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ABSTRACT Scene recognition is a kind of image recognition problems which is aimed at predicting the
category of the place at which the image is taken. In this paper, a new scene recognition method using the
convolutional neural network (CNN) is proposed. The proposed method is based on the fusion of the object
and the scene information in the given image and the CNN framework is named as FOS (fusion of object
and scene) Net. To combine the object and the scene information effectively, a new fusion framework named
CCG (correlative context gating) is proposed. In addition, a new loss named scene coherence loss (SCL)
is developed to train the FOSNet and to improve the scene recognition performance. The proposed SCL
is based on the idea that the scene class does not change all over the image. The proposed FOSNet was
experimented with three most popular scene recognition datasets, and their state-of-the-art performance is
obtained in two sets: 60.14% on Places 2 and 90.30% on MIT indoor 67. The second highest performance
of 77.28% is obtained on SUN 397.

INDEX TERMS Scene recognition, convolutional neural network, fusion network, scene coherence, end-
to-end trainable.

I. INTRODUCTION
Scene recognition is one of the most spotlighted topics in
image recognition, applied to image retrieval, autonomous
robot, and drone. Many studies have explored the scene
recognition. Most of the early studies, however, have a draw-
back that they consider scene recognition as a simple image
recognition problem; and they applied the general CNN or
image recognition methods to scene recognition [1]–[4].

In the last few years, some studies have used the scene
image traits to improve scene recognition. In particular, the
scene image traits that a scene image consists of a combina-
tion of several objects and the objects in the image possesses
much information about the category of the scene were used
in [5]–[8]. For example, MetaObject-CNN was developed in
[8]. In the paper, a region proposal technique developed to
generate a set of discriminative patches potentially containing
objects for scene recognition. Multi-scale CNN architectures
were developed to reduce scale bias between scene dataset
and object dataset in [5] and [6]. Discriminative objects which
frequently appears in scene images were selected using the
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posterior probability of scene images in [7]. A high-level deep
representation of objects was extracted using YOLOv2 [9] for
scene recognition in [10].

Unfortunately, however, we believe that most of the exist-
ing methods do not fully exploit the valuable traits of scene
images for scene recognition: (P1) First, previous fusion
method which combines object and the scene information are
ineffective:Most of the previous works focused on the extrac-
tion of object and scene features, and how to combine these
two kinds of information effectively is not fully addressed
in the previous works. The two kinds of information were
simply fused by summation or concatenation. The domain
difference between object and scene is not taken into consid-
eration. (P2) Second, the standard cross-entropy loss function
is not enough for scene recognition, since scene recognition
is quite different from general image recognition: A scene
spreads all over the image, and the class of the scene does not
change over the entire image. This is contrary in the object
images, where an object appears only at specific locations
in an image, as shown in Fig. 1. In the figure, we visualize
the objectness or sceneness which is a region where the main
object or scene appears, respectively. Thus, the classes of the
objects change from patch to patch in the same image. This
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trait should be reflected in the loss function for the scene
recognition.

In this paper, a new scene recognition framework is pro-
posed. Then proposed network is named as FOSNet since
it is based on the effective fusion of the object and the
scene information in the given image. To solve the problem
(P1), a new object-scene fusion framework named correlative
context gating (CCG) is developed. The CCG combines the
object and scene information effectively by matching the
domains of two kinds of information and applying the notion
of attention to the fusion. To solve the problem (P2), a scene
coherence loss (SCL) is developed to train the FOSNet. This
SCL is based on the idea that sceneness spreads all over the
image, and the class of the scene does not not change from
patch to patch in a given image.

The contributions of FOSNet are as follows:

1) A new fusion framework named CCG is proposed to
combine the object and scene features from the image.
Unlike the previous fusion methods in which the two
features are simply concatenated and the classifier is
designed for the features, the CCG selects important
features and fuses the two sets of features effectively
for training.

2) The traits of scene coherence (SC) in a scene image
are defined, and a new loss SCL is developed based on
the trait. The SCL is the first loss specialized for scene
recognition.

The rest of the paper is organized as follows: Section II
provides a brief review of the related studies. Section III
explained FOSNet in detail. Section IV applies the FOSNet
to three benchmark problems, and the performance of the
FOSNet is demonstrated through experimentation. Section V
conducts some ablation study to verify the value of our pro-
posed SCL and CCG. Section VI concludes the paper.

II. RELATED WORKS
In this section, we review previous works on scene recog-
nition with an emphasis on (1) a combination of the object
and scene information, and (2) the application of other scene
traits.

A. OBJECT-SCENE FUSION
Using object information in an image is the most utilized
scene traits for scene recognition [5]–[8]. When a particular
object appears in an image, the chance of the image belonging
to a certain category associated with the object increases. For
example, if a TV is detected, the chance of the image being
in a living room increases. In the previous works, the object
features were used for scene recognition instead of detecting
the objects directly. To extract the object features, large image
datasets for object recognition are used and they are ImageNet
[13], PASCAL visual object classes (VOC) [14], orMicrosoft
COCO [15].

In order to combine scene and object information for
scene recognition, an effective fusion framework is of great

importance; and several fusion methods have been reported.
For example, the two features extracted by two different
CNNs were combined at feature level by summing or con-
catenating the features in [5]–[8], [16]–[23]. Then, the clas-
sical classifiers such as support vector machine (SVM) [24]
was applied to the fused features. Unfortunately, these meth-
ods have some drawbacks that they cannot be trained in an
end-to-end manner. Moreover, the simple summation or con-
catenation might degrade the recognition performance owing
to redundancy in two feature sets.

In this paper, a new fusion method named correlative
context gating (CCG) is proposed. The CCG is an extended
version of our previous work CCM [25]. In the CCG, a rela-
tionship between object and scene is trained, and the domains
of two kinds of information are matched by converting the
object domain into scene domain. By doing so, the two kinds
of information in different domains are transformed into
the same domain, and the fusion is performed through the
element-wise multiplication. Further, the attention is applied
to the fusion and a new scene feature which attends to the
object is generated.

B. OTHER TRAITS IN SCENE IMAGE
Other scene traits were also used in previous studies: The
analysis of object scales in the scene images was utilized
in [5] and [6]. In [7], [8], [19]–[21], the number of CNN
input patches was adjusted by considering several objects
in the scene image. To capture recurring visual elements
and salient objects in scene recognition, the deformable
part-based model (DPM) was utilized in [30]. In addition,
the traits that features appearing in each image region within
scene images are all similar was used in [31]. A super cat-
egory was proposed to solve the problem that the scene
categories have label ambiguity in [17]. A deep gaze shifting
kernel was developed to distinguish sceneries from different
categories in [19]. As such, the traits of the scene image
are very diverse, and there seem to be still many available
unused scene traits in scene recognition studies. In this work,
another scene trait is used to improve the scene recognition
performance. Unlike objectness which appears on specific
parts of the image in general image recognition problem,
whereas sceneness spreads all over an image in scene recog-
nition problem. This trait is named as scene coherence (SC)
in this paper. In Table 1, the previous and proposed methods
for scene recognition which use deep convolutional neural
networks are compared.

III. PROPOSED METHODS
In this section, a new scene recognition network named
FOSNet is proposed. The overall FOSNet structure is shown
in Fig. 2. As shown in the figure, FOSNet has two input
streams. In the upper stream named ObjectNet, the features
of the objects in the scene images are extracted. In the lower
stream named PlacesNet, scene features are extracted. In a
trainable fusion module, two streams of features are fused
into a combined feature for scene recognition. The FOSNet
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FIGURE 1. Object recognition vs. scene recognition: In object recognition, objectness indicated in red focuses on specific
parts of the image, whereas sceneness indicated in red spreads all over a scene image. The object and scene images are
taken from ImageNet [11] and Places 2 [12], respectively.

TABLE 1. Comparison between our works and existing methods for scene recognition using deep convolutional neural networks.

FIGURE 2. An overall architecture of FOSNet.

consists of ObjectNet, PlacesNet, and trainable fusion mod-
ules, and all networks can be trained in an end-to-end manner.
The three subnets are explained in detail in the subsequent
subsections.

A. ObjectNet
Based on the scene traits (P1), information about the objects
that appear in the scene is exploited in FOSNet. To obtain a

highly discriminating object descriptor, ObjectNet is utilized
in the upper stream of Fig. 2 to extract a feature of the
objects in a scene image. As the ObjectNet, the popular
CNN models [3], [32]–[34] pre-trained on ImageNet [13]
are used, as shown in Fig. 3. An object feature extracted
through ObjectNet is fed into the trainable fusion module.
In the structure given in Fig. 3, not only the object feature
but also the object score can be fed into the trainable fusion
module. Detailed description of the fusion level is given in
Section III-C.

B. PlacesNet
PlacesNet is another CNN model and it extracts a scene
feature from an image. The PlacesNet is pre-trained using
Places 2 [12] and its structure is the same as that of the
ObjectNet, as shown in Fig. 4(a). To train the PlacesNet,
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FIGURE 3. Structure of ObjectNet.

FIGURE 4. Structures of PlacesNet. (a) Vanilla CNN structure; PlacesNet
should be applied multiple times to compute the SCL. (b) A new structure
in which SCL can be computed by applying PlacesNet only once.

scene coherence loss (SCL) is developed in this paper. The
SCL is a new loss tailored for scene recognition, and it is
based on the scene trait that objectness focuses on specific
parts of an image, whereas sceneness it unfocused on specific
parts but it spreads all over the image. In particular, the
class of the scene is unchanged over the image. This trait
is named the coherence in the scene of an image, and the
SCL embodies this trait into a single loss. For example, let us
consider two images in Fig. 5. In general object recognition
problem, an object appears in a specific part of an image and
the object class can change from the patch to patch, as shown
in Fig. 5(a). In scene recognition problem, however, the scene
class is coherent all over the image. When the whole image
is divided into nine grids, all nine grids cannot have different
scene classes and all of them have the same scene class of a
mountain, as shown in Fig. 5(b). This also implies that all of
the patches in the scene image should be used in the scene
recognition; and the region activated in the class activation
map (CAM) [35] should be wider than that in the object
recognition.

The scene coherence is a unique trait of the scene image
and it is formulated into a new loss SCL:

LSCL =
1
C

C∑
c=1

1
(N − 1)M + N (M − 1)

×

(
N−1∑
n=1

M∑
m=1

(
on+1,m,c − on,m,c

)2
+

N∑
n=1

M−1∑
m=1

(
on,m+1,c − on,m,c

)2) (1)

where N and M are the numbers of grid cells in the vertical
and horizontal directions, respectively; C is the number of

FIGURE 5. (a) Object recognition vs. (b) Scene recognition: In (a) object
image, the class of the object can change from patch to patch. In (b) scene
image, however, even if a scene image is divided into multiple grids, each
grid cell represents the same class of scene, which is scene coherence.

FIGURE 6. Visualization of scene coherence loss (SCL).

classes; on,m,c denotes the classification result for the class c
in the grid cell (n,m), as shown in Fig. 6. As stated, the SCL
defined in (1) favors the case in which all the grids have the
same scene class, whereas it penalizes the case in which the
adjacent grids have the different scene classes.

Here, when we apply SCL in (1) to the PlacesNet training,
a difficulty arises; The PlacesNet should be applied to N ×M
grid cells separately and repeatedly and it leads to the waste of
computation time. To resolve this inefficiency, the PlacesNet
in Fig. 4(a) is converted into the form of a fully convolutional
network, as shown in Fig. 4(b). The conversion is motivated
by class activation map (CAM) [35] and it can be applied to
any CNNs, in which the last layers are global average pool-
ing (GAP) followed by fully connected (FC) layers. In the
PlacesNet, the input image with the size of 224 × 224 is
reduced to 7×7 feature map after going through five pooling
operations in convolutional layers. Then, the scene scores for
each 7× 7 grid cell is obtained by replacing the last GAP-FC
sequence with 1× 1 convolution. Then, a scene score for the
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entire image is computed by applying the GAP to the tensors
obtained from 1× 1 convolution.

Interestingly, it can be shown that the PlacesNet with the
GAP followed by FC shown in Fig. 4(a) outputs the same
result with the converted version with the 1 × 1 convolution
followed by GAP shown in Fig. 4(b). With slightly relaxed
notation, the feature tensor extracted from the PlacesNet in
Fig. 4(a) is represented into

Xlast
=

(
x lastn,m,d

)

=


xlast1,1,1:D xlast1,2,1:D · · · xlast1,M ,1:D
xlast2,1,1:D xlast2,2,1:D · · · xlast2,M ,1:D
...

...
...

xlastN ,1,1:D xlastN ,1,1:D · · · xlastN ,M ,1:D


∈ RN×M×D (2)

where N ×M is the feature map size extracted from convo-
lution layers in Fig. 4(a); D is the number of output channels
of last convolution layer; xlastn,m,1:D ∈ RD denotes a feature
vector at position (n,m) of Xlast ; 1 : D in the third axis
of xlastn,m,1:D, is a collection of all the elements accumulated
over D channels and it is actually a vector. Let the trainable
parameters W =

(
wc,d

)
∈ RC×D and b = (bc) ∈ RC be

weight and bias, respectively, for the FC layer of the model
in Fig. 4(a), andO ∈ RC , Ô ∈ RC be the classification results
of the models in Figs. 4(a) and (b), respectively. Then, we can
prove that O and Ô are the same by

O = FC
(
GAP

(
Xlast

)
,W,b

)
= FC

(
1
NM

N∑
n=1

M∑
m=1

xlastn,m,1:D,W,b

)

= W

(
1
NM

N∑
n=1

M∑
m=1

xlastn,m,1:D

)
+ b

=

(
1
NM

N∑
n=1

M∑
m=1

(
Wxlastn,m,1:D + b

))

=

(
1
NM

N∑
n=1

M∑
m=1

Conv1×1
(
Xlast ,W,b

)
n,m

)
= GAP

(
Conv1×1

(
Xlast ,W,b

))
= Ô (3)

where

Conv1×1
(
Xlast ,W,b

)
=

Wxlast1,1,1:D + b · · · Wxlast1,M ,1:D + b
...

...

WxlastN ,1,1:D + b · · · WxlastN ,M ,1:D + b


∈ RN×M×C (4)

is a tensor obtained by applying 1 × 1 convolution with
weights (W,b) to input Xlast , and it is also the classification

results for each grid cell shown in Fig. 4(b). Since O
and Ô have the same values, the model in Fig. 4(b) per-
forms the same classification as the one in Fig. 4(a) and
it has an advantage of obtaining classification results O ,
Conv1×1

(
Xlast ,W,b

)
∈ RN×M×C for all grid cells without

applying PlacesNet to all grid cells repeatedly. Here, classi-
fication error is defined using the cross-entropy loss and it is
denoted by

LC = −
∑
c

yc log

 exp (̂oc)∑
c
exp (̂oc)

, (5)

where

Ô = (̂oc)

= GAP
(
on,m,c

)
=

(
1
NM

N∑
n=1

M∑
m=1

on,m,c

)
∈ RC (6)

is a vector of classification results for C classes and it is
obtained by applying GAP to the result of (4); Y = (yc) ∈
{0, 1}C denotes the ground truth of the class of the given scene
image and it is represented by a one-hot vector.

Then, the total training lossLtotal is defined as a summation
of the proposed SCL LSCL and classification loss LC , and it
is represented by

Ltotal = LC + γLSCL (7)

where γ denotes the SCL rate and controls the relative weight
between SCL and the classification loss.

Another key feature of PlacesNet is that partial convolution
[36] is applied to all convolution layers. In vanilla convolution
with zero padding, boundary of the image is filled with zeros
and the vanilla convolution is applied, as shown in Fig. 7.
Using the padded input xl−1,padn,m,1:Dl =

(
x l−1,padn,m,d l

)
∈ RDl , the

output vector xl
n,m,1:Dl+1

of the l-th layer of vanilla convolu-
tions at the position (n,m) is computed as follows:

x ln,m,d l =
H l∑
i=1

W l∑
j=1

W l
i,j,d l−1,d l x

l−1,pad
n+i,m+j,d l + b

l
d l (8)

where Wl
=

(
W l
i,j,d l−1,d l

)
∈ RH l

×W l
×Dl−1×Dl and bl =(

bld l
)
∈ RDl are the filter weights of the l-th layer; H l

and W l are height and width of filter size respectively; Dl

is the number of output channels of the l-th layer. Here, it can
be seen that vanilla convolution Xl

=

(
xln,m,1:Dl

)
around

the boundary of the feature might not be as accurate as that
inside the feature since the vanilla convolution should include
many zero paddings. Recently, a lot of convolution layers are
connected sequentially, and then the performance deteriora-
tion of the boundary of the given image becomes worse. For
other general classification CNNs, the accuracy degradation
around the boundary of the image might not be important
because GAP is used before the classification. In FOSNet,
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FIGURE 7. Illustration of convolution with zero padding and partial
convolution.

however, the SCL is used as a loss and the classification
accuracy around the boundary of the image is as important as
that inside the image. Thus, the partial convolution proposed
in [36] is used in FOSNet.

The structure of partial convolution [36] is given in Fig. 7.
The scaling mask Sl =

(
S ln,m

)
is multiplied with the convolu-

tion Xl , and the output of the partial convolution is computed
by

x̃ ln,m,d l = S ln,m

H l∑
i=1

W l∑
j=1

W l
i,j,d l−1,d l x

l−1,pad
n+i,m+j,d l + b

l
d l , (9)

where

S ln,m =
H lW l

H lW l −
H l∑
i=1

W l∑
j=1

1
l;pad
n+i,m+j

, (10)

where S ln,m is scaling factor of output feature x̃ ln,m,d l ; 1
l;pad
n,m

is 1 if position (n,m) of the input feature x l−1,padn,m,d is zero
padded position, otherwise 0. Therefore, partial convolution
adjusts for the varying amount of valid inputs by scaling, and
it likely increases the accuracy of the near image boundary.

The partial convolution is a good match with the SCL and
it will be shown that the combination enhances the classifi-
cation accuracy significantly. The analysis will be given in
Section V.

C. FUSION OF OBJECT FEATURE AND SCENE FEATURE
In this subsection, a new fusionmodule CCG is proposed. The
CCG combines object feature xobject containing information
of objects in the image with scene feature xscene. xobject is
extracted from ObjectNet in Fig. 3, while xscene is extracted
from PlacesNet that is trained using SCL in Fig. 4(b). The
CCG is based on a scene traits that when a specific object
in an image is found, the scene is very likely to belong
to a particular class associated with the object. The CCG
is inspired by context gating [37] and the CCM [25]. The
concept of CCG is depicted in Fig. 8.
Using CCM [25], CCG converts an object feature

into a scene feature and outputs a pseudo scene feature

FIGURE 8. Trainable fusion modules with object feature and scene
feature. (a) CCM; (b) CCG; (c) mixed CCM-CCG.

xobject→scene. Then, an attention map is generated by apply-
ing a sigmoid function to xobject→scene. The scene feature
xscene from PlacesNet is multiplied by the generated attention
map σ

(
xobject→scene

)
in element-wise manner, and a new

scene feature yscene is obtained by

yscene = σ
(
xobject→scene

)
� xscene

= σ
(
Wxobject + b

)
� xscene (11)

where � denotes element-wise multiplication; W and b are
the trainable parameters; xobject→scene is a pseudo scene fea-
ture obtained by converting the object feature into the scene
feature through CCM, and σ (x) = 1

1+exp(−x) is a sigmoid
function.

The structure of CCG is motivated by context gating [37].
The context gating transforms the input feature into a new
feature using a self-gating mechanism, and it demonstrated
significant improvements in video understanding tasks. Moti-
vated by context gating, CCG selectively activates the chan-
nels of scene feature xscene. The selective activation is carried
out by applying a gating mechanism at the object feature
xobject , which are relevant to scene recognition. Here CCM
[25] is applied to the object feature xobject , and it converts
xobject into a pseudo scene feature xobject→scene to modify
the context gating concept of the self-gating mechanism into
the correlative-gating mechanism. The structure of CCG is
shown in Fig. 8(b). As applied in the batch normalization
(BN) [38] at the CCM in [25], batch normalization can be
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applied to CCG as in

yscene = σ
(
BN

(
Wxobject

))
� xscene. (12)

Another variation, a mixed CCM-CCG, can also be con-
sidered. Since PlacesNet is pre-trained using Places 2 dataset
[12], performance degradation might occur when PlacesNet
is applied to scene recognition datasets other than Places 2
(e.g., SUN397 [39], MIT 67 [11]). To obtain xscene→scenetarget ,
CCM converts the scene feature extracted from the PlacesNet
to the feature suitable for the target scene dataset. Then, the
converted xscene→scenetarget and object features are fused using
CCG. In this case, the mixed CCM-CCG proceeds as follows:

yscene = σ
(
xobject→scene

)
� xscene→scenetarget

= σ
(
W1xobject + b1

)
�

(
W2xscene + b2

)
(13)

The structure of themixed CCM-CCG is depicted in Fig. 8(c).
Fusion can be conducted at two levels: feature level and

score level, as carried out in [25]. For score level fusion,
an object score in Fig. 3 and a scene score in Fig. 4 are
fed into the trainable fusion module in Fig. 2. In this case,
we do not apply softmax on each score vector. For feature
level fusion, we use an object feature in Fig. 3 and a scene
feature in Fig. 4 as input features to be fused. This previous
study [25] provides a more detailed explanation.

IV. EXPERIMENTS
The proposed FOSNet is applied to three popular scene
recognition datasets, and its performance is compared with
that of the previous works. The three scene datasets for the
experiment are Places 2 [12], SUN 397 [39], and MIT indoor
67 [11]. ImageNet dataset [13] is also used for the training of
ObjectNet.

A. DATASETS
Places 2 dataset [12] is the largest dataset for scene
recognition. It is an upgraded version of Places 1 [40],
and it is also the latest of all the scene recognition
datasets. This dataset has 365 scene categories; consisting
of two versions of datasets: Places365-Challenge dataset and
Places365-Standard dataset. Both versions of datasets share
the same validation images and only differ in the number
of training images. The Places365-Challenge dataset pro-
vides 8 million training images, whereas the Places-Standard
dataset provides 1.8 million training images.

SUN 397 dataset [39] was the most popular scene dataset
before the Places dataset [12], [40] was released. This
dataset consists of 397 scene categories. Each category has
at least 100 different numbers of images. The entire set
has a total of 108,754 images. For fair comparison with
other methods using this dataset, 10 subsets each of which
has 50 training images and 50 validation images per class
were used to evaluate the competing methods. The average
validation accuracy over the 10 subsets were used as the
overall accuracy of each method.

MIT indoor 67 dataset [11] is a scene recognition dataset
consisting of 67 indoor scene categories, and it comprises a
total of 15,620 indoor scene images. All the experiments with
the MIT indoor 67 dataset were performed according to the
standard evaluation protocol: A subset that has 80 training
images and 20 testing images per scene category is used for
evaluation.

ImageNet dataset [13] is one of the most commonly
used datasets for object recognition task, and it consists of
1.2 million object images and 1000 object categories. A num-
ber of popular CNN structures were trained in the dataset,
which include AlexNet [41], ResNet [32], DenseNet [33],
ResNeXt [34], SE-Net [3], and others [42]–[44].

B. IMPLEMENTATION DETAILS
The FOSNet is comprised of neural networks and it was
trained from scratch. All models were trained for 130 epochs.
The initial learning rate was 0.15 when the mini-batch size
was 256. For different mini-batch sizes, the learning rate
was adjusted using the linear scaling rule [45] to achieve
a similar performance. The learning rate was dropped by
0.1 times every 30 epochs. The synchronous stochastic gra-
dient descent with a momentum of 0.9 was used as the
optimization method. The training data were augmented by
random rescaling, cropped randomly into 224 × 224 [43],
[46] and horizontally flipped with a 0.5 chance. The input
image was normalized by the per-color mean and standard
deviation [46]. In addition, the data balancing strategy [2] was
adopted for mini-batch sampling [3]. PlacesNet was trained
using Places 2 dataset, and experiments were performed using
transfer learning [47] on other datasets such as SUN 397 and
MIT indoor 67.

A hyper-parameter γ in (7) is set to 1. Detailed explanation
about γ is discussed in Section V-A. For a backbone net-
work, the SE-ResNeXt-101 model, which is a combination
of ResNeXt [34] with SE-Network [3], was used for Object-
Net and PlacesNet in FOSNet. The standard 10-crop testing
method [17] is used for comparison with other methods,
and an evaluation measurement is the average classification
accuracy of 10 crops.

C. EXPERIMENTAL RESULTS ON THE PLACES 2
The FOSNet is compared with other scene recogni-
tion methods using the validation set of the Places 2
[12]. Previous methods [5], [10], [12], [17], [20], [25],
[29] trained their networks on the Places365-Standard or
Places365-Challenge dataset. The FOSNet is trained using
the Places365-Challenge data for a fair comparison with
the current state-of-the-art [17].1 The comparison with other
methods is summarized in Table 2.

All the methods listed in Table 2 use CNN: Adi-Red [5],
CCM [25], and CNN-SMN [20], used information of the
objects which appear in scene images. To obtain the object

1Note that [17] uses Places401 dataset which contains more than 10 mil-
lion images for training a teacher network.

82072 VOLUME 8, 2020



H. Seong et al.: FOSNet: End-to-End Trainable Deep Neural Network for Scene Recognition

TABLE 2. Comparison with other scene recognition methods on Places 2 [12] validation set.

TABLE 3. Comparison with other scene recognition methods on SUN 397 [39].

information, they used the CNN pre-trained on the object
recognition dataset. Multi-Resolution CNN [17] created a
super category by considering the label ambiguity of scene
categories to train a teacher network. Places365-VGG and
Places365-ResNet [12] used the vanilla CNN architecture
and the scene trait was not taken into consideration. In our
FOSNet, two independent CNNs were used as backbone
networks. Here, it should also be noted that the proposed
FOSNet is also computationally more efficient than other
methods: The number of patches used for the evaluation of the
compared methods is usually larger than 100. The number of
patches used in [20] is even almost 300, whereas the number
of patches used in FOSNet is only 10. Further, the input size
of FOSNet is 224 × 224 and it is less than a fifth of the
size of Multi-Resolution CNNs. From the figure, our FOSNet
achieves state-of-the-art accuracy of 60.14% on the Places 2,
and it is the first time that the accuracy exceeds 60% on

the dataset. This implies that FOSNet demonstrates the best
performance among other compared methods while spending
reasonably small computation.

D. EXPERIMENTAL RESULTS ON THE SUN 397
FOSNet is applied to the SUN 397 dataset [39]. An average
validation accuracy of 10 subsets provided in the dataset is
carried out to compare the competing scene recognitionmeth-
ods, and the comparison results are summarized in Table 3.

From the table, it can be seen that the FOSNet outper-
forms most of the previous methods except [10]. Among
the competing methods, FOSNet achieves the second best
accuracy of 77.72%, slightly lower than that of the state-of-
the-art SOSF + CFA + GAF method [10]. Here, it should
be noted that it is unfair to directly compare the results of
the two methods, considering that SOSF + CFA + GAF
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TABLE 4. Comparison with other scene recognition methods on the MIT 67 [11] validation set.

TABLE 5. Ablation study of SCL using ResNet-18. This experiment is performed on the Places365-Standard dataset [12].

[10] includes YOLOv2 [9] and 4-directional long short-term
memory (LSTM) [48]. To train YOLOv2, an object detection
dataset Object177 [49] was additionally used. Unlike the
dataset used to train ObjectNet, the object detection dataset
Object177 includes not only the class labels but also bounding
box information for the location of objects in an image, which
is quite difficult to annotate. Furthermore, the method SOSF
+ CFA + GAF requires more computation than our method.
The FOSNet uses input images of size 224 × 224, whereas
SOSF+CFA+GAF uses input images of size 608×608, and
employs 4-directional LSTM, which is obviously very com-
putationally expensive. Further, it also should be noted that
Sparse Representation [23], Context Modeling with BiLSTM
[28], PatchNet [22], and LGN [29] use more than thousands
of patches. The compuation time increases linearly with the
number of patches used in test. Our FOSNet uses a 10-crop
testing method.

E. EXPERIMENTAL RESULTS ON THE MIT INDOOR 67
In this subsection, the FOSNet is applied to the validation set
of the MIT indoor 67 [11], and Table 4 presents a comparison
result of the scene recognition for MIT 67.

In Table 4, all the existing methods except RBoW [31]
and DPM+GIST+SP [30] use CNN. The two methods use
the handcraft features. From Table 4, of all the competing
methods, our FOSNet offers the best accuracy. In particular,
the FOSNet outperforms Context Modeling with BiLSTM
[28] which is the current state-of-the-art method on MIT
indoor 67. As a result, our FOSNet achieves state-of-the-art
accuracy of 90.30% on the MIT indoor 67, and this is the first
time that the accuracy exceeds 90% on the dataset.

V. ABLATION STUDY
Additional experiments are performed to gain a better under-
standing of the effects of our proposed SCL and CCG. All
ablation studies are performed using the Places365-Standard
dataset [12] for various experiments with fast training. Stan-
dard 224 × 224 single-crop evaluation is employed, and
ResNet-18 and ResNet-50 [32] are used as the backbone
architectures.

A. ANALYSIS ON SCENE COHERENCE LOSS (SCL)
In this subsection, the effects of SCL on scene recognition
are demonstrated. In the experiment, only PlacesNet is used
and all models in the experiments are trained from scratch
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TABLE 6. Ablation study of SCL using ResNet-50. This experiment is
performed on the Places365-Standard dataset [12].

FIGURE 9. Classification loss and SCL curves of ResNet-18 trained
(a) with only classification loss and (b) with classification loss and SCL.
The blue line denotes the loss of the training set, and the red line denotes
the loss of the validation set. The solid line represents classification loss,
and the dotted line represents SCL.

for a fair comparison. The results of SCL ablation studies are
shown in Tables 5 and 6.
In Table 5, accuracy is computed while varying the SCL

rate (γ ) in (7). When γ = 0, only classification loss is used
as a total loss in (7). This case is a baseline. When γ ≤ 1,
accuracy is improved from the baseline in all cases, whereas
when γ = 1, the PlacesNet in FOSNet achieves the best top-1
accuracy. When γ = 10, the accuracy is degraded, revealing
that too much emphasis on SCL is an obstacle to minimizing
classification errors. Table 6 shows the results of the same
experiment using ResNet-50, and similar results are obtained
regarding the effects of the SCL with Table 5. The models

with SCL always outperform the ones without SCL regard-
less of which CNN backbone is used. Experimental results
regarding the effects of partial convolution [36] on SCL are
given in Tables 5 and 6. This partial convolution improves the
performance of the baseline, and its effect on the performance
is higher when it is combined with SCL. Through the ablation
studies, it can be noted that scene recognition performance
is improved by using SCL. Since the best performance is
obtained when γ = 1, the value is used to train PlacesNet.

Another experiment is performed to show the validity
of the SCL. In Fig. 9(a), the SCL is monitored, and it is
unused (not propagated backward) for the training. As shown
in Fig. 9(a), the SCL decreases until reaching 60 epochs
even when SCL is unused for the training. After 60 epochs
in Fig. 9(a), the SCL increases rapidly; the validation loss
is almost saturated but the training loss decreases rapidly,
revealing that the PlacesNet is overfitted. From the observa-
tion, the overfitting in the scene recognition is highly related
to SCL. Thus, if the PlacesNet is trained to force the SCL to be
reduced, the overfitting of the PlacesNet will be relaxed and
its generalization performance will be improved. Fig. 9(b)
shows the result when ResNet-18 is trained with SCL. In this
case, SCL converges quickly and almost vanishes. Thus,
SCL is magnified 20 times for visualization in Fig. 9(b).
After 60 epochs in Fig. 9(b), both training and validation
errors decrease gradually but consistently, implying that the
PlacesNet overfitting is relaxed.

Fig. 10 provides the results of class activation map (CAM)
[35] using ResNet-18. The first row shows the input images.
Using ResNet-18 trained without and with SCL, the second
and third rows show the CAM images, respectively. In the
figures, red parts denote the region which is relevant and
makes a contribution to the scene classification, whereas the
blue parts denote the region that offer no information and no
contribution to the scene classification. When trained with
SCL, the red region becomes bigger than trained without the
SCL. This shows that the region which would be ignored
if trained without SCL is fully exploited with SCL. In the
entire experiments, the SCL is an effective loss for the scene
classification that enables the FOSNet to fully exploit the
sceneness all over the image.

B. ANALYSIS ON CORRELATIVE CONTEXT GATING (CCG)
The proposed feature fusion method CCG is analyzed
through experimentation. For a fair comparison, in PlacesNet,
CNNmodels without partial convolution were used for scene
feature extraction, and the experimental results are presented
in Table 7.
All the models in Table 7 are trained from scratch.

Compared with the existing fusion methods, such as sum,
concatenation or CCM [25], our fusion method CCG
improves performance in most models regardless of whether
SCL is added. Although the fusion by concatenation achieves
the best top-5 performance in ResNet-50, the simple fusion
delivers limited performances in a new dataset that PlacesNet
did not train, as explained in Sections IV-D and IV-E.
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FIGURE 10. The class activation map (CAM) [35] results using ResNet-18. The ground truth about the scene class of the image is on top of
the image. The first row shows the input image. The second row shows the CAM result using ResNet-18 trained without SCL. The third row
shows the CAM result using ResNet-18 trained with SCL.

TABLE 7. Ablation study of CCG on the Places365-Standard dataset [12].

VI. CONCLUSION
In this paper, a new scene recognition framework named
FOSNet has been proposed, in which the object and the
scene information have been combined in a trainable fusion
module named CCG. The entire system was trained using
SCL, which is a new loss developed for the scene recognition.
SCL is based on the unique property of the scene, e.g., the
‘sceneness’ spreads and the scene class does not change all
over the image. The proposed FOSNet was experimented
with three most popular scene recognition datasets, and the
state-of-the-art performance is obtained in Places 2 and MIT
indoor 67.
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