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ABSTRACT High-precision extraction of particulate characteristic modes is essential for dust explosion
safety measurements, such as particulate concentration and size distribution. A new solution based on
information entropy multi-decision attribute reduction fuzzy rough set is proposed to analyse the particulate
morphology characteristics, which effectively avoids the shortcomings of traditional technology (low accu-
racy, stochasticity, etc.). The proposed approach consists of three stages: membership function modelling,
attribute reduction, and maximum information entropy threshold segmentation. The membership coefficient
was determined with a multi-segment function by developing the fuzzy degree of the membership model for
dust image pixels. The fuzzy dependence of the conditional attribute was determined to extract the fuzzy
attribute reduction. Finally, the model of coal dust particulates with information entropy was improved to
extract the maximum segmentation threshold, which is significant for classification. The proposed methods
were evaluated over a sequence of 30 image sets. The unclassified rate evaluation reached 0.978 for particle
sizes ≥ 200 µm, 0.958 for [75 µm, 200 µm] and 0.950 for particle sizes < 75 µm. The proposed reduction
approach offered a performance improvement in terms of more important attribute implementation. The
paper demonstrated that the maximum information entropy reduction model can remove the redundant
attributes without compromising the precision.

INDEX TERMS Fuzzy membership, image grey feature, information entropy, multi-attribute reduction.

I. INTRODUCTION
With increasing attention being paid by state and relevant
experts to environmental pollution caused by substantial coal
mining, coal dust recognition technology based on imagery
information is attracting more extensive and in-depth studies
in mines locally and abroad because of its efficient visualiza-
tion and intelligent application [1], [2], Technology to extract
the visual information from imagery can solve safety issues
in coal mines, provide an effective and highly reliable way
to adapt to adverse environments, and accurately predict coal
dust explosion hazards. However, the dust detection mecha-
nism is extremely complex, and there are many determinants,
resulting in significant randomness of the coal dust detection
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results. With the decrease in dust particulate dispersivity, it
becomes increasingly common to find a cell at a certain
resolution that contains only a few local details. The statistics
indicate that data with low and median resolution are no
longer applicable to model the global properties of high-
resolution dust images. Therefore, the major work of this
paper focuses on how to extract discriminative features for
image classification [3].

Therefore, many studies conducted locally have focused on
the development of dust particulate detection mechanisms,
resulting in many varied findings. Recently, a light scat-
tering approach was introduced by Okpeafoh et al. [4] to
address the difficulty of obtaining instantaneous dust concen-
tration changes, but only ideal spherical particulates could
be taken as the test standard. The method that could detect
non-spherical coal dust particulates exhibited deviations and
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caused particulate shape measurement errors. Sun et al. [5]
thought that β-rays are not affected by factors such as dust
type, particle size, dispersion, shape, and colour. Conse-
quently, they utilized the advantages of the β-ray measure-
ment method to achieve automatic continuous detection of
dust concentrations with high measurement accuracy. How-
ever, this method was inefficient and exhibited potential
safety problems with strong radiation sources [6].

Considering the limitations of technical methods and
research perspectives, the abovementioned studies did not
systematically analyse the characteristics of coal dust partic-
ulates. With the development of research methods, coal dust
recognition technology based on imagery information has
the advantage of being able to directly observe various coal
dust particle sizes and shapes. Alpana [7] proposed dividing
the coal dust imagery regions with different characteristics
according to grey similarity and discontinuity. The charac-
teristic parameters of particulate targets were measured, and
the particulate features were extracted. The obtained research
results have important reference value that can be used for fur-
ther studies. Omid et al. [8] applied a maximum entropy auto-
matic threshold to deal with various image signal-to-noise
ratios in the imagery space. This method could produce satis-
factory extraction effects because of its high sensitivity to the
image contrast and histogram distribution performance. How-
ever, this method ignored the spatial information between
image targets with little grey value differences and the con-
ditions of overlapping grey value areas. The histograms did
not have obvious double peaks; thus, the extraction effect
was poor [9]. The above research method considered the
distribution of imagery greyscale space more effectively than
other methods, greatly improving the accuracy of image
extraction. However, this method cannot achieve an ideal
situation indefinitely. An issue that needs to be discussed is
how to use reasonable research means to effectively explain
the microscopic characteristics of the appearance of coal dust
particulates based on spatial information in images [10], [11].

Through the research on imagery space theory and micro-
science, it was found that the information characteristics of
coal dust particulates can be addressed using nonlinear and
uncertainty modelling [12]. Furthermore, the difficulty in
image recognition lies in the accuracy of redundant feature
removal. In this study, the image characteristics of coal dust
particulates were researched from a microscopic perspective.
Multi-attribute reduction provides a new solution to this prob-
lem [13]. The proposed approach consists of two major parts:
multi-segment membership determination and information
entropy attribute reduction [14], [15]. In the first part, based
on the division of regional spatial information based on the
image greyscale characteristics, the classification and selec-
tion of attribute importance is presented. Local details are
modelled, and several multi-segment functions are utilized
to extract local features of images. The most important steps
are determining an appropriate number ofmembership coeffi-
cients to allow these functions to exploit enough information
for image classification. In the second part, starting with

the fuzzy membership degree of image pixels and the fuzzy
dependence of image greyscale characteristics [16], math-
ematical models of attribute reduction information entropy
are presented. Based on the constructed models, a reasonable
interpretation of the characterized information on coal dust
particulates is discussed [17]–[19]. The above works were
carried out as theoretical and experimental verification for
overlapping particulate separation research in advance, and
they provide a basis for coal dust particulate recognition [20].

This paper is one part of the research "Denoising Mech-
anism and Image Recognition Research on Coal Dust Char-
acteristic Parameters (51804249)". Through the analysis of
coal dust particles, the physical properties of the dust are
obtained, and an image characteristic model is established.
The correlation between image parameters and coal dust
characteristics is derived. A follow-up study on parameters
such as particle size, particle size distribution, and coal dust
concentration will be conducted. The research results of this
paper can provide a theoretical and experimental basis for
designing a detection system for coal dust explosions.

The remainder of this paper is organized as follows. In
Section 2, the methods for the attribute reduction feature
space model is introduced, and the approach of information
entropy multi-attribute reduction for image extraction is pre-
sented. In Section 3, several experiments are presented to
evaluate the performance of the proposed approach. Section
4 draws some conclusions and presents future works.

II. MATERIALS AND METHODS
A. REDUCTION OF DECISION INFORMATION SYSTEM
The experiment introduces the concept of a discernibility
matrix into the analysis of coal dust image feature space and
evaluates the fuzzy discernibility matrix of the fuzzy informa-
tion system to determine all fuzzy attribute reductions. The
feature selections based on the evaluated attribute reductions
are the core issues of the redundant attribute removal in the
image feature space. Assuming that U= {x1, x2, . . . , xn} is
a finite nonempty set describing the n dimensional imagery
feature space of coal dust, the binary group FAS = (U,A ∪ C)
is the imagery fuzzy approximation space, where A is the
fuzzy equivalence relation of U, and C is the single fuzzy
decision attribute; ∀x ∈U, the fuzzy equivalence class of the
object x is

µ[x]A(y) = µA(x, y) (1)

Assuming U/A = {A1,A2, . . . ,AK } ,U/C =

{C1,C2, . . . ,Cl}, ∀ As ∈ U/A (1 ≤ s ≤ k), ∀x ∈ U, a fuzzy
positive domain of C is

POSA(C)(x) = µPOSA(C)(x)

= sup
As∈U/A

min
{
µAs (x), µPOSA(C)(As)

}
(2)

In the fuzzy approximation space FAS = (U,A ∪ C),
A0 ⊂ A, then A0 is a fuzzy attribute reduction of A relative
to C .
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A sample coal dust image is set as an object, various coal
dust features are set as conditional attributes, category results
are set as decision attributes, and then, a decision table is
formed. The essence of the process of extracting effective
features is the attribute reduction process in the decision table.
The decision table obtained by discretization can be used
as a set of formulas processed with a logical relation, and
the consistency of the decision table can be determined by
judging whether the formulas and rules are contradictive.
Attribute reduction is exactly based on the consistency of the
decision table [21].

Important image information features such as colour,
shape, texture, and spatial position of the object or region are
analysed and retrieved to obtain effective imagery informa-
tion and conduct image recognition. The selection of image
features is performed by trial and error. Under the principle
of classification accuracy based on the maximum likelihood
method, six classification features selected from more than
ten features are determined as items of effective feature infor-
mation sensitive to extraction accuracy. First, we set six char-
acteristic information elements, including the greyscale mean
value, greyscale variance, contrast, mean texture, roughness,
and evenness, to represent condition attribute A. Second,
these characteristic information elements are continuous val-
ues, discretization is carried out by using the minimum
description length principle algorithm, and thus, a decision
table is generated. Finally, by acquiring effective feature
information, the target category attribute, namely, decision
attribute C , is determined to accomplish image recognition.

B. ATTRIBUTE REDUCTION ALGORITHM DESCRIPTION
The attribute reduction of the decision table can be realized
with the following algorithm.

1) INPUT
Decision table T = {U,A∪C,V , f }, where U is the universe
of discourse, and A and C are the conditional attribute set and
decision attribute set, respectively.

2) OUTPUT
Relative attribute reduction of the decision table.

3) ALGORITHM PROCESS
(1) Assume that dx is the decision rule, and the constraints
of dx to A and C are described as dx|A(condition) and
dx|C(decision), respectively.

¬ If y 6= x, for any decision rule, suppose dx|A = dy|A
and dx|C = dy|C ; then the decision table is consistent;

­ If y 6= x, ∃dx|A = dy|A, while dx|C 6= dy|C , then
the decision table is inconsistent. Calculate its positive region
POS(A,C).

(2) If r ∈ A, and ind(A) = ind(A− {r}), then r is a redun-
dant attribute, which can be omitted. Otherwise, reserve it.

(3) If r ∈ A, POS(A,C) = POSX (A−{r} ,C) is true, then
r can be omitted. Otherwise, reserve it.

(4) Finally, a decision table T0 = {U,A0 ∪ C,V0, f } is
derived, where A0 < A, A0 is the relative reduced attribute
set of A, and this contains the effective feature set.

A small part of the condition attribute was omitted through
the analysis of data, and objects with the same decision
rules were merged in the decision table. Thus, the reduced
decision table could be obtained, and effective feature infor-
mation could be determined. The essence of the process is the
attribute reduction in the decision table.

Through simplification of the condition attributes in the
decision table, the simplified decision table had the same
function as that in the previous one, but the number of
condition attributes was decreased. The same decision could
be implemented based on fewer conditions, and this is the
purpose of attribute reduction [22]. The simplified decision
table is incomplete. It contains only the necessary condition
attribute values, but it has all the information of the original
information system.

C. DETERMINING THE FUZZY CATEGORY MEMBERSHIP
Image pixels can be described with the feature space points
of the information system obtained by attribute reduction.
Image extraction can be considered an object classification
problem, and the dust images can be extracted by feature
space clustering. This procedure will obtain the aggregation
extraction characteristic in the feature space, which is then
mapped back to the original image space. Thus, the optimal
extraction effect can be determined.

If U is the reference superset, R is the equivalent relation-
ship on U, and X is a subset of U, then X is said to be a fuzzy
subset of U if X = {x, µX (x)}, ∀x ∈U.
Supposing

R(X ) = {xi |[xi]R ⊆ X } (3)

R(X ) = {xi |[xi]R ∩ X ≡ ∅} (4)

Then, R(X ) is called the lower approximation of R and R(X )
the upper approximation of R. If R(X ) = R(X ), X is called a
definable set, otherwise it is called a rough set.

The coal dust images obtained were treated as fuzzy
rough set X = {x1, x2, . . . xn}. From the perspec-
tive of indistinguishable relations and classes, k clusters
{m1,m2, . . . ,mk} were constructed in the fuzzy rough sets
X = {x1, x2, . . . , xn}, and the simplified and general rules
were obtained from a large volume of original data. Thus the
fuzzy membership degree µwi(xi) of xi corresponding to wi
was determined, where xi is the gray value of the i pixel in
the coal dust image; i = 1, 2, . . ., n; n is the number of pixel
points, k is the non-zero natural number, and wi is the pixel
in the universe of discourse of the fuzzy rough set U.

D. ACHIEVING THE FUZZY ATTRIBUTE REDUCTION OF
FUZZY ROUGH SET
When coal dust features were extracted from an image infor-
mation system, redundant information easily existed in the
extracted features according to the importance of the image
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feature information. The attribute reduction could be adopted
by simplification of the classification standards, elimination
of the redundant feature information, and selection of the
most important extraction features [23].

In the gray feature space of the coal dust image, multiple
image gray features were treated as multiple condition
attributes, and the fuzzy dependence γx

(
Aγ
)

of condi-
tion attributes Aγ was obtained according to the following
formula:

γX (Ar ) =
|POSX (Ar )|
|U |

(5)

where POSX
(
Aγ
)
is the positive domain of the fuzzy rough

set X corresponding to condition attributes Aγ . The formula
is as follows:

POSX (Ar ) = supmin
{
µwi (xi), µPOSX (Ar )(xi)

}
(6)

where µPOSx(Aγ )(xi) is the fuzzy category membership of xi
corresponding to POSX

(
Aγ
)
:

µPOSX (Ar )(xi) =


xi − mj

mj−1 − mj
mj−1 ≤ xi ≤ mj

xi − mj
mj+1 − mj

mj ≤ xi ≤ mj+1

0 else

(7)

By examining the fuzzy dependencies correspond-
ing to N condition attributes in the gray feature space
of the coal dust images, the condition attribute with
the maximum fuzzy dependence was selected from
{A1,A2, . . . ,AN } as the candidate attribute of fuzzy attribute
reduction, defined as A′1. According to the above method,
the candidate attributes of the 2 − λ fuzzy attribute reduc-
tions were determined in turn, and defined as the candidate
attribute set B =

{
A′1,A

′

2, . . . ,A
′
q

}
of the fuzzy attribute

reduction. Here, the candidate attribute A′q of the fuzzy
attribute reduction was the conditional attribute of the max-
imum fuzzy dependence with the exception of the selected
candidate attribute q− 1, and the range of q is [2, λ].
The images of coal dust inevitably had feature redundan-

cies. To address the problem of redundant features, attribute
selection was carried out according to the classification
importance and attribute reduction of the fuzzy rough set.
The attributes with the greatest importance were selected
and retained, while redundant attributes Av (q < v < N )were
removed. It was assumed that this relationship was true,
where Av is the fuzzy dependence, which is greater than that
of other candidate attributes of fuzzy attribute reductions.
Then B′ =

{
A′1,A

′

2, . . . ,A
′
q,Av

}
was determined to be the

fuzzy attribute reduction of the fuzzy rough set, and the
image with redundant attributes removed could be obtained.
Otherwise, B =

{
A′1,A

′

2, . . . ,A
′
q

}
was determined to be the

fuzzy attribute reduction of the fuzzy rough set X , and the
image with redundant attributes removed was obtained.

E. ANALYSIS OF INFORMATION ENTROPY
CHARACTERISTICS OF COAL DUST IMAGE
Assume that the initial extraction threshold s of the coal dust
image was

s = [xmin +
1
2
(xmax − xmin)]× rand() (8)

and each pixel gray value of the coal dust image was com-
pared with extraction threshold s. Here, xmax is the maximum
value of elements of x as follows:

xmax = max {x1, x2, . . . , xn} (9)

xmin is the minimum value of elements of x as follows:

xmin = min {x1, x2, . . . , xn} (10)

and rand () is the random number distributed uniformly on
(0,1).

Due to the fuzzy uncertainty of the boundary between the
object and background in the coal dust greyscale image, the
upper and lower approximations of rough sets can be adopted
to describe this uncertainty. For the coal dust image with
redundant attributes removed, this study applied the fuzzy
upper approximation and fuzzy lower approximation to the
object region and background region, which are given as
follows:

Fuzzy lower approximation of object region:

RoX = inf
xi∈U

max {1− µwi(xi),wi > s,} (∃i=1, 2, . . . , n)

(11)

Fuzzy upper approximation of object region:

RoX = sup
xi∈U

min {µwi(xi),wi≤s,} (∀i = 1, 2, . . . , n) (12)

Fuzzy lower approximation of background region:

RBX = inf
xi∈U

max {µwi(xi),wi > s,} (∃i=1, 2, . . . , n) (13)

Fuzzy upper approximation of background region:

RBX = sup
xi∈U

min {µwi(xi),wi ≤ s,} (∀i=1, 2, . . . , n) (14)

When each pixel grey value of the coal dust image is more
than the extraction threshold s, the fuzzy lower approximation
of the object region is RoX+1.When a part of the pixels’ grey
values is more than the extraction threshold s, the fuzzy upper
approximation of the object region is RoX + 1. When each
pixel grey value of the coal dust image is no more than the
extraction threshold s, the fuzzy lower approximation of the
background region is RBX+ 1.When a part of the pixels’ grey
values is no more than the extraction threshold s, the fuzzy
upper approximation of the background region is RBX + 1.
The information measure and acquisition limitation of the

coal dust image feature could easily result in information
discontinuity, and thus information granules were formed.
Discrete data points in the information granules were taken
as a whole to measure knowledge uncertainty in the infor-
mation system. In the range of entropy space, the universe
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of discourse could be divided by the granularity similarity
and inferred from the subset. During information processing,
information granules had different amounts of information,
and the uncertainty degree of the information system could be
described by information entropy. The higher the information
entropy was, the more uncertain the system became and
thus the greater amount of information to be determined was
required.

Given the universe of discourse U, suppose that P is an
information granule of U, and its derived partition on U is
U/P = {X1,X2, . . . ,Xn}, Let

p (Xi) =
|Xi|
|U |

(15)

then, the entropy of information granules Entr (P) is as fol-
lows:

Entr(P) = −
n∑
i=1

p(Xi) log2 p(Xi) (16)

The Hartley metric expression of information entropy of
the universe of discourseUwas the knowledge entropy. Based
on the information theory principle, the information entropy
of certain knowledge was subtracted from the Hart1ey metric
of U, and thus, rough entropy of the knowledge was obtained.

The knowledge rough entropy Hγ (P) was defined as a
partition of a universe with an equivalence relation, and the
general binary relationship obtained by extending the equiv-
alence relation to a compatible relationship or a similar rela-
tionship was considered. The frequency of occurrence of any
object in the neighbourhood of all objects constructed with
the general binary relationship could determine the knowl-
edge rough entropy Hγ (P), and the formula is written as

Hr (P) =
1
|U |

|U |∑
i=1

log2 |Xi|P (17)

where U =
{
x1, x2, . . . x|U |

}
,P ⊆ A,

|Xi|P =
∣∣{P(Xj)∣∣Xi ∈ P(Xj), 1 ≤ j ≤ |U |

}∣∣ (18)

namely, the frequency of occurrence of Xi in the neighbour-
hood of all elements Xj (1 ≤ j ≤ |U |). P(Xj) represents the
neighborhood of Xi constructed with a general binary rela-
tionship under knowledge P.

Obtaining more accurate uncertain measurement charac-
teristics of rough sets in coal dust images is related not only
to the uncertainty of universe knowledge (rough entropy of
knowledge) but also to the roughness of rough sets. Thus, the
rough entropy model of a rough set could be established.

Given the information system S = (U ,A) ,P ⊆ A,X ⊆ U ,
the rough entropy of a rough set under the knowledge P is
defined as follows:

H,r (P) = ρP(X )Hr (P) (19)

where, ρP (X) is the roughness under the knowledge P,
defined as follows:

ρP(X ) = 1−
|P−(X )|∣∣P−(X )∣∣ (20)

whereP− (X) andP− (X) denote the lower and upper approx-
imation sets about the knowledge P under the general binary
relationship, respectively.

Based on the discussion above, within the scope of entropy
space, a quantitative model could be established using the
concept of information entropy. From the perspective of set
theory and algebra analysis, based on the definition of image
roughness, the rough information entropy is as follows:

Entr(X ) = (1− RoX ) log2 RoX + (1− RBX ) log2 RBX (21)

The information entropy of coal dust image Entr(X ) was
determined, the maximum entropy was finally obtained, and
the selection of the coal dust image extraction threshold was
achieved.

III. RESULTS AND DISCUSSION
To investigate the segmentation performance, a series of
experiments was carried out based on coal dust samples.
In this experiment, the fuzzy category membership degrees
could be calculated by labelling each pixel in several dust
imageswith somewell-definedmulti-segment function labels
in a patch-wisemanner. As the fuzzy attribute reduction could
be extracted step by step, the fuzzy lower approximation and
upper approximation in the target and background regions
were divided naturally. Thus, the information entropy model
of coal dust particulates was established. In this section, two
experiments were carried out to evaluate the performance
of the proposed approach for IEMAR image segmentation,
which are listed as follows.

(1) In the first experiment, 30 image sets were utilized to
evaluate the extraction performance of the learned discrimi-
native features.

(2) Second, performance parameter data sets that evaluate
image extraction accuracy were employed to verify the effec-
tiveness of the proposed approach by comparison with other
conventional segmentation approaches.

A. PERFORMANCE EVALUATION OF PARTICULATE
IMAGE FEATURE
1) DATASET AND PARAMETER SETTING
To verify the rationality of the information entropy multi-
attribute reduction model and evaluate the performance of the
proposed method, 30 groups of image sets (35 pictures were
taken for each group) with different sizes were utilized in
this experiment. The coal sample datasets were taken from a
coal preparation plant. The sampling standard was performed
according to the� Manual methods for ambient air quality
monitoring�(HJ194-2017). Twelve dust sampling locations
were selected in multiple dust production workshops of the
coal preparation plant. The acquired 30 groups of training
samples were classified by the different conditions of sam-
pling image light source, sampling image time interval, and
sampling image temperature. The image characteristics of
coal dust with differing particle sizes were identified. Due to
limited space, only some samples are listed and shown here.
In the computing environment of a PentiumDual Core G3420
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FIGURE 1. Comparison of different approaches of particle size ≥ 200 µm:
(a) original image, (b) FPM, (c) SFC, and (d) IEMAR.

CPU 4GB RAM PC, images were acquired using Olympus
BX41 (microscopic magnification factors: 40× ocular lens,
10× objective lens) and MATLAB 2018. Insufficient train-
ing samples easily cause experimental results to fluctuate
severely by random sampling, while the experimental results
obtained by cross validation are relatively stable. Therefore,
cross-validation methods are considered. The specific steps
are as follows: randomly sample 30 groups with 35 images in
each group, divide the image sets randomly and complete 10
experiments. A set of images is taken as the sample test set
for each experiment, and the remaining sets are taken as the
training sets. Finally, the arithmetic means of 10 experiments
are taken as the final result.

In this experiment, particulate images (Figs. 1-3), which
were acquired in mine preparation plants, were used to eval-
uate the discriminative capacity of the proposed approach.
Objects of the experiment were taken from coal dust images
of different particle sizes, and each of the raw datasets was
3072 × 1048 pixels in size.

2) ANALYSIS OF RESULTS
Based on the good performance in terms of sensitivity and
specificity, two representative approaches are introduced
here: feature-point matching (FPM) [24] and spatial fuzzy
clustering (SFC) [25] for comparison with the IEMAR. The
coal dust images with particle sizes ≥ 200 µm, 75 µm ≤
particle sizes < 200 µm, and particle sizes < 75 µm are
shown in Figs. 1-3 (a), respectively. the extraction results are
shown in Figs. 1-3 (b), (c), and (d).

Based on the analysis of the above experimental results, for
image objects with slightly different grey values, the model
algorithm based on FPM did not have an obvious extrac-
tion effect on the image feature information and thus easily
resulted in great loss of image information. The SFC model
algorithm not only considered the spatial characteristics but
also processed the pixel grey values; thus, it is relatively
sensitive to noise and has good information extraction ability.
However, the ability to distinguish information is weak in the

FIGURE 2. Comparison of different approaches of 75 ≤ particle size <
200 µm: (a) original image, (b) FPM, (c) SFC and (d) IEMAR.

FIGURE 3. Comparison of different approaches for particle size < 75 µm:
(a) original image, (b) FPM, (c) SFC, and (d) IEMAR.

overlapping regions of grey values. At the same time, it can
also be noticed the performance is effectively improved by
introducing the discriminative information of multi-attribute
reduction after comparing the statistical results between SFC
and the proposed IEMAR. The established IEMAR model
has a good degree of discrimination for detailed image infor-
mation. Compared with the statistical results of IEMAR, the
high-level features that were extracted by the information
entropy structure can effectively characterize the content of
image sets. This method can better identify the most impor-
tant feature information used for extraction, particularly for
smaller particulates, and can also accurately extract partic-
ulates from images. also extract particulates from images
accurately.

B. DISCUSSION
1) PARAMETERS ANALYSIS
The performance indexes used to evaluate the discriminative
features of the particulate image region are represented as the
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TABLE 1. Differences in performance test parameters for three particle sizes ranges. Optimal threshold, computational time (s) and unclassified rate
evaluation are listed for the nine different treatments. Optimal performance value indicated in bold. All parameters mean values were measured at the
end of the test.

optimal threshold, computational time, and unclassified rate
evaluation. In this section, the above three parameters were
used to evaluate the performance of the proposed approach
for image extraction. To verify the performance of the optimal
threshold, computational time, and unclassified rate evalua-
tion for the characteristic parameters of a coal dust image,
several approaches that are widely used to process particulate
images were compared by using images of different particle
sizes: multiscale image acquisition (MSIA) [26], Daubechies
wavelet transform (DWT) [27], Frenkel-Halsey-Hill (FHH)
[28], grey-level cooccurrence matrix (GLCM) [29], fuzzy
C-means (FCM) [9], Gabor filter [30], FPM, and SFC. In the
process of testing the simulations with the approaches in the
above works, the adopted test conditions, such as tempera-
ture, humidity, light intensity, coal dust sample specifications
and other parameters, are not the same, so the measured
indexes are different. This paper focuses on the comparative
analysis of the identification accuracy of coal dust particulate
samples under their respective conditions.

Experimental objects were taken from the coal dust image
with differing particle sizes collected from some coal mine
preparation plants in the environment of Pentium Dual Core
G3420 CPU 4GB RAM PC, Olympus BX41, and MATLAB
2018 software. More specifically, to provide a fair compari-
son, we used the same parameter settings and input datasets
in our evaluation test. Three performance indices for coal
dust images with differing particle sizes are listed in Table 1:
optimal threshold, computational time (s), and unclassified
rate evaluation α. The unclassified rate evaluation is defined
as follows:

α = 1− β (22)

β =

2t
t∑
j=0

∑
i∈Zj

(gi − gj)
2

x · y · (Rmax − Rmin)2
(23)

where gj is the grey value of pixel i, ḡj is the average grey
value of the jth order segmentation region, Zj is the jth order
segmentation region, t is the number of thresholds, x · y is the
total number of image pixels, and Rmax and Rmin are the max-
imum and minimum grey values of the image, respectively.
The range of parameter α is [0, 1]. The closer the value of
α is to 1, the greater the image extraction accuracy and the
better the extraction effect.

The difference in performance between the proposed
IEMAR and the others was analysed by sequential extrac-
tion (Table 1). The results show that IEMAR achieves an
unclassified rate evaluation α value above 0.95 to resolve
the unclear characteristic mode. When MSIA, DWT, FHH,
GLCM, FCM, Gabor filter, FPM, and SFC were compared,
only FPM and SFC were slightly faster than IEMAR in terms
of computation time, but the α values of the two approaches
were 0.835 and 0.923, respectively, which are worse than
that of the proposed IEMAR. Meanwhile, the bold fonts in
Table 1 are employed to denote the optimal results, which
occurs in the situation in which IEMAR outperforms the
others. Although IEMARwas associated with only less fuzzy
feature information, it still achieved improved accuracy and
efficiency. Precisely because of the approach of combining
fuzziness and roughness in information systems with prod-
uct fuzzy classification rules, IEMAR results in strength-
ened generalization ability. In summary, IEMAR achieves the
best trade-off between accuracy and speed. Utilizing IEMAR
can improve the search efficiency, and it guarantees the
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effectiveness and robustness of the image extraction approach
to a greater degree.

Considering the balance of extraction accuracy and com-
putational efficiency, IEMAR is a practical and effective
image extraction algorithm. The threshold value, computa-
tional time and α have significant advantages and meet the
requirements of an accurate extraction. IEMAR can also
provide accurate data for follow-up studies of coal dust image
information.

2) DISCRIMINATIVE CAPACITY ANALYSIS
In this section, three simulation experiments were conducted
to evaluate the performance of the proposed IEMAR with
respect to different settings. Conventional test methods con-
sist of cross validation and random sampling. The insufficient
training samples make the experimental results of random
sampling fluctuate greatly, while the experimental results
obtained by cross validation are relatively stable. Therefore,
cross validation is applied here. the specified operation is as
follows.

(1) The particulate ranges were determined in the particle
sizes of 0 ∼ 75 µm, 75 ∼ 200 µm, and ≥200 µm;

(2) Thirty groups of image sets were sampled, including 35
random image samples in each group, and they were utilized
to achieve ten experiments;

(3) A group of image sets was set as the sample test set for
each experiment, while the others were taken as training sets.
Finally, the arithmetic mean values of ten experiments were
considered as the final result.

As a result, the parameters of all samples were analysed,
and the results are shown in Fig. 4(a) - (c).

The threshold parameter means of these dust image sets
with different particle sizes are listed in Fig. 4(a) after 10
runs. It can be observed that low thresholds could be achieved
by DWT, FCM and the proposed IEMAR on all of these
image sets. Meanwhile, from the discriminative sensitivity
and computational accuracies of the algorithm, it can be
observed that the three approaches, i.e., DWT, FCM and
IEMAR, performed better than all other six approaches in
the vast majority of cases. However, from an overall point of
view, the IEMAR approach had a low threshold, especially
for dust particle sizes <75 µm. When enough training sam-
ples were included, the highest average extraction accuracy
of the proposed approach was reached on the datasets with
various particle sizes. This result also means that IEMAR
may be a better choice when extracting the specified low
greyscale image.

Fig. 4(b) also shows that the computational time appeared
much better on IEMAR, FPM and SFC, which had values
of 9.03, 8.86, and 9.01 for particle sizes ≥ 200 µm, 9.26,
9.16, and 9.14 for particle sizes in the range of [75 µm,
200 µm] and 9.57, 9.47, and 9.39 for particle sizes< 75 µm,
respectively. This result means that the three approaches may
be better choices when image extraction is conducted with
different particle sizes. However, it can also be seen from
the data sets in Table 1 that the FPM and SFC had fast

FIGURE 4. Performance comparison under different approaches
treatments for (a) optimal Threshold, (b) computational time and (c)
unclassified rate evaluation. The vertical dashed lines indicate the
different particulate ranges division (<75µm, [75µm, 200µm), ≥200µm).

computational times, while the two other indicators were
unstable, and the accuracies were lower than that of the
IEMAR model. The above simulation test results are utilized
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to evaluate the performance between the proposed IEMAR
and all other methods. It is clear that IEMAR can achieve the
highest accuracy while it correlates with less fuzzy feature
information. This finding is mainly attributed to the fuzzy
classification rules that have strong generalization ability,
with which fuzziness is combined with the roughness of the
information system.

Finally, the unclassified rate evaluation α mean for fea-
ture discrimination is also recorded and shown in Fig. 4(c).
Along the whole horizontal axis, α of the feature infor-
mation increased with the particle size of the image sets.
When the particle size was <75 µm, the α of the MSIA
model was 0.548, DWT was 0.598, FHH was 0.753, GLCM
was 0.621, FCM was 0.724, GABOR was 0.754, FPM was
0.698, SFC was 0.867 and the α of the IEMAR model was
0.950. When the particle size was in the range [75 µm,
200 µm), the α of the MSIA model was 0.610, DWT was
0.710, FHH was 0.811, GLCM was 0.688, FCM was 0.753,
GABOR was 0.821, FPM was 0.768, SFC was 0.847, and
the α of the IEMAR model was 0.958. Finally, when the
particle size was ≥200 µm, the α of the proposed IEMAR
was 0.978. The curve analysis in Fig. 4(c) shows that the
α of IEMAR was above 0.95, which is significantly higher
than the others. While the approaches with poor performance
were susceptible to their own generated noises, they were
relatively vague for low-grey image processing. Thus, these
approaches had low accuracy in processing coal dust images
with small particle sizes. Meanwhile, it can be observed that
the difference in the unclassified evaluation determined by
IEMAR over the whole particle size range is not clear. The
high-level discriminative features obtained by the proposed
IEMAR approach reach the highest value compared with the
others. This result indicates that enough discriminant infor-
mation could be captured by IEMAR, which is essential for
particulate image extraction. In summary, it can be observed
that the IEMAR model exhibits good discrimination ability
for image detail area information, which can identify the
important feature information. This finding ensures accurate
results for coal dust images with various particle sizes by
extracting fewer feature values.

IV. CONCLUSION
In this study, we proposed a hierarchical information division
approach for the characterizing the spatial image charac-
teristics using IEMAR computing. The most distinguishing
feature of the proposed algorithm is that IEMAR achieves
the best trade-off between accuracy and computing speed.
This approach consists of two-fold outperformances: 1) the
attribute reduction model reduces the impact of the loss of
continuous data attribute information due to disappearance
of the attribute ordered structure, which can reduce the infor-
mation loss to some extent; and 2) the established information
entropy model can delete the redundant attributes and select
the most important classification attributes. The proposed
approach yielded a significant performance improvement and
computed the unclassified rate evaluation correspondences

with an average of 0.950 even for particle sizes < 75 µm
for a sequence of 30 sets of images to resolve the unclear
characteristic mode.
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