarding their findings within
the flock to maximize their discoveries. In PSO, particles
represent potential solutions to the optimization problem.
Due to its simple implementation and efficiency in solving
continuous problems, PSO is attractive for enabling sharing
of resources in NOMA. Biological optimization algorithms
can be effective in procuring solutions to non-convex prob-
lems that often arise in RA in SCMA. To our knowledge there
is limited work on the application of biological optimization
methods in literature for uplink SCMA NOMA RA except
the work in [10].

The proposed PD-SCMA for 5G networks enables a new
transmission policy that allows more than two MUEs and
FUEs to be co-multiplexed over the same RE. The devel-
oped HG-SIC receiver combines both the power and diver-
sity (patterns) gain in MUD. The scheme jointly optimizes
the combinatorial problem of subchannel assignment and
power allocation to maximize the overall system energy effi-
ciency (EE) of the small cells. Power resources are chosen as
the fundamental multiplexing domain between theMUEs and
SUEs, and code domain as the key multiplexing domain in
the sparse code multiplexing of the SUEs. The complexity of
the system requires alternative RA algorithms. The work then
develops alternative metaheuristic Biological RRA based on
ant colony optimization and particle swarm optimization for
optimizing EE resource allocation in hybrid heterogeneous
networks (HetNets). The performance of this algorithms is
compared to the analytical Lagrangian based approach [11],
which provides upper performance bounds and can easily
result in system design parameter overestimation.

The rest of the paper is organized as follows: Section II
outlines related work on EE RA in SCMA and previous
hybridization applications of the above mentioned algo-
rithms. Section III describes the system model to be adopted
in the paper, and Section IV shows how the EE problem is
formulated. Section V develops the RA and encoding. The
application of RA algorithms is outlined in Section VI with
the receiver algorithm developed in Section VII.Section VIII
evaluates the performance of the algorithms and Section IX
concludes the paper.

II. RELATED WORK
Mathematical based resource allocation methods have been
studied in previous works. Research on codebook based RA
for uplink SCMA with the objective of optimizing subcarrier
and power allocation to maximize total sum-rate is conducted
in [2]. The derived optimization problem is solved using a
matching algorithm. RA for NOMA adopting game theory
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approaches is presented in [12]. A user subchannel soap
matching algorithm is proposed to solve the RA problem.
Game theory based uplink power control (PC) in a NOMA
system consisting of two interfering cells is done in [13].
A distributed PC algorithm is developed and proven to con-
verge to the Nash equilibrium. Power minimization efforts
for NOMA are done in [14]. Solutions to the considered
NP-hard optimization problem are derived through relaxation
and application of convex methods. Work on RA in SCMA
enabling ultra reliable low latency communications is con-
sidered in [15]. With the aim of maximizing transmit rate
assuming finite block-length codes, the optimization problem
is solved using Lagrangian based methods and an iterative
algorithm implemented. A comparison of the mathematical
lagrangian based algorithms to the biologically inspired algo-
rithms for a NOMA based HetNet has not been done in
literature. Adaptive codebook design and allocation in energy
saving SCMA networks is presented in [16]. Joint codebook
assignment followed by power allocation is then applied.
Uplink contention based SCMA for 5G networks is studied
in [17]. System-level solutions are derived for UL SCMA
networks in 5G radio access scenarios.

PSO application in maximizing energy efficiency subject
to minimal sum-rate requirement on an uplink multi-user
SCMA system is done in [10]. The non-convex EE maxi-
mization problem is solved using cooperative coevolutionary
particle swarm optimization (CCPSO) algorithm. A power
allocation algorithm based on PSO for application on down-
link NOMA systems is developed in [18]. A fitness function
is defined for energy efficiency and its performance evaluated
through simulations. A PSOmotivated power allocation tech-
nique for downlink NOMA IoT enabled systems is presented
in [19]. The performance of the designed PSO approach is
compared to conventional PA methods such as equal power
allocation and water-filling. User-pairing schemes employing
PSO based methods are investigated in [20]. The consid-
ered channel-aware strategies enable transmitters to mini-
mize transmit power for multiplexed users while satisfying
minimum QoS constraints for all users. A dynamic spectrum
allocation method involving an enhanced PSO with mutation
properties is outlined in [21]. The applied PSO is utilized to
solve the non-convex power and rate optimization problem
that arises. The application of PSO on NOMA based HetNets
has rarely been done.

Generally, in different fields, ACO application in rate
adaptive RA with proportional fairness using ACO is done
in [22]. ACO is applied to solve the subcarrier allocation
and sub-optimal power allocation subsequently implemented.
An ACO approach to solve project scheduling problems
is given in [23]. A two-pronged pheromone updating and
evaluation mechanism is implemented for ants to find new
solutions. In [24], parameters of an ACO algorithm are opti-
mized in the travelling salesman problem (TSP) applications.
An example of the application of hybrid ACO and PSO
to optimize workflow scheduling in a cloud environment
is demonstrated in [25]. The proposed method is aimed

at minimizing overall workflow-time and reducing costs.
A hybrid heuristic algorithm composed of PSO and ACO
is conceived for task scheduling scenarios in fog computing
smart production lines in [26]. The proposed technique is tar-
geted at enhancing the energy efficiency of resource limited
devices with high power consumption. Hybrid ACO based
algorithms for NOMA based networks have been imple-
mented in seldom.

For general RA in NOMA mainly on the downlink, a uni-
fied framework that examines the energy efficiency of an
SCMA low complexity algorithm is investigated in [4]. Opti-
mization of RA in dual-hop relays for multi-user SCMA is
studied in [11] with a two-step joint codebook and power
allocation subsequently presented. AnRA strategy for SCMA
based downlink system with the aim of maximizing system
throughput is outlined in [27]. Proportional fair (PF) and
modified largest weighted delay first algorithm (M-LWDF)
are applied to solve the optimization problem. Regarding RA
on the uplink, spectrum sharing between LTE and SCMA
for resource allocation is conducted in [28]. Heuristic algo-
rithms with a target of maximizing overall attainable data rate
are implemented. Device-to-device (D2D) communication in
uplink SCMA targeting sum-rate maximization is considered
in [29]. A low-complexity two-step algorithm combining
heuristic and inner approximation method is employed to
solve the optimization problem. In [30], spectral efficiency
in uplink SCMA considering channel state information (CSI)
estimations is presented. An application of SCMA to wireless
multicast communication to increase multicast capacity is
done in [31]. A sub-optimal algorithm that handles power
and codebook assignment separately is then proposed. Efforts
to maximize sum-rate and fairness in uplink SCMA using
joint channel and power are illustrated in [32]. Iterative algo-
rithms that jointly allocate codebooks and transmit power in
subcarriers are implemented with convex programming used
to optimize performance. In [33], a power domain SCMA in
which the power domain and code domain NOMA paradigms
are combined in transmitting multiple user signals over a sub-
carrier on the downlink is presented. SCMA codebooks are
reused by multiple users employing power domain NOMA
(PD-NOMA) to transmit signals non-orthogonally. A joint
power domain and SCMA downlink system is also developed
in [34]. MPA combined with SIC is implemented in the
receiver. A network model that applies hybrid PD-SCMA
technology to a two tier HetNet uplink featuring MUEs and
SUEs user pairing with cross tier interference has not been
developed.

There is limited work on the application of ant colony
optimization and particle swarm optimization and their
hybrids in resource allocation on power domain sparse
code multiple access networks. Thus, the focus of this
work is to develop hybrid power domain SCMA opti-
mization problem framework, investigate the application
of metaheuristic algorithms (ACO and PSO and a devel-
oped hybrid) resource allocation, compare the performance
of the proposed algorithms to the analytical Lagrangian
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FIGURE 1. System model.

based optimization which shows possibilities of system
overestimation.

III. SYSTEM MODEL
The network model is a two-tier HetNet consisting of a
centralised single macro base station (MBS) uniformly pop-
ulated by a set of Si = {1, 2, . . . ,F} centralised small cell
base stations (SBSs) and M MUEs as in Figure 1. Each of
the F small cells is populated with K uniformly distributed
SUEs. As in [2], it is assumed an SUE is represented as an
SCMA layer and each user is assigned a RE. The REs are
shared among SUEs while MUEs are co-multiplexed over
the same time-frequency resources using PD-NOMA. In the
uplink HetNet model, REs can be reused between MUEs and
SUEs in small cells as PD-NOMA is coupled with SCMA
in MUE communication, while only SCMA is employed in
small cells.

The network total bandwidth B, is divided into N REs
occupying a bandwidth Bsc = B/N . The transmitter assigns
power level, PSUE,ik,n , to the the k th SUE in ith SBS on the
nth RE and also allocates transmit power, PMUE,im,n , to the
mth MUE associated with in ith SBS on the nth RE. Let
hSUE,ik,n and hMUE,im,n denote the channel gain of the k th SUE
to the ith SBS on the nth RE, and the channel gain of the
mth MUE on the nth RE associated with the ith SBS. Define
V SUE,I
K ,N = [µSUE,ik,n ]F×K×N as the RE HG-NOMA transmitter

RE matrix for small cells where µSUE,ik,n = 1 implies that
the k th SUE connected to the ith SBS has been assigned the
nth RE. In a similar manner, VMUE,I

M ,N can also be defined
such that VMUE,I

M ,N = [µMUE,ik,n ]M×N as the HG-NOMA RE
matrix where µMUE,ik,n = 1 means that the nth RE has been
allocated to the mth MUE in the ith SBS. Based on the hybrid
power domain SCMA paradigm following the work in [33],
the received signals can be detected using MPA and SIC.
This consideration allows for the reuse of REs among MUEs
and SUEs.

Focusing on the small cell network, the received signal of
the k th SUE on the nth RE in the ith SBS, ySUE,ik,n , after SUEs

multiplexing is expressed as

ySUE,ik,n (t) = V SUE,I
k,n (

√
PSUE,ik,n hSUE,ik,n sSUE,ik,n )︸ ︷︷ ︸
Desired signal

+

K∑
j6=k

V SUE,I
j,n (

√
PSUE,ij,n hSUE,ij,n sSUE,ij,n )

︸ ︷︷ ︸
Ik,n

+

M∑
m=1

VMUE,I
m,n (

√
PMUE,im,n hMUE,im,n sMUE,im,n )︸ ︷︷ ︸
ICT

+wi,k,n,

(1)

where sSUE,ik,n is the k th SUE message symbol on the nth RE
in ith SBS, sMUE,im,n is the message symbol of the mth MUE
on the nth RE affiliated with the ith SBS. Ik,n is the intra-tier
interference and ICT denotes the cross-tier interference from
theM MUEs. wi,k,n is the noise vector modelled as Additive
Gaussian White Noise (AGWN). The RE matrices V SUE,I

K ,N
and VMUE,I

K ,N are determined in Section V. It is assumed that
each base station has perfect knowledge of channel state
information (CSI).

IV. PROBLEM FORMULATION
The signal to noise-plus interference (SINR) of k th SUE in ith

SBS using nth RE, 0SUE,ik,n , is given by

0
SUE,i
k,n =

V SUE,I
k,n PSUE,ik,n |h

SUE,i
k,n |

2

Ik,n + ICT + E{|σ |2}
, (2)

where σ 2 is the additive white gaussian noise (AWGN). The
upper bound of the attainable sum rate of each user can be
expressed as

RSUE,ik,n = log2(1+ 0
SUE,i
k,n ). (3)
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The total rate of the system can be expressed as

Rtot =
F∑
i=1

N∑
n=1

K∑
k=1

µ
SUE,i
k,n log2(1+ 0

SUE,i
k,n ), (4)

The total power,Ptot , consumed by the system can be
written as

Ptot =
F∑
i=1

K∑
k=1

N∑
n=1

PSUE,ik,n + KPsta, (5)

where Psta is the SUEs static power. The energy efficiency,
ηe, of the system is defined as [10]

ηe =
Rtot
Ptot

. (6)

Therefore, the energy efficiency optimization problem con-
sidering minimum rate requirements can be formulated as

max
V SUE,Ik,n ,PSUE,ik,n ≥0

{ηe(Rtot ,Ptot )}, (7)

subject to:

C1 :
F∑
i=1

K∑
k

N∑
n=1

µ
SUE,i
k,n RSUE,ik,n ≥ Rmink,n ,

C2 :
N∑
n=1

µ
SUE,i
k,n PSUE,ik,n ≤ Pmax ,

C3 : PSUE,ik,n ≥ 0,

C4 :
K∑
i=1

µ
SUE,i
k,n +

M∑
i=1

µ
MUE,i
k,n ≤ df ,

C5 :
K∑
i=1

µ
SUE,i
k,n +

M∑
i=1

µ
MUE,i
k,n ≤ ds,

C6 : µSUE,ik,n orµMUE,ik,n ∈ {0, 1},

Rmink,n in C1 is the minimum system sum-rate required for the
SUEs, Pmax in C2 is the maximum transmit power of SUEs,
df in C4 is the degree of RE which means that a RE can
be used at most by df users, C5 implies that the maximum
number of REs utilized by each user is ds, set to ds = 3 in
this work to minimize receiver complexity.

V. RESOURCE ALLOCATION AND ENCODING
A. POWER ALLOCATION
To allocate power to SUEs, a well established method of
water-filling [35] is adopted due to its simple implementa-
tion. Assuming initial minimum power allocation level, let
{h̃SUE,ik,n } be a sorted sequence of channel gains which is
positive and monotonically decreasing. Define di as the step
depth written as di = 1

h̃SUE,ik,n
, for i = 1, 2, . . . ,N , where N is

the number of channels. Then the step depth difference, δi,j,
can be expressed as

δi,j = di − dj =
1

h̃SUE,ik,n

−
1

h̃SUE,jk,n

(1 ≤ i, j ≤ N ), (8)

The power allocation vector level, PSUE,ik,n , can be obtained
using [35]

PSUE,ik,n =

{
Pmax −

N−1∑
i

δi,j

}+
. (9)

The implemented power allocation is shown in
Algorithm 1.

Algorithm 1Water-Filling Based Power Allocation

1 Input: N, Pmax
2 Output: P = {PSUE,ik,n |∀i ∈ N }
3 Initialize minimum power allocation, PSUE,ik,n , across REs
4 for i=1:F do
5 for k=1:K do
6 for n=1:N do
7 Sort SUEs based on their channel

conditions, equation (2)
8 Update power allocation vector P using

equation (8), (9)
9 end
10 end
11 Continue process until convergence reached or

number of iterations exceeded.
12 end

B. SCMA ENCODING
The encoding where REs are mapped to a set of C codebooks
with the number of codebooks that can be generated deter-
mined asC =

(L
J

)
is used [3], [33]. The SCMA encoding pro-

cess in which log2Q binary bits are mapped to L-dimensional
codewords of sizeQ is illustrated in Figure 2. Each codebook
is assumed to contain Q codewords with length L which are
transmitted over orthogonal radio resources (such asOFDMA
subcarriers). The L-dimensional codewords that constitute a
codebook are sparse vectors with J non-zero entries where
J < L. In this scenario, the overloading factor can be
defined as λ = K/L. For the k th SUE on the nth RE in ith

small cell (SUE ik,n), and the mth macro cell user on nth RE
in the proximity of ith small cell (MUE im,n), a codebook
is allocated with codebook reuse being allowed as in [33].
As codebooks are transmitted on different wireless chan-
nels, the MPA receiver can still recover the data streams
without collisions. Codebook reuse can improve both the
overloading factor and the number of connections to enable
massive connectivity. Optimal SCMA decoding is achieved
using the maximum a priori (MAP) decoding [36] but the
message passing algorithm (MPA) which offers approximate
performance at reduced decoding complexity is considered in
this work.

C. RESOURCE ALLOCATION
Consider the scenario where the k th user is allocated a
maximum of ds REs (equation 7 C5). Let the UE-to-RE
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FIGURE 2. Example of SCMA encoding with K = 6 SUEs,L = 4 REs, J = 2.

matrix, Ak , be a N × ds matrix where rows represent REs in
the system. To preserve the sparsity of SCMA, there is only
one non-zero entry in each column of Ak which corresponds
to the RE designated to the k th user. For instance, if ds = 2,
N = 4, and user 1 is allocated the first and third REs, its
spreading matrix could be expressed as

A1 =


1 0
0 0
0 1
0 0

 . (10)

For K users in the system, the corresponding SCMA spread-
ing matrix of size N × (Kd(s)) is given by

ANk = [A1,A2, . . . ,AK ]. (11)

In (11), the columns are derived in the following manner. The
columns belonging to the k th user are in the range (k−1)ds+1
to kds. For example, an SCMA system with K = 6, N =
4, ds = 2 operating at full-load could have the following
spreading matrix,

AKN =


1 0 0 0 1 0 0 0 0 0 1 0
0 0 1 0 0 1 0 0 1 0 0 0
0 1 0 0 0 0 1 0 0 1 0 0
0 0 0 1 0 0 0 1 0 0 0 1

 . (12)

Having derived the spreading matrix in (12) UE-RE cor-
relation can be encapsulated in a factor matrix defined as
Fnk = [f1, f2, . . . , fK ], where f nk = 1 implies that k th UE
occupies nth resource element and f nk = 0means no resources
have been assigned. The elements of the factor matrix are
computed from fk = diag(AkATk ). Consequently, the factor
matrix for the previous example in (12) is given by

Fnk =


1 0 1 0 0 1
0 1 1 0 1 0
1 0 0 1 1 0
0 1 0 1 0 1

 . (13)

The first column of Fnk represent the first UE is allocated
the first and third REs. Similarly, the second UE is assigned

the second and fourth REs as shown in the second column
of Fnk , and the rest of the UEs are assigned as illustrated in the
remaining columns ofFnk . The first row represents the first RE
which is utilized by the first, third and sixth UEs. The UE-RE
scheduling vector,V n

sc, can be succinctly written as

V n
sc[RE]⇔ [UE1,UE2, . . . ,UEK ], (14)

where UEk is allocated a set of ds REs based on the root
mean square (RMS) values of the channel gains. Note that the
RA matrices V SUE,I

k,n and VMUE,I
k,n of Section III are a subsets

of V n
sc[RE].

VI. APPLICATION OF RA ALGORITHMS
The conventional application of the lagrangian method in
optimization of (7) is as in [37]. In the alternative algorithms,
user to RE pairing is performed using biological algorithms
based on channel conditions. At the beginning of the RA
process, the biological algorithms embark on a random search
for UE to RE pairs based on SINR conditions. The random
explorations are utilized to initialize the algorithms in their
respective frameworks. Considering the constantly changing
wireless channel conditions, the adaptive nature of the biolog-
ical algorithms is exploited to discover channels in whichUEs
have better SINR so as to maximize the data rate at minimum
transmit power.

A. LAGRANGIAN BASED OPTIMIZATION
The optimization problem in (7) is a non-convex problem that
needs to be transformed using nonlinear fractional program-
ming Dinkelbach approach [37] before it can be solved using
convex based techniques such as Lagrangian optimization.
The optimization problem in (7) can be re-written as

max
µ
SUE,i
k,n ,PSUE,ik,n ≥0

{Rtot − ηe(Ptot )}, (15)

It can be proven that the optimal solution of the subtractive
form of the optimization problem in (15) is reached when
Rtot − ηe(Ptot )} approaches zero. If the objective function
in (7) has undergone transformation to reduce the non-convex
complexity by assuming the binary variable µSUE,ik,n to be
continuous, then the Lagrangian function can be expressed as

L(R,P, ηe, �)

= Rtot − ηe(Ptot )}

−λ(
N∑
n=1

µ
SUE,i
k,n RSUE,ik,n − Rmink,n )− γ (

J∑
j=1

µ
SUE,i
k,n − df )

−α(
K∑
k=1

µ
SUE,i
k,n − ds)− β(Pmax −

N∑
n=1

µ
SUE,i
k,n PSUE,ik,n ),

(16)

where � = (λ ≥ 0, γ ≥ 0, α ≥ 0, β ≥ 0) are Lagrange
multipliers for relaxed constraints. Constraints in C3 and
C6 are absorbed by Karush-Kuhn-Tucker (KKT) conditions.
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The dual function can be defined as

g(ηe, �) = max
RSUE,ik,n ,PSUE,ik,n

L(P,R, ηe, �), (17)

The dual problem can correspondingly be expressed as

min
RSUE,ik,n ,PSUE,ik,n

g(ηe, �), (18)

In solving the Lagrangian function, (16) is decomposed
into a master problem and K × N subproblems. The solu-
tion of each subproblem is derived by iteratively solving the
subproblem in the corresponding SBS. The equation in (16)
can be written as

L(R,P, ηe, �) = Lin + λ(Rmink,n )−γ (df )−α(ds)−β(Pmax),

(19)

where

Lin =
N∑
n=1

µ
SUE,i
k,n RSUE,ik,n +

K∑
k=1

ηeP
SUE,i
k,n

−λ(RSUE,ik, )− γ df − α(ds)− β(P
SUE,i
k,n ). (20)

Optimal transmit power is obtained by applying KKT condi-
tions in combination with optimization methods,

PSUE,ik,n =
Bsc(1+ γ )∑K

j6=k Bsc(1+ γ )(0
SUE,i
j,n )+ ln2(λ+ χMUE,ik,n )

,

(21)

where χMUE,ik,n = µ
MUE,i
k,n hMUE,ik,n . The subgradient method is

employed to update Lagrangian dual variables as follows

λt+1 = λt − ζ t1

[
RSUE,ik,n − Rmink,n

]+
, (22)

β t+1 = β t − ζ t2

[
Pmax −

N∑
n=1

µi,k,nP
SUE,i
k,n

]+
, (23)

where ζ t1 and ζ
t
2 are step sizes of iteration t ∈ {1, 2, . . . , Imax}.

When the step sizes are sufficiently small, the Lagragian
multipliers converge to equilibrium points. The implemented
scheduling algorithm is as outlined in Algorithm 2.

B. PARTICLE SWARM Optimization(PSO)
1) PRINCIPLE OF OPERATION
In the basic PSO [9], a particle represents a viable solution
to the objective function F(x) where x is the decision vec-
tor in D dimensional search space. The ith particle position
in the search space can be expressed as a position vector
xi = [xi1, xi2, . . . , xiD] which roves in the search space with
velocity vi = [vi1, vi2, . . . , viD]. As particles traverse the
search space, a fitness function (f ) related toF(x) is evaluated
for each particle and the positions of highest personal fitness
values of particles, fpbest , and the best fitness value of the
entire swarm, fgbest , are stored. Given a swarm of Pn particles,
with the personal best values, Pi,fpbest , and global best value,
Pi,fgbest , of the particles can be expressed as

Pi,fpbest = arg min[fpbest , xid ], (24)

Algorithm 2 Lagrangian PD-SCMA Resource
Scheduling

1 Input: Maximum number of iterations, Imax
2 Initialize maximum number of iterations Imax Initialize
energy efficiency ηe and equal power allocation,PSUE,ik,n
across REs

3 while (convergence not reached or maximum iterations
exceeded) do

4 for i=1:F do
5 for n =1:N do
6 Initialize Lagrange multipliers (λ, γ, α, β)

Given ηe, compute PSUE,ik,n equation (21 ),
Update available resources, equation (7)
(C5&C6),

7 Determine the throughput, equation (4),
8 Update Lagrange multipliers according

to (22), (23),
9 Continue process until convergence reached

or number of iterations exceeded.
10 end
11 end
12 end

Pi,fgbest = arg min[fgbest , xid ], (25)

Particles instantaneously update their velocity vector to attain
their previous best fitness and migrate towards the swarm’s
global best fitness value. Each ith particle’s d th dimension has
velocity, vt+1id , calculated according to

vt+1id = wvtid+c1r1(Pi,fpbest−x
t
id )+c2r2(Pi,fgbest−x

t
id ), (26)

where w is particles inertia, Pi,fpbest is the personal best posi-
tion of the particle, c1 and c2 are personal and social learn-
ing factors respectively. The variables r1 and r2 are random
values normally in the range 0 to 1. Particles’ d th dimension
position is updated as

x t+1id = x tid + v
t+1
id , (27)

where vid is the velocity vector with an equivalent dimension
as the position vector. The dimensions of the search space
varies based on the nature of the optimization problem under
consideration. Information pertaining to particles’ current
positions and their personal bests is stored in matrices Xp and
Yp respectively.

Xp =


x1,1 x1,2 · · · x1,F
x2,1 x2,2 · · · x2,F
...

...
. . .

...

xsk,1 xsk,2 · · · xsk,F

 , (28)

Yp =


y1,1 y1,2 · · · y1,F
y2,1 y2,2 · · · y2,F
...

...
. . .

...

ysk,1 ysk,2 · · · ysk,F

 . (29)

194956 VOLUME 8, 2020



T. Sefako, T. Walingo: Biological Resource Allocation Algorithms for Heterogeneous Uplink PD-SCMA NOMA Networks

The ith row of Xp is a F-dimensional vector concatenating
all current position vectors xi from K particles.

2) PSO RE SCHEDULING
In application of PSO to SCMA RA, particles represent fea-
sible solutions to the RE scheduling optimization problem
which involves codebooks assignment to users. The fitness
function, F(x), is the energy efficiency optimization problem
of equation (7) expressed as

F(x)⇔ max{ηe(R,P)}. (30)

As particles traverse the search space to discover UE-RE
assignments which yield good energy efficiency solutions,
they evaluate the fitness function of equation (30). A particle
in this instance represents the multiplexing of K SUEs using
L-dimensional codewords over N subcarriers to solve the
optimization problem of equation (7) with the associated con-
straints. In every Transmission Time Interval (TTI), the posi-
tion of each particle, xid represents a feasible RE assignment
and is constructed to form the resource scheduling vector
defined as a position vector xid = [xi1, xi2, . . . , xiN ],

xid ⇔ V n
sc[RE], (31)

where V n
sc[RE] is given by equation (14). Particles then

update their personal best positions which corresponds to the
best scheduling solution the particle has discovered thus far.
The global best particle position is updated if the personal
best of the particle at that instant is detected to be better than
the current global best position. The implemented scheduling
algorithm is outlined in Algorithm 3.

C. ANT COLONY OPTIMIZATION (ACO)
1) PRINCIPLE OF OPERATION
A typical ACO application involves modelling a discrete
combinatorial optimization problem as a construction graph.
The optimization problem is formulated as a graph coloring
problem represented byG = (V ,E) whereV is the number of
vertices andE is the number of edges. In theAnt ColonyOpti-
mization Assignment Type Problem (ACO ATP) [38], [39],
i nodes are assigned j colors where items are assumed to be
nodes on the graph and objects are represented by colors.
Artificial ants generate paths which are feasible solutions as
they travel through the graph. In each path, ants choose a path
Pi,j which represents an assignment of j objects to i items,
and evaluate the fitness function Fi,j(x) which is related to
the objective function being optimized.

Pi,j = max{Fi,j(x) }. (32)

They choose the optimal path, Popi,j , that maximizes the fitness
function Fopij ,

Popi,j = max{Fopi,j (x) }. (33)

An ATP ACO set up often requires two probabilistic rules for
choosing nodes and colors. The first probability, p′i,j(t), for

Algorithm 3 PSO PD-SCMA Resource Scheduling

1 Input:
2 UEs: U = { 1,. . . ,k,. . . ,UEK }
3 REs: R = {1,. . . ,n,. . .REN }
4 Initialize: c1, c2, r1, r2,w
5 while (convergence not reached) do
6 for i=1:F do
7 for n =1:N do
8 Generate random positions of particles and

store them, equation (27) & (28).
9 Perform RA, equation (14),
10 Update available resources, equation (7)

(C5&C6),
11 Determine the throughput, equation (4),
12 Allocate power, Algorithm 1,
13 Evaluate particle fitness, equation (30),
14 Update,fpbest , equation (24)& (29),
15 if Pi,fgbest > Pi,fgbest then
16 Update, Pi,fgbest , equation (25),
17 end
18 Allocate power, Algorithm 1,
19 Continue process until convergence is

reached or number of iterations exceeded.
20 end
21 end
22 end

ant a choosing the next node when it is at node i, is given by

p′i,j(t) =
τ
′α
i,j (t)η

′β
i,j(t)∑

j∈Ski (t)
τ
′α
i,j (t)η

′β
i,j(t)

, (34)

where α, β are pheromone weighting factors, τ ′i,j, is the
pheromone intensity, η′i,j is the desirability, and Ski (t) is set
of feasible nodes from ant a at node i. The desirability
of ant a choosing the next node is given by the heuristic
function, η′i,j(t),

η′i,j(t) =
1+ |N k

unassigned |

1+ |Nnei,i|
, (35)

where |N k
unassigned | is the number of neighbours to the current

node that have not been allocated objects, and |Nnei,i| is the
number of neighbors from the perspective of the ant when
at node i. The pheromone in previously chosen nodes is
defined as

τ ′i,j(t) =
Fbesti,j

|N best
i (t)|

, (36)

where Fbesti,j is the fitness function of best ant, and N best
i is the

set of feasible nodes from the perspective of best ant at node i.
The second probability, p′′i,o(t), of choosing an object to assign
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for the current node from the set of objects, No, is given by

p′′i,o(t) =
τ
′′α
i,c (t)η

′′β
i,o(t)∑

j∈No τ
′′α
i,c (t)η

′′β
i,o(t)

, (37)

where the heuristic function, η′′i,o, is defined as

η′′i,o(t) =
1+ nprevious−best
1+ navailable−obj

, (38)

where nprevious−best is the number of elements in the set
of previously assigned objects, navailable−obj is the number
of objects available for allocation. The pheromone, τ ′′i,c,
is updated using

τ ′′i,c(t) =
nprevious−best
|NBest

i (t)|
. (39)

The fitness function Fi,j of each path which represents a
solution to the optimization problem is calculated along each
path and paths with higher fitness have more pheromones
deposited on them.

2) ANT COLONY OPTIMIZATION(ACO) RA SCHEDULING
On application to SCMA RA, UEs are represented by nodes
and RE allocation patterns are associated with colors. A path
that represents the assignment of n REs to k UEs can be
formulated from equation (14) as

Pk,n ⇔ V n
sc[RE]. (40)

The optimal path, Popk,n, that maximizes optimization
function is

Popk,n ⇔ Ṽ n
sc[RE]⇔ max{Fk,n(x)}. (41)

The fitness function, Fk,n(x) is given by

Fk,n = max{ηe(R,P)}. (42)

As ants traverse the search space they leave pheromone in
paths that have higher fitness, i.e. RE allocations that have
desirable energy efficient transmission rates in their path
for other ants to follow in future travels. A colony of RA
scheduling decisions is build by ants based on tours in which
they discovered optimal sum rates. The applied ACO SCMA
resource scheduling algorithm is summarized in Algorithm 4.

D. ADAPTIVE PARTICLE ANT SWARM
OPTIMIZATION (APASO)
1) PRINCIPLE OF OPERATION
Artificial ant particles possessing both attributes of PSO and
ACO are created and randomly initialized in the search space.
For all ant particles the fitness function F(x) is computed.
To improve the performance of PSO a pheromone-guided
mechanism is employed to indicate ant particles with more
fitness. In [40], it is outlined how the inertia weight provides
a balance between exploration and exploitation. Having a
higher inertia weight in the beginning enables global search,
while a lower inertia weight in later stages of algorithm

Algorithm 4 ACO PD-SCMA Resource Scheduling

1 Input:
2 UEs: U = { 1,. . . ,k ,. . . ,UEK}
3 REs: R = {1,. . . ,n,. . .REN }
4 Initialize: α, β, ρ
5 while ( convergence not reached) do
6 for i=1:F do
7 for k=1:K do
8 for n =1:N do
9 Begin ant search for REs in R that satisfy

(7,C1).
10 Perform RA, equation (14),
11 Update available resources, equation 7

(C5&C6).
12 Determine the throughput, equation (4)
13 Allocate power, Algorithm 1,
14 Evaluate fitness function, equation (41).
15 Update pheromone for higher fitness

functions, equation (36) & (39).
16 Continue process until convergence

reached or number of iterations
exceeded.

17 end
18 end
19 end
20 end

enhances convergence towards personal and global best val-
ues. In our proposed APASO we consider the modification of
ant particles inertia weight as

w⇔ τinter , (43)

where τinter is the inter ant particle pheromone given by

τinter = ζ

( ∣∣∣∣∣ min(F
t
pbest (x),F t (x))

max(F tpbest (x),F t (x))

∣∣∣∣∣
)
, (44)

where ζ is a control parameter in the range [0,1], and F t (x)
is the mean fitness of all ant particles at t , and F tpbest (x) is
personal best fitness of ant particles at t . For a d-dimensional
space, an ant particle has velocity, vt+1id and position, x tid ,
defined by

vt+1id = τinterv
t
id + c1r1(p

t
pb − x

t
id )+ c2r2(p

t
gb − x

t
id ), (45)

x t+1i = x ti + v
t+1
i , (46)

where ptpb and ptgb are personal best and global best of ant
particles defined similar to equations (24) and (25) respec-
tively. In equation (45) applying the inter ant particle (τinter )
pheromone to the first term on the right hand side of the
equation enables diversity of ant particles’ search in early
iterations of the algorithm while increasing convergence in
later iterations.
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2) ADAPTIVE PARTICLE ANT SWARM OPTIMIZATION
(APASO) SCHEDULING
The proposed hybrid technique aims to exploit advantages of
PSO and ACO to attain superior performance to the conven-
tional algorithms. In the beginning stage of the scheduling
process, PSO generates new random particle ants, and the
ACO based pheromone mechanism generates pheromones
for ant particles to mark solutions with higher fitness values.
It is these favourable qualities of the PSO and ACO that
have motivated the hybridization of PSO and ACO in the
proposed APASO. The position of an ant particle is modelled
as scheduling vector in a particular TTI as

xid ⇔ V n
sc[RE], (47)

where V n
sc[RE] is defined as equation (14). The fitness func-

tion is formulated to solve the optimization problem in
equation (7) as

F(x)⇔ max{ηe(R,P)}. (48)

Each ant particle then stores its position together with its
fitness value, and keeps updating velocity in equation (45) so
that the ant particles maintain their migration towards better
solutions. The mechanics of the APASO algorithm for RE
scheduling in SCMA is summarized in Algorithm 5.

Algorithm 5 APASO PD-SCMA Resource Scheduling

1 Input:
2 UEs: U = { 1, . . ., k , . . ., UEK }
3 REs: R = {1, . . . , n, . . .REN }
4 Initialize c1, c2, r1, r2,w, τinter while (convergence not
reached) do

5 for i=1:F do
6 for n=1:N do
7 Initialize random ant particles search,
8 Allocate resources, equation (14),
9 Determine the throughput, equation (4),

10 Distribute pheromone τinter , equation (44),
11 Evaluate fitness function for all ant particles,

equation (48),
12 Update the velocity and position vectors for

ant particles, equations (45) & (46),
13 Update pheromone, equation (44),
14 Allocate power, Algorithm 1,
15 Continue process until convergence is

reached or number of iterations exceeded.
16 end
17 end
18 end

VII. RECEIVER ALGORITHM AND COMPLEXITY
To detect and decode the received signal, the k th SUE at
ith SBS using codebook c detects and removes signals of

df −1 users. Denoting the mean channel gains of users super-
imposed on codebook c as H̃SUE,i

k,c , the receiver algorithm is
outlined in Algorithm 6.

Algorithm 6 PD-SCMA Based Receiver

1 Input:
2 Received signal from all orthogonal subcarriers,
Channel gain matrix for all users, H̃SUE,i

k,c
3 Initialize maximum number of iterations Imax
4 Set H̃SUE,i

k,n = min H̃SUE,i
k,c

5 Apply MPA on the received signal

6 Output V SUE,I
k,n (

√
PSUE,ik,b hSUE,ik,n xSUE,ik,n ) (SUE k signal on

codebook n in ith SBS).
7 Apply SIC on resulting signal

8 ySUE,ik,n = ySUE,ik,n − (V SUE,I
k,n (

√
PSUE,ik,b hSUE,ik,n xSUE,ik,n )

9 Set H̃SUE,i
k,c = H̃SUE,i

k,c − H̃SUE,i
k,n

10 Repeat process until all SUEs data has been decoded.

Assume that a codebook in PD-SCMA is allocated to df
users at the same time with each SUE applying MPA df
times and implementing SIC (df -1) times in the process of
detecting and decoding transmitted data. In the case where
C codebooks are assigned to df SUEs, the complexity of the
receiver can be approximated as

O(Imax |ν|p(C)(df )), (49)

where ν is the codebook size, Imax is the maximum number
of iterations, p is the non-zero elements of factor matrix
Fnk = f1, . . . , fn.

VIII. PERFORMANCE EVALUATION
In simulations, it is assumed that SUEs are randomly dis-
tributed in small cells which are uniformly distributed in the
macrocell coverage area. The radii of the macrocell and small
cells are 500m and 20m respectively, and minimum distance
between the small cells and MBS is 40m. The system band-
width is considered to be 10 MHz with the channel model
assumed to characterized by small scale Rayleigh fading with
large scale path loss and 8dB log-normal shadowing. The
maximum transmit power is 21 dBm and Psta = 18 dBm.
The minimum data rate is assumed to be 5 Mbps.

Figure 3 shows a plot of sum-rate vs number of users in
the network. As the number of users increases the sum-rate
of the system increases, although the gradient of the sum-rate
curve decreases with increasing number of users. APASO
offers better performance than the PSO and ACO achieving
performance close to the analytical Lagrangian. Figure 4
illustrates the variation of the sum-rate of the system vs total
transmit power of users. As the transmit power is increased
the sum-rate of the system increases until a saturation point
is reached beyond which further transmit power increases
do not yield increased sum-rate capacity of the system.
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FIGURE 3. Sum-rate vs Number of users.

FIGURE 4. Sum-rate vs Total Power.

The developedAPASOoutperforms the other biological algo-
rithms, with the Lagrangian providing an upper bound. The
performance of the Lagrangian in figures 3 and 4 is similar
to that demonstrated in [33].

In figure 5, it is noted that as the number of users increases
the energy efficiency of the systems decreases. Although the
EE is higher in the beginning, it starts deteriorating with
additional users in the system indicating that after the sys-
tem has reached saturation, increasing number of users com-
promises the performance of the system. The performance
of the algorithms follows a similar trend from Lagrangian
to ACO.

In figure 6, the EE of the algorithms is recorded as they
are executed. The developed APASO achieves higher EE
and saturates faster than the other conventional biological
algorithms. The pheromone mechanism adopted in APASO
enhances its ability to find higher fitness ant particle solutions
with higher EE. To evaluate the fairness of the algorithms

FIGURE 5. Energy efficiency vs Number of users.

FIGURE 6. Energy efficiency vs Number of iterations.

in distributing resources among users in the network, Jain’s
fairness metric is embraced. It is defined as in [32] which can
be expressed as

J =

(∑ K
k=1R

FUE,i
k,n

)2

K ×
∑ K

k=1(R
FUE,i
k,n )2

. (50)

In (50), the index has a range of 1/J (no fairness) to
1(perfect fairness). In Figure 7, the fairness performance
of the considered algorithms is outlined. The ACO is
observed to outperform other algorithms in terms of fair-
ness as it has higher fairness index overall. This implies
that the ‘colony’ of solutions derived using pheromone
mechanism enables it to share resources more fairly among
users albeit at the expense of maximizing the sum-rate.
Its performance is followed by PSO and APASO with
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FIGURE 7. Fairness vs Number of users.

FIGURE 8. Sum-rate vs Number of users for different MA schemes using
APASO.

lagrange showing the worst performance. This implies that
though the lagrangian algorithm provides better perfor-
mance in terms of sum rate and energy efficiency, its the
least fair.

A comparison of PD-NOMA, SCMA and PD-SCMA RA
with application of APASO was investigated and the results
of Figures 8 to 10 developed. In Figure 8 the system sum
rate versus total number of users is plotted. As it can be
observed, the hybrid PD-SCMA has significantly higher sum
rate than the other NOMA techniques. Figure 9 shows the
system sum rate versus total transmit power for the three
MA schemes. The hybrid PD-SCMA outperforms the two
conventional NOMA methods. A comparison of the energy
efficiency of the three considered MA schemes against the
number of iterations is displayed in Figure 10. PD-SCMA is
seen to perform better than the other two traditional NOMA
approaches. The enhanced performance of PD-SCMA as

FIGURE 9. Sum rate vs total transmit power using APASO for different MA
schemes.

FIGURE 10. Energy efficiency vs Number of iterations for different MA
schemes using APASO.

compared to the conventional NOMA MA schemes can be
attributed to the ability of PD-SCMA tomerge access features
of PD-NOMA and SCMA.

IX. CONCLUSION
In this paper, the performance of nature-inspired algorithms,
PSO, ACO and the developed hybrid APASO is investigated
regarding sum-rate maximization, energy efficiency and fair-
ness in a hybrid power domain SCMA setup. The investiga-
tive results show that the performance of APASO is better
than the conventional biological algorithms (PSO and ACO)
with respect to sum-rate and energy efficiency. However,
ACO is observed to have a higher fairness index than the
other considered algorithms. The developed results also show
that the common Lagrangian based optimization can lead to
system performance overestimation. PD-SCMA is observed
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to outperform the other considered traditional MA schemes
when only APASO is employed for RA. Future work will
consider more evolved hybrids with other advanced variants
of biological algorithms that have been proven to be efficient
in solving NP-hard problems. Furthermore, the performance
of succeeding models should feature extended aspects like
signaling overhead, channel uncertainty and many others for
conclusive deductions.
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