
Received March 19, 2020, accepted April 8, 2020, date of publication April 23, 2020, date of current version May 13, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2989820

HMNT: Hash Function Based on New
Mersenne Number Transform
ALI MAETOUQ AND SALWANI MOHD DAUD , (Member, IEEE)
Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia

Corresponding author: Salwani Mohd Daud (salwani.kl@utm.my)

This work was supported in part by the Ministry of Education, Malaysia, and Universiti Teknologi Malaysia, under Grant
Q.K130000.3556.05G71.

ABSTRACT In the field of information security, hash functions are considered important as they are used to
ensure message integrity and authentication. Despite various available methods to design hash functions,
the methods have been proven to time inefficient and have security flaws (such as a lack of collision
resistance or susceptibility to birthday attacks). In the current study, we propose a novel hash function
scheme based on a new Mersenne number transform. The suggested hash function called Hash Mersenne
Number Transform (HMNT) takes an arbitrary length as input to generate a hash value with variable lengths
(128, 256 and 512-bits or longer). The proposed scheme is evaluated in terms of the sensitivity of the hash
value to the message, secret key and image, distribution of hashes, confusion and diffusion, robustness
against collision and birthday attacks, alongside flexibility. Based on the simulation outcomes, the suggested
scheme possess high sensitivity to the original message, the secret key and images, alongwith strong collision
resistance. In conclusion, the proposed hash scheme is simple and efficient compared with the existing hash
functions, making it viable for practical implementation.

INDEX TERMS Hash function, Mersenne number transform, message digest authentication.

I. INTRODUCTION
Cryptographic hash functions, one of the most important
cryptographic primitives can be used to ensure the security
of many cryptographic applications and protocols, including
message authentication code, integrity, digital signature and
random number generation [1], [2]. A hash function is able to
take a message of arbitrary length to produce a fixed-length
code (or hash value) [3].

To ensure efficiency, a hash function must satisfy three
security properties, namely: (i) collision resistance (i.e. it is
computationally infeasible to find any two different input
messages m and m’ with the same output hash value, h(m) =
h(m’)); (ii) preimage resistance (i.e. it is computationally
infeasible to find any input message which is hashed to the
given output hash value); and (iii) second preimage (i.e. it is
computationally infeasible to find any second input that has
the same output as any specified input [4], [5].

Among the many algorithms designed for the implementa-
tion of the hash function, the Race Integrity Primitives Eval-
uation Message Digest (RIPMD), Message Digest 5 (MD5),

The associate editor coordinating the review of this manuscript and

approving it for publication was Chien-Ming Chen .

Secure Hash Function 1 (SHA-1) and Secure Hash Func-
tion 2 (SHA-2) are the most preferred. The strength of these
algorithms is based on the use of block ciphers, logical
operations and the number of rounds [6], [7]. However,
the abovementioned algorithms have been found to be vul-
nerable to collision and other types of attacks. For example,
Wang et al. in 2004 discovered that MD4, MD5, RIPEEMD,
and HAVAL-128 were weak against collision attacks [8].
In addition, successful collision attacks against SHA-1 were
also reported [9], where large companies such as Google and
Microsoft announced plans to abandon SHA-1 as a result of
the collision attacks [10]. Neither MD5 nor SHA-1 is robust
against collision attacks, therefore, National Institute of Stan-
dards and Technology (NIST) announced gradual elimination
of SHA-1 [10] and its replacement with the SHA-2 family,
a collection of several different hash functions (i.e. SHA-224,
SHA-256, SHA-348 and SHA-512) [4].

Contrary to the presumption, the occurrences of collision
and some partial attacks were identified in SHA-2 [11], [12].
Hence, these algorithmswere not preferred to ensure integrity
since they are not as time-efficient as SHA-1 [13]. Follow-
ing several demonstrations of successful collision attacks,
NIST reported a standard secure hash function called Secure

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 80395

https://orcid.org/0000-0002-8583-7509
https://orcid.org/0000-0002-4329-1202
https://orcid.org/0000-0002-6502-472X

A. Maetouq, S. M. Daud: HMNT: Hash Function Based on NMNT

Hash Function 3 (SHA-3) in 2015. This function is based on
the KECCAK algorithm, which was selected as the winner
of the SHA-3 cryptographic hash algorithm competition by
NIST [14]. Unfortunately, the first potential collision attack
on SHA-3 has been recently presented [15] and the time
required for hashing was greater than that of SHA-2 [3].

Since the traditional hash functions are no longer safe,
the need to design a novel hash function has become a priority
in the information security research. Although many hash
function algorithms were proposed by researchers, some are
based on chaotic maps where most of these algorithms use
floating point representation for their digital chaotic maps.
These algorithms also have high computational complexity,
as they have also been detected to suffer from interoperability
problems [16]. Unfortunately, despite the effort in designing
an efficient hash function, some of the current chaos-based
hashing scheme were proven to be insecure and less efficient
compared to the classical hash function [17], [18].

Therefore, this study aims to design a hash function scheme
based on a new Mersenne number transform (NMNT) that is
both statistically secure and reasonably efficient.

This paper is organized as follows: Section II provides
a brief introduction to the NMNT. Section III explains the
transform parameters. Next, section IV describes the steps
of implementing the proposed hash function scheme. While
section V presents the security and performance evaluation
of the proposed hash function. Then section VI compares
the proposed scheme with other hash functions. Finally,
section VII presents our conclusion.

II. THE NEW MERSENNE NUMBER TRANSFORM
The NMNT is part of the number-theoretic transform (NTT)
family of algorithms and was introduced by Boussakta and
Holt in 1995 [19]. It is defined as the modulo of theMersenne
numbers, where arithmetic operations are simple equivalents
to ones’ complement. NMNT also possesses the property
of cyclic convolution used for fast calculation of error-free
convolutions [20]. Furthermore, it has a long transform length
with a power of two facilitating fast algorithms. On the other
hand, NMNT can be used in one or several dimensions.
Moreover, NMNT has several inherent advantages, such as
its sensitivity to slight input variation, the long transform
length and a variable block size [21]. These properties can
be exploited to design a hash function that is more secure and
efficient.

The forward one-dimension NMNT, X (k) of an integer
sequence x (l), with a length equal to L is defined as in (1):

X (k) = 〈
∑L−1

l=0
x(l)β(lk)〉Mp k = 0, 1, 2, . . . , L − 1 (1)

where 〈 〉Mp is the Mersenne prime in the form of;
Mp = 2p − 1 (for p = 2, 3, 5, 7, 13, 17, 19, 31, . . .), and;

β (lk) = β1 (lk)+ β2 (lk) (2)

β1 (lk) = 〈Re(α1 + α2)lk 〉Mp (3)

β2 (lk) = 〈Im(α1 + jα2)lk 〉Mp (4)

α1 = ±〈2q〉Mp and α2 = ±〈−3q〉Mp (5)

q = 2p−2 (6)

The values of β1 (lk) and β2 (lk) in (3) and (4) are cal-
culated for a maximum transform length L = 2p+1. For
transform length less than that, their values can be obtained
using the following (7) and (8):

β1 (lk) = 〈Re((α1 + jα2)d)lk)〉Mp (7)

β2 (lk) = 〈Im((α1 + jα2)d)lk)〉Mp (8)

where Re() and Im() are the real and imaginary parts of the
enclosed term, respectively, d is an integer with a power
of two.

III. CALCULATION OF THE TRANSFORM PARAMETERS
The calculation of the transform parameters starts by choos-
ing a prime number (p). The value of the prime num-
ber depends on the desired transform length and dynamic
range. For example, let us choose for simplicity a prime
number p = 5. The modulus for the chosen prime is
Mp = 25−1 = 31 and the maximum transform length,
Lmax= 32,q =2p−2=23= 8. Using (5) to calculate α1 and α2
as in (9) and (10) respectively:

α1 = ±〈28〉31 = ±8 (9)

α2 = ±〈38〉31 = ±20 (10)

The initial values of α1 and α2 can be (8, 20), (−8, 20),
(−8, −20), (8, −20). These values are for the transform
length, L =2p+1= 64, and they vary according to the trans-
form length. Selecting pair (8, 20), the corresponding α1
and α2 for transform length 2p= 32, can be calculated as in
(11) and (12):

α1〈Re(8+ j20)2〉31 = 5 (11)

α2〈Im(8+ j20)2〉31 = 10 (12)

Hence, β1 (lk) and β2 (lk) can be computed by (13) and (14)
as follows:

β1 (lk) = 〈Re(5+ j10)lk 〉31 (13)

β2 (lk) = 〈Im(5+ j10)lk 〉31 (14)

The same procedure can be replicated to estimate other trans-
form for different transform size and moduli.

This numerical example illustrates all the required cal-
culations to transform a string of numbers from one form
to another. Let’s assume an input array X containing four
elements, each element is presented in decimal, X = [72 105
32 32]. This array can then be transformed to another form
using the NMNT.

The first task is to choose the modulus which should be a
Mersenne number in the form of Mp =2p−1. The modulus
should definitely be higher than any elements in the input
array X. Thus, theminimumMersenne prime number that can
be selected in this example is p = 7whichmakes themodulus
Mp = 127. The input array is 4 and hence, the transform

80396 VOLUME 8, 2020

A. Maetouq, S. M. Daud: HMNT: Hash Function Based on NMNT

length is chosen to be L = 4, then, α1= 0,α2= 1. The next
step is to compute β(l) using (3) and (4).

β (0)= 1, β (1)= 1, β (2)= −1, β (3)= −1.

Then, applying (1) to the input (X = [72 105 32 32]),
the array elements will be transformed in the following way:
The first element is:

X (0)
= x (0)× β (0× 0)+ x (1)× β (1×0)+ x(2)
×β(2× 0)+x(3)×β(3× 0) = (72× 1+ 105× 1+ 32
×1+ 32× 1) mod127 = 241 mod 127 = 114

The second element is:

X (1)
= x (0)× β (0× 1)+ x (1)× β (1× 1)+ x(2)
×β(2× 1)+x(3)×β(3× 1) = (72× 1+ 105× 1+ 32
×− 1+ 32×−1) mod127 = 113 mod 127 = 113

The third element is:

X (2)
= x (0)× β (0× 2)+ x (1)× β (1× 2)+ x(2)
×β(2× 2)+x(3)×β(3× 2) = (72× 1+ 105×−1
+32× 1+ 32×−1) mod 127 = −33 mod 127 = 94

The fourth element is:

X (3)
= x (0)× β (0× 3)+ x (1)× β (1× 3)+ x(2)
×β(2× 3)+x(3)×β(3× 3) = (72× 1+ 105×−1
+ 32×−1+ 32× 1) mod 127 = −33 mod 127 = 94

Finally, the transform output of the input array is given by:

[X (0) X (1) X (2) X (3)] = [114 113 94 94].

(Note that β (2× 2) = β (〈4〉L) = β (0), β (2× 3) =
β (〈6〉L) = β (2) and β (3× 3) = β (〈9〉L) = β (1)

IV. DESCRIPTION OF THE PROPOSED
HASH FUNCTION SCHEME
In this section, the proposed hash function scheme is
described in detail. The proposed hash function in this study is
called HMNT. It takes an input messageM of arbitrary length
to generate a variable hash value H. Usually, HMNT supports
three lengths of hash values, i.e. H= 128, 256 and 512 bits or
longer. The HMNT process consists of the following steps:
Step 1: Convert the input message M into corresponding

ASCII code value.
Step 2: The original messageM is partitioned into number

of blocks (m):M = {M0,M1,. . . ,Mm−1}. The length of each
block is denoted as n, where n is the length of the hash value.
The shortage in the last block is padded with the equivalent
number of space characters in the ASCII code, which is 32.
Step 3: The secret key K is a series of characters, that

modify the input message M . These characters also convert

into corresponding ASCII code values. If the character length
is less than the length of the hash value (n), the block is
padded with the equivalent number of space characters in the
ASCII code. Then, elements are added one by one to each
block of the input messageM .
Step 4: Upon modifying the input message using the secret

key K , NMNT (a mathematical formula that performs math-
ematical operations to transfer each block of the message to
the transform domain) is applied to each block in the input
message as explained in Section III.
Step 5: The final hash value H of messageM is obtained by

the summation (element-by-element addition) of transform
output NMNT to each block. The structure of the proposed
HMNT hash function is illustrated in Fig.1.

V. SECURITY AND PERFORMANCE EVALUATION
In this section, the proposed hash function HMNT is
evaluated in terms of the sensitivity of the hash value to
the message, secret key and image, confusion and diffusion,
the distribution of hash value, its collision resistance, its
resistance to birthday, exhaustive key search and meet-in-the-
middle attacks along with its flexibility. The results obtained
from the simulation are then compared with some of the
existing hash functions.

In order to evaluate the performance of our proposed
scheme, we adopted methods that were used in previous lit-
erature [4], [6], [22]–[24]. The randomly used input message
M and the secret key K in this evaluation are as follows:
M : ‘‘Cryptographic hash functions is one of the most

useful primitives for data security, which offers message
authentication, data integrity, and digital signature.’’
K : ‘‘abcdefghigkl12345’’.

A. SENSITIVITY OF HASH VALUE TO THE MESSAGE
Theoretically, a good hash function must be sensitive to slight
changes in the input message. In particular, any small change
in the input message should lead to a 50% difference in
the hash value, i.e. a Hamming distance of approximately
n/2 (where n is the length of the hash value) between the
two hash values. Therefore, to demonstrate the sensitivity of
the proposed hash function scheme, we constructed several
different messages by modifying the input message M given
in Section V. We calculated the hash values of all resulting
messages and compared under the following five conditions.

C1: The original message M is the same as that given in
Section V;

C2: The first character ‘‘C’’ in the original message is
changed to ‘‘c’’;

C3: The full stop ‘‘.’’ at the end of the original message is
changed to a comma ‘‘,’’;

C4: The word ‘‘hash’’ in the original message is changed
to ‘‘Hash’’;

C5: Space is added to the beginning of the original mes-
sage. The secret key, K given in Section V is fixed for all
conditions.

VOLUME 8, 2020 80397

A. Maetouq, S. M. Daud: HMNT: Hash Function Based on NMNT

FIGURE 1. The structure of the proposed hash function HMNT.

Table 1, Table 2 and Table 3 summarize the results obtained
for the corresponding lengths of 128, 256, and 512-bits hash
values, respectively, in hexadecimal format for each condi-
tion. The resulting values of different bits are compared to
the hash value obtained for C1, as well as the percentage of
number of bits changed.

Based on the hexadecimal representation of the obtained
hash values, a slight difference in the original message M
causes a huge change in the hash value by about 50%. Thus,
proving that the sensitivity of this proposed scheme is very
high.

B. SENSITIVITY OF HASH VALUE TO THE SECRET KEY
Next, in order to evaluate the sensitivity of the hash value to
the secret key, simulation experiments are carried out under
five different conditions, as follows:

C1: The original secret key K as given in Section V;
C2: The first character ‘‘a’’ in the original secret key is

changed to ‘‘A’’;
C3: The last character ‘‘d’’ in the original secret key is

changed to ‘‘b’’;

C4: A ‘‘1’’ is added to the beginning of the original
secret key;

C5: A ‘‘0’’ is added to the end of the original secret key;
The original input message M given in Section V is fixed

for all conditions.
Table 4, Table 5 and Table 6 present the results obtained for

the corresponding lengths of 128, 256, and 512-bits hash val-
ues, respectively, in hexadecimal format for each condition.

The tables also included the different bits of the hash
value compared with the hash value obtained for C1 and the
percentage of number of bits changed.

The results summarized in Table 4, Table 5 and Tables 6,
clearly demonstrate that a small change in the secret key
causes a significant change in the hash value. Hence, indi-
cating that the proposed hash function is very sensitive to the
secret key.

C. SENSITIVITY OF HASH VALUE TO THE IMAGES
In order to evaluate the sensitivity of the hash value to the
image, a gray-scale Lena image with 256 × 256 image size
(Fig. 2) is applied under three different conditions as follows:

80398 VOLUME 8, 2020

A. Maetouq, S. M. Daud: HMNT: Hash Function Based on NMNT

TABLE 1. Corresponding hash values of length 128 bits in hexadecimal format associated with C1-C5, and number of different bits compared with the
hash value of C1 for the message, M.

TABLE 2. Corresponding hash values of length 256 bits in hexadecimal format associated with C1-C5, and number of different bits compared with the
hash value of C1 for the message, M.

TABLE 3. Corresponding hash values of length 512 bits in hexadecimal format associated with C1- C5, and number of different bits compared with the
hash value of C1 for the message, M.

C1: The original gray-scale Lena image with
256 × 256 image size as shown in Fig. 2.
C2: Add 1 to the gray value of the pixel located at the upper

left corner;
C3: Subtract 1 to the gray value of the pixel located at the

upper right corner.
The secret key, K given in Section V is fixed for all

conditions.
The corresponding hash values of length 128, 256, and

512 bits in hexadecimal format for each condition; the dif-
ferent bits of the hash value compared with the hash value
obtained for C1, and the percentage of the number of bits
changed are listed in Table 7, Table 8 and Table 9.

Fig. 3 illustrates the wave graphic of 128 bits hash values
for C1, C2 and C3.

Based on the hexadecimal and binary representations of
the obtained hash values, any modification in the original
image leads to significant differences in the hash value. This
observation yet again proves the sensitivity of our proposed
hash function, HMNT.

D. DISTRIBUTION OF HASH VALUE
Uniform distribution of hash value which is regarded as
the most important properties of a hash function is directly
related to the security of the hash function. In this section,
we used two-dimensional graphs to present the distribution

VOLUME 8, 2020 80399

A. Maetouq, S. M. Daud: HMNT: Hash Function Based on NMNT

TABLE 4. Corresponding hash values of length 128 bits in hexadecimal format associated with C1-C5, and the number of different bits compared with the
hash value of C1 for the secret key, K.

TABLE 5. Corresponding hash values of length 256 bits in hexadecimal format associated with C1-C5, and the number of different bits compared with the
hash value of C1 for the secret key, K.

TABLE 6. Corresponding hash values of length 512 bits in hexadecimal format associated with C1-C5, and the number of different bits compared with the
hash value of C1 for the secret key, K.

of the original message M and its hash values (128, 256 and
512-bits).

First, the original message M is plotted as in Fig. 4(a).
Referring to this plot, it is observed that the decimal ASCII
code values of the original message M are distributed in
a small range of [32.124]. Whereas Fig. 4(b), (c) and (d)
which demonstrated the distribution of the corresponding
hash values in hexadecimal format are uniform.

The extreme case of an ‘‘all zero’’ message with the same
length is selected for a comparison in this study.

The distributions of the message are observed in Fig. 5(a)
and the distributions of the corresponding hash values
in Fig. 5(b), 5(c) and 5(d) are also uniform.

In short, based on the simulation results, no information
about the message remained following the confusion and
diffusion.

80400 VOLUME 8, 2020

A. Maetouq, S. M. Daud: HMNT: Hash Function Based on NMNT

TABLE 7. Corresponding hash values of length 128 bits in hexadecimal format associated with C1- C3, and number of different bits compared with the
hash value of C1 for gray-scale lena image.

TABLE 8. Corresponding hash values of length 256 bits in hexadecimal format associated with C1- C3, and number of different bits compared with the
hash value of C1 for gray-scale lena image.

TABLE 9. Corresponding hash values of length 512 bits in hexadecimal format associated with C1- C3, and number of different bits compared with the
hash value of C1 for gray-scale lena image.

FIGURE 2. The standard gray-scale Lena image with 256× 256 image size.

E. STATISTIC ANALYSIS OF CONFUSION AND DIFFUSION
In cryptography, confusion and diffusion carry their own dis-
tinct definitions. Confusion defines the relationship between
a message, whereby its corresponding hash code is com-
plex and difficult to predict. Diffusion, on the other hand,

explains that the hash value is extremely dependent on the
message [23]. Therefore, for good diffusion, a one bit modifi-
cation on an original input message will lead to a 50% change
in the probability of each output bit. In order to analyze the
confusion and diffusion capabilities of the proposed hash
function, we have performed the following experiment. First,
a random message M was selected and its hash value was
calculated. Secondly, a single bit in the message M was
randomly chosen and toggled to compute a new hash value.
Finally, the two hash values were compared bit by bit, where
the count number of the changed bits were marked as Bi. This
experiment was repeated N times with a different length of
hash values (128, 256 and 512) respectively. The evaluation
of diffusion and confusion capabilities usually require six
statistics that are defined as follows:

Minimum number of bits changed:

Bmin = min {B1,B2, . . . ,BN } (15)

Maximum number of bits changed:

Bmax = max {B1,B2, . . . ,BN } (16)

VOLUME 8, 2020 80401

A. Maetouq, S. M. Daud: HMNT: Hash Function Based on NMNT

FIGURE 3. Corresponding binary sequence of 128 bits hash value for C1,
C2 and C3. C1 is the original gray-scale Lena image.

Mean number of bits changed:

B̄ =
1
N

∑N

i=1
Bi (17)

Mean changed probability:

P =
(
B̄
h

)
x100% (18)

Standard variation of the changed bit number:

1B=

√
1

N − 1

∑N

i=1
(Bi−B̄)

2 (19)

Standard variation of the changed probability:

1P =

√
1

N − 1

∑N

i=1
(
Bi
h
− P)

2
× 100% (20)

where Bi denotes the changed bit number in the ith test,
N indicates the total number of the experiment and h repre-
sents the length of hash value.

Table 10, Table 11 and Table 12 were obtained by changing
the single bit in original message M (given in Section V)
and by executing the proposed hash function N times (for
N = 256, 512, 1024 and 2048) in order to generate hash
values with different size (128, 256, 512-bits). The number
of changed bits between the original hash value and a new
hash value is computed every time.

TABLE 10. Statistical results for 128 bits hash value.

TABLE 11. Statistical results for 256 bits hash value.

TABLE 12. Statistical results for 512 bits hash value.

According to the data presented in the Table 10,
Table 11 and Table 12, we can conclude that the proposed
hash function generated the mean number of bits changed B̄
and the mean changed probability P values are very close to
the ideal values (i.e. 64, 128, 256 bits, half of the length of
hash value) and 50%. Furthermore, the standard variation of
1B and 1P are very small indicating storing capabilities for
confusion and diffusion of the proposed hash function.

F. RESISTANCE TOWARDS COLLISION ATTACK
Two different input messages producing the same hash value
is called a collision. In general, a property for a good hash
function must possess is collision resistance. Hence, to ana-
lyze the collision resistance of the proposed scheme, the fol-
lowing experiment was carried out. First, a random message
was generated and its hash value was calculated. Followed by
a random modification of one bit of the original message to
estimate the new hash value of the modified message. Then,
both the hash values were transformed into hexadecimal for-
mat. Both hash values were compared and the number of
equal two-hexadecimal characters at the same location was
estimated. This count is referred to as the number of hits, Nh.
For example, the hexadecimal hash value of ‘‘abcdefghijk’’

is ‘‘19 0f 17 0b 14 62 18 40 05 4e 07 d4 14 5a 00 1d’’.
If ‘a’ (01100001) is changed to ‘A’ (01000001) the
hexadecimal hash value of the new message ‘‘Abcdefghijk’’

80402 VOLUME 8, 2020

A. Maetouq, S. M. Daud: HMNT: Hash Function Based on NMNT

FIGURE 4. Distribution of the original message M and its hash values of 128, 256 and 512-bits.

becomes ‘‘0e c4 1b ac 00 90 01 62 19 9e 1a 75 19 e8 06 ed’’.
Since there are no equal two-hexadecimal characters at the
same location, Nh = 0.
This test was repeated N = 2048 times for hash values

lengths of 128, 256 and 512-bits. Table 13 tabulates the
numbers of hits, Nh where the two-hexadecimal characters
are equal at the same location.

TABLE 13. Number of hits in collision test for 128, 256 and 512-bits with
N = 2048.

Themaximumnumber of equal two-hexadecimal character
in proposed hash function at 128 and 256- bits is only two,
while at 512-bit it is three. These numbers indicate a very
low collision probability. In addition, the absolute difference,
d, between the 128, 256 and 512-bits original and modified
hash values were also calculated using the following (21):

d =
∑N

i=1
(|t(ai)− t(bi)|) (21)

where ai and bi are the ASCII characters of the original and
the new hash values at position i respectively. The function

TABLE 14. Absolute difference for 128, 256 and 512-bits hash values with
N = 2048.

t converts the ASCII to the decimal equivalent. Table 14 sum-
marizes the corresponding results of the maximum, minimum
and the mean values of d upon completing the collision test
N = 2048.
Meanwhile, the mean values of d between the original and

modified hash values at 128, 256 and 512-bits are 1372.7,
2740.3 and 5348.6 as shown in Table 14 respectively. The
mean values of d are very close to the theoretical values [25],
suggesting strong collision resistance capability of the pro-
posed hash function, HMNT.

G. RESISTANCE TOWARDS BIRTHDAY ATTACK
A birthday attack is a type of attack that is independent of
the construction and can be applied on any hash function
algorithm [26]. The attacker in this attack seeks to find two
distinct messages (M , M ’) that have the same hash values h
within fewer than 2n/2 trials (where n is the length of hash
value) [4]. Thus, for n = 128, 256 and 512-bits, the proposed

VOLUME 8, 2020 80403

A. Maetouq, S. M. Daud: HMNT: Hash Function Based on NMNT

FIGURE 5. Distribution of the ‘‘zero message ‘‘and its hash values of 128, 256 and 512-bits.

hash function is identified sufficient to resist this type of
attacks.

H. RESISTANCE TOWARDS MEET-IN-THE-MIDDLE ATTACK
This attack aims to find a collision in the intermediate hash
chaining values rather than the final hash values. A collision
can be found if there is a match between two intermediate
hash chaining values [7]. However, this attack revealed that
the proposed hash function is ineffective because we used a
secret key as the initial value. The secret key made the inverse
computation extremely difficult even with a small modifica-
tion to the initial values. For instance, the original message
was presented as M = (M1, M2, M3, . . . ,Mn), and expected
contradicted message was represented as M ′ = (M1, M2,
M3, . . . ,M ′n). The attack only replaced the last block in the
message Mn: ‘‘digital signature’’, with a randomly selected
message block M ′n: ‘‘abcdefghigklmn’’. The corresponding
128 bits hash value of the original message Mn and the
replaced messageM ′n in the hex-formats are:
Mn: ‘‘17e9 1831 170a 0657 1801 1a87 1138 09ee’’
M ′n: ‘‘0997 1b1a 0250 186d 112b 01a2 03ed 1344’’
Based on the output, Mn is clearly different from M ′n,

Hence, the proposed hash function is identified to be resistant
to the meet-in-the-middle (MITM) attack.

I. RESISTANCE TOWARDS EXHAUSTIVE KEY
SEARCH ATTACKS
An exhaustive key search attack can be applied to any hash
function that employs a secret key as an input. In a keyed hash

function, if the attacker has access to a message/hash value
pair, then the key can be found through exhaustive searching.
So, on average, the attacker needs 2k−1 tries, where k is the
size of the key. The proposed scheme is flexible, allowing the
size of the secret key to be tuned. If the size of the key is set to
512 bits, the difficulty of the attack is 2512. Since k= 512 bits,
the proposed scheme is immune against this kind of attack.

J. FLEXIBILITY
On the other hand, the proposed scheme is also designed
to manage problems including the length of the hash and
resistance against common attacks like a collision. Since the
proposed scheme is highly flexible, it can be used to produce
hashes with the length of 128, 256 and 512-bits or longer,
unlike the traditional fixed-length hash functions such as
MD5 and SHA-1.

VI. COMPARISON WITH OTHER HASH FUNCTIONS
This section discusses the assessed comparison between the
proposed hash function with existing and standard hash func-
tions such as SHA-2 and SHA-3, that is based on statistical
performance, collision resistance and speed.

A. COMPARISON OF STATISTICAL PERFORMANCE
Table 15, Table 16 and Table 17 present the comparison of
statistical performance between the suggested hash function
and recent hash functions. The results outlined in Table 15 are
based on N = 2048 random test and 128 bits hash value,
while Table 16 for N = 2048 random test and 256 bits hash
value, and Table 17 focuses on N = 2048 random test and

80404 VOLUME 8, 2020

A. Maetouq, S. M. Daud: HMNT: Hash Function Based on NMNT

TABLE 15. Comparison on statistical performance for 128 bits hash value with N = 2048 random tests.

TABLE 16. Comparison on statistical performance for 256 bits hash value with N = 2048 random tests.

TABLE 17. Comparison on statistical performance for 512 bits hash value with N = 2048 random tests.

512 bits hash value. The analyses revealed that the statistical
performance of the proposed hash function is very close to
that of an ideal hash function algorithm. Furthermore, in com-
parison with the existing hash function, the proposed scheme
performs statistically better than most of the hash algorithms
presented in all the tables discussed in this section.

B. COMPARISION OF SPEED ANALYSIS
In order to evaluate the speed of the proposed hash function
with varying hash lengths (128, 256 and 512-bits) for dif-
ferent sizes of input message, we implemented the proposed
hash function in C# programming language on a device with
an Intel Core i5-3110M CPU, 2.4 GHz 4 GB RAM and
Windows 7 OS to calculate the hashing time (HT) in millisec-
ond and the hashing-throughput (HTH)(Mb/s). Besides that,
the number of cycles to hash one BYTE NCpB (Cycles/Byte)
is estimated using the formula in [29] as follows

HTH (MBytes/s) =
Message size(MBytes)
Average hashingtime(s)

(22)

NCpB(cycles/Byte) =
CPU (Hz)

HTH (Byte/s)
(23)

The outcomes obtained are summarized in Table 18.
Furthermore, the speed of the performance is compared
between the proposed hash function with some of the recent
hash functions, in terms of the NCpB along with their speci-
fied platforms as depicted in Table 19. Based on the results,
the NCpB of the proposed HNMT is much faster than that of
the NCpB obtained by Abdoun’s [29] and the standard hash
function SHA-2.

C. COMPARISION OF COLLISION RESISTANCE
Table 20 and Table 21 represent the comparison between the
proposed hash function with existing hash functions in terms
of the total number of position where the equal characters are
identical in the 128 and 256-bits hash values whenN = 2048.

As described in these tables, the values yielded by the
proposed hash function are in agreement with some of those
presented by existing hash schemes. Hence, the proposed
hash function has very low collision.

Next, Table 22 summarizes the comparison between the
proposed hash function with some of the recent hash func-
tions available in the literature. The comparison is made in
terms of the mean value of d of the two hash values for

VOLUME 8, 2020 80405

A. Maetouq, S. M. Daud: HMNT: Hash Function Based on NMNT

TABLE 18. Hashing time hashing throughput and the number of cycles per byte for 128, 256 and 512-bits hash values.

TABLE 19. Comparison of NCpB of the proposed hash function with other
hash function for 100 mb message.

TABLE 20. Comparison of collision resistance for 128 hash value with
N = 2048.

TABLE 21. Comparison of collision resistance for 256 hash value with
N = 2048.

128 bits whereN = 2048. The finding indicated that the mean
of absolute difference for the proposed hash function is very
close to the ideal value given in [25] than other hash functions.
Hence, the proposed hash function yields a stronger collision
resistance than most of the schemes used in this comparison.

In addition, Table 23 presents a comparison between the
proposed hash function with the standard hash functions

TABLE 22. Comparison of absolute differences for 128 bits hash value
with N = 2048.

TABLE 23. Comparison of the properties of the proposed scheme with
standard hash functions.

namely SHA-2 and SHA-3, in terms of hash size, block size
and collision occurrence.

Based on the values recorded in Table 23, the properties
of the proposed hash function are comparable with those
of other modern hash functions namely SHA-2 and SHA-3.
Hence, the proposed HMNT is a viable candidate for a new
hash function.

VII. CONCLUSION
This paper proposed a novel hash function scheme based on
NMNT, called HMNT. It took an arbitrary input message to
generate hash values of 128, 256 or 512-bits. The proposed
hash function was evaluated in terms of the sensitivity of the
hash value to the message, image and secret key, the distribu-
tion of hash values, statistical performance, the resistance of
the scheme to birthday attacks and collision, along with the
comparison with available hash functions. The results indi-
cated that the suggested hash function scheme has a higher
sensitivity to the original message, image and the secret
key, and strong collision resistance. Moreover, the results
also demonstrated that the proposed HMNT is flexible and
efficient, hence, can be applied for authentication to ensure
data integrity.

80406 VOLUME 8, 2020

A. Maetouq, S. M. Daud: HMNT: Hash Function Based on NMNT

ACKNOWLEDGMENT
The authors would like to express their appreciation to
Advanced Informatics Department, Razak Faculty of Tech-
nology and Informatics, Universiti Teknologi Malaysia for
realizing and supporting this research work.

REFERENCES
[1] D. Wang, Y. Jiang, H. Song, F. He, M. Gu, and J. Sun, ‘‘Verification of

implementations of cryptographic hash functions,’’ IEEE Access, vol. 5,
pp. 7816–7825, 2017.

[2] H. Tiwari and K. Asawa, ‘‘A secure and efficient cryptographic hash
function based on NewFORK-256,’’ Egyptian Informat. J., vol. 13, no. 3,
pp. 199–208, Nov. 2012.

[3] N. Abdoun, S. El Assad, M. A. Taha, R. Assaf, O. Deforges, andM. Khalil,
‘‘Secure hash algorithm based on efficient chaotic neural network,’’ in
Proc. IEEE Int. Conf. Commun. (COMM), Bucharest, Romania, Jun. 2016,
pp. 405–410.

[4] M. Ahmad, S. Khurana, S. Singh, and H. D. AlSharari, ‘‘A simple secure
hash function scheme using multiple chaotic maps,’’ 3D Res., vol. 8, no. 2,
pp. 1–15, Jun. 2017.

[5] M. Turcanik, ‘‘Hash function generation based on neural networks and
chaotic maps,’’ in Proc. Commun. Inf. Technol. (KIT), Vysoke Tatry,
Sovakia, Oct. 2017, pp. 1–5.

[6] Y. Li and X. Li, ‘‘Chaotic hash function based on circular shifts with
variable parameters,’’ Chaos, Solitons Fractals, vol. 91, pp. 639–648,
Oct. 2016.

[7] Y. Li, G. Ge, and D. Xia, ‘‘Chaotic hash function based on the
dynamic S-Box with variable parameters,’’ Nonlinear Dyn., vol. 84, no. 4,
pp. 2387–2402, Jun. 2016.

[8] X. Wang, X. Lai, and H. Yu, ‘‘Collisions for hash functions MD4 , MD5
, HAVAL-128 and RIPEMD,’’ IACR Cryptol. ePrint, vol. 2004, pp. 4–8,
Aug. 2004.

[9] X. Wang, Y. L. Yin, and H. Yu, ‘‘Finding collisions in the full SHA-1,’’ in
Proc. Annu. Int. Cryptol. Conf, 2005, pp. 17–36.

[10] K. Wu, Y. Li, L. Chen, and Z. Wang, ‘‘Research of integrity and authenti-
cation in OPC UA communication using whirlpool hash function,’’ Appl.
Sci., vol. 5, no. 3, pp. 446–458, 2015.

[11] P. Zhang, X. Zhang, and J. Yu, ‘‘A parallel hash function with variable
initial values,’’ Wireless Pers. Commun., vol. 96, no. 2, pp. 2289–2303,
Sep. 2017.

[12] S. Sanadhya and P. Sarkar, ‘‘New collision attacks against up to 24- step
SHA-2,’’ in Proc. Int. Conf. Cryptol, vol. 2, 2008, pp. 91–103.

[13] S. Verma and G. S. Prajapati, ‘‘Robustness and security enhancement of
SHA with modified message digest and larger bit difference,’’ in Proc.
Symp. Colossal Data Anal. Netw. (CDAN), Mar. 2016, pp. 0–4.

[14] M. J. Dworkin, Sha-3 Standard?: Permutation-Based Hash and
Extendable-Output Function, Standard NIST FIPS-202, 2015.

[15] D. I. , O. Dunkelman, and A. Shamir, ‘‘Collision attacks on up to 5 rounds
of sha-3 using generalized internal differentials,’’ in Proc. Int. Workshop.
Fast. Soft. Encrypt, Singapore, Mar. 2013, pp. 219–240.

[16] J. S. Teh, K. Tan, and M. Alawida, ‘‘A chaos-based keyed hash function
based on fixed point representation,’’ Cluster Comput., vol. 22, no. 2,
pp. 649–660, Jun. 2019.

[17] A. Maetouq, S. Mohd, N. Azurati, N. Maarop, N. Nur, and H. Abas,
‘‘Comparison of hash function algorithms against attacks: A review,’’ Int.
J. Adv. Comput. Sci. Appl., vol. 9, no. 8, pp. 98–103, Sep. 2018.

[18] Y. Li, ‘‘Collision analysis and improvement of a hash function based on
chaotic tent map,’’ Optik, vol. 127, no. 10, pp. 4484–4489, May 2016.

[19] S. Boussakta, ‘‘New transform using the mersenne numbers,’’ IEE Proc.-
Vis., Image, Signal Process., vol. 142, no. 6, pp. 381–388, 1995.

[20] M. T. Hamood and S. Boussakta, ‘‘Efficient algorithms for computing
the new Mersenne number transform,’’ Digit. Signal Process., vol. 25,
pp. 280–288, Feb. 2014.

[21] M. F. Al-Gailani and S. Boussakta, ‘‘Evaluation of one-dimensional
NMNT for security applications,’’ in Proc. 7th Int. Symp. Commun. Syst.,
Netw. Digit. Signal Process. (CSNDSP), Newcastle upon Tyne, U.K.,
Jul. 2010, pp. 715–720.

[22] Y. Li, X. Li, and X. Liu, ‘‘A fast and efficient hash function based on
generalized chaotic mapping with variable parameters,’’ Neural Comput.
Appl., vol. 28, no. 6, pp. 1405–1415, Jun. 2017.

[23] Y. Li and G. Ge, ‘‘Cryptographic and parallel hash function based on cross
coupled map lattices suitable for multimedia communication security,’’
Multimedia Tools Appl., vol. 78, no. 13, pp. 17973–17994, Jul. 2019.

[24] H. Liu, A. Kadir, and J. Liu, ‘‘Keyed hash function using hyper chaotic
system with time-varying parameters perturbation,’’ IEEE Access, vol. 7,
pp. 37211–37219, 2019.

[25] A. Akhavan, A. Samsudin, and A. Akhshani, ‘‘A novel parallel hash
function based on 3D chaotic map,’’ EURASIP J. Adv. Signal Process.,
vol. 2013, no. 1, pp. 1–12, Dec. 2013.

[26] A. Kanso and M. Ghebleh, ‘‘A fast and efficient chaos-based keyed
hash function,’’ Commun. Nonlinear Sci. Numer. Simul., vol. 18, no. 1,
pp. 109–123, Jan. 2013.

[27] M. Todorova, B. Stoyanov, K. Szczypiorski, and K. Kordov, ‘‘SHAH?:
Hash function based on irregularly,’’ INTL J. Electron. Telecommun.,
vol. 64, no. 4, pp. 457–465, Oct. 2018.

[28] Y.-G. Yang, J.-L. Bi, D. Li, Y.-H. Zhou, and W.-M. Shi, ‘‘Hash func-
tion based on quantum walks,’’ Int. J. Theor. Phys., vol. 58, no. 6,
pp. 1861–1873, Jun. 2019.

[29] N. Abdoun, S. El Assad, O. Deforges, R. Assaf, and M. Khalil, ‘‘Design
and security analysis of two robust keyed hash functions based on chaotic
neural networks,’’ J. Ambient Intell. Humanized Comput., vol. 11, no. 5,
pp. 2137–2161, May 2020.

[30] Y. Yang, F. Chen, X. Zhang, J. Yu, and P. Zhang, ‘‘Research on the hash
function structures and its application,’’ Wireless Pers. Commun., vol. 94,
no. 4, pp. 2969–2985, Jun. 2017.

ALI MAETOUQ received the B.S. degree in com-
puter engineering from the Faculty of Electronic
Technology, Bani Waleed, Libya, in 2003, and the
M.S. degree in computer engineering from The
Libyan Academy, Tripoli, Libya, in 2010. He is
currently pursuing the Ph.D. degree in computer
engineering with the Razak Faculty of Technology
and Informatics, Universiti Teknologi Malaysia,
Kuala Lumpur, Malaysia. His current research
interests include cryptographic hash functions,
data security, and blockchain technology.

SALWANI MOHD DAUD (Member, IEEE)
received the B.Eng. degree (Hons.) in electron-
ics engineering from the University of Liverpool,
in 1984, and the M.Eng. and Ph.D. degrees in
electrical engineering from Universiti Teknologi
Malaysia (UTM), in 1989 and 2006, respectively.
She is currently a Professor with the Advanced
Informatics Department, Razak Faculty of Tech-
nology and Informatics, UTM. She has been with
UTM for more than 30 years, and has vast expe-

rience in teaching and research. She is also teaching Machine Learning and
SystemDesign for Security for postgraduate program. She is also leading few
research grants in the related topics and had secured more than RM2millions
of Research and Development funds. She is also heading the Cyber Physical
Systems Research Group. She also has published more than 100 academic
articles in journal, proceedings, and books. Her research area is focusing on
artificial intelligence, blockchain, and the IoT. She is a member of registered
Professional Technologist from Malaysia Board of Technologists (MBOT)
and registered Graduate Engineer with the Board of Engineers Malaysia
(BEM).

VOLUME 8, 2020 80407

