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ABSTRACT The development of sensor technology provides massive data for data-driven fault diagnosis.
In recent years, more and more scholars are studying artificial intelligence technology to solve the bottleneck
in fault diagnosis. Compared with other classification and prediction problems, fault diagnosis often faces
the problem of data scarcity. To overcome the lack of fault data, the transfer learning based on different
working condition is gradually introduced into fault diagnosis by scholars. This paper discusses the current
mainstream Al-based fault diagnosis methods, and analyzes the advantage of transfer learning for fault
diagnosis problem. Then, a transfer component analysis (TCA) based method is proposed to transfer data
features between different working conditions. Through the TCA-based method, the fault diagnosis model
under the working condition can be established with the help of historical working condition. It effectively
alleviates the problem of data scarcity under the condition to be predicted. Different from other fault
diagnosis studies, this paper considers the online maintenance process based on TCA. A fault diagnosis
framework including online maintenance process is proposed. Finally, a case study of bearing diagnosis
from Case Western Reserve University proves the feasibility and effectiveness of the proposed TCA-based

method and our fault diagnosis framework.

INDEX TERMS Fault diagnosis, feature extraction, feature transfer, sensors.

I. INTRODUCTION

With the popularization of sensor technology, more and more
equipment in industrial manufacturing has achieved effective
digital monitoring [1], [2]. Through digital monitoring, it is
possible to quantify the operating status of the equipment, and
comprehensively evaluate the health status of the equipment,
thereby improving the reliability of the equipment and ensur-
ing the quality of product manufacturing.

A complete fault diagnosis process generally includes two
steps: fault signal processing and fault pattern recognition.
Based on digital monitoring, academia has carried out exten-
sive research work on fault signal processing [3]-[5] and
fault pattern recognition [6]—[8], respectively. Fault signal
processing mainly focuses on the separation and extraction of
fault features to guide the subsequent fault recognition work.
Fault pattern recognition often focuses on how to identify the
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type of fault by matching fault features obtained by signal
processing with existing faults in the system.

On the one hand, high-precision pattern recognition and
classification depends on the effective description and char-
acterization of signals. In other words, an effective signal
description will provide highly distinguished signal features
for pattern recognition, thereby improving the accuracy of
pattern recognition. On the other hand, the validity of signal
characterization needs to be verified by pattern recognition.
Recently, many scholars have proposed a large number of
indicators and methods for signal characterization from the
perspective of time domain and frequency domain. However,
for different types of signals, it is still necessary to combine
subsequent pattern recognition to verify the reasonableness of
signal feature extraction. It is worth noting that some schol-
ars have begun to advocate the application of deep neural
networks and self-encoding methods to combine fault signal
processing and fault pattern recognition together for fault
diagnosis [7], [9]-[13]. The introduction of the deep neural
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network method and the comparison between this method and
the traditional method will be analyzed in the Section II.

Since fault diagnosis is mainly conducted by data-driven
methods, data play a vital role in the effectiveness of fault
pattern recognition. But it is well known that the number of
fault samples is small compared to normal samples. The prob-
lem of data class imbalance will cause many data-sensitive
classification models to be overfitting [14]. Even in extreme
cases, the classification model will classify each sample as the
normal one if they ignore those few fault samples [15], [16].
In this case, although the classification accuracy of the model
can still approach almost 100%, the meaning of classification
has been lost.

Theoretically, data class imbalance can be solved by
cost-sensitive weighting [15]. But for equipment fault diag-
nosis in the actual industry, cost-sensitive weighting is dif-
ficult to set. Therefore, more attention should be paid to the
data source to solve this problem, that is, how to obtain as
many and comprehensive types of fault data as possible. The
easiest way to get the fault characteristics data is to simu-
late the fault scenario. Unfortunately, for most equipment or
components, it is not feasible to deliberately destroy them to
obtain fault features data. On the one hand, in general, one
equipment will correspond to multiple faults and simulation
experiments require a lot of resource support. On the other
hand, since the equipment operates in specific scenarios,
the fault characteristics under different working conditions
are also different. Therefore, it is difficult to characterize
fault features by exhausting all working conditions through
simulation experiments.

In industrial practice, in addition to large-scale experi-
ments, it is more likely to obtain fault characteristics from
the following two situations.

(1) We only have a small amount of historical fault data
for equipment that needs to be diagnosed, and we also have
some fault data for several equipment similar to this equip-
ment. Their functions are similar with minor differences in
parameters. Therefore, the faults between them have similar
characteristics and can be used to predict the fault types for
each other.

(2) For one equipment, the equipment runs a lot of time
under a certain operating condition, so a large amount of
fault data are accumulated. When the equipment is put into
a similar working condition, the fault characteristics also will
be similar. Therefore, the fault types under the new working
condition can be predicted by these fault types under the old
working condition.

In view of the above circumstances, this paper adopts
feature transfer to solve the problems of low classification
accuracy and invalid classification caused by insufficient
fault data. Among algorithms of feature transfer, TCA is
a typical method for domain adaptation problems. It maps
the both data of the source domain and target domain
to a high-dimensional Reproducing Kernel Hilbert Space
(RKHS). In RKHS, the data distance between the source and
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target domain is minimized, while retaining their respective
internal attributes to the greatest extent.

The contribution of this paper is described as follows.
The extraction method of data features based on TCA is
proposed to discover general features between source domain
and target domain. Then, different from other researches,
this work further explores how to use few data labels from
target domain to improve the accuracy of target domain fault
diagnosis. In the actual maintenance work, the occurrence
of fault in the target domain is gradual (as the maintenance
continues, the maintenance personnel continue to label the
fault data in the target domain). Therefore, how to add the
newly acquired data in the target domain to the fault diagnosis
will be a meaningful work.

The remainder of this paper is organized as follows.
Section II reviews and compares the current mainstream
methods of fault signal processing, fault pattern recognition
and fault diagnosis. The feature transfer method based on
transfer component analysis is introduced in Section III to
support subsequent fault diagnosis. A case study is given to
verify the effectiveness of the proposed method in Section I'V.
Finally, the conclusion is arranged in Section V.

Il. RELATED WORK

A. FAULT DIAGNOSIS BASED ON SIGNAL PROCESSING
Signal processing-based fault diagnosis usually consists of
signal feature extraction and fault pattern recognition. The
following describes the current researches on signal feature
extraction and fault pattern recognition.

1) SIGNAL FEATURE EXTRACTION

The feature extraction of fault signals is to extract statistical
feature values for samples with a specific length. Signal
feature extraction can be mainly extracted from time domain,
frequency domain and time- frequency domain [17]-[20].

The time domain indicator includes Mean, Standard
Deviation, Variance, Peak-Peak Value, Root Mean Square,
Waveform Factor, Crest Factor, Impulse Factor, Kurto-
sis [21], [22], Skewness [22] and etc.

The frequency domain indicator includes Frequency Cen-
tre (FC), Root Mean Square Frequency (RMSF), Root Vari-
ance Frequency (RVF) [17], and etc.

The time- frequency domain indicator includes Short-Time
Fourier Transform (STFT) [23]-[25], Wavelet Trans-
form [26], [27], Empirical Mode Decomposition [28], [29],
Wigner-Ville Distribution (WVD) [30], [31] and etc.

2) FAULT PATTERN RECOGNITION

As we mentioned in Section I, the input of fault pattern
recognition is the output of signal processing. Through the
signal processing in the previous step, the fault signal can
be converted into multiple fault samples. For samples with
known fault types, learning algorithms can be used to train the
classification model, then to identify and predict fault pattern.
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In recent years, various machine learning algorithms have
become the mainstream methods for fault pattern recogni-
tion. For example, [32] conducted vibration fault recogni-
tion for hydroelectric generating via support vector machine.
Reference [33] used decision tree for spur gear fault diag-
nostics. Bayesian Network was used to Intelligent Building
Fault Diagnosis in [34]. Moreover, machine learning-based
pattern recognition is often combined with computational
intelligence methods such as evolutionary computation and
fuzzy systems [35], [36]. For example, some researches used
algorithms such as PSO and ACO to optimize model param-
eters for machine learning, thereby improving recognition
accuracy [32], [37]. There are also some works that combine
methods such as fuzzy decision making and information
fusion with machine learning to improve the robustness of
the pattern classifier [33], [38].

B. FAULT DIAGNOSIS BASED ON DEEP NEURAL NETWORK
In recent years, more and more researches have discussed
how to use deep neural networks for fault diagnosis [7],
[39]-[46]. Neural network-based fault diagnosis can integrate
signal feature extraction and fault pattern recognition. This
type of research work extracts signal features and fault mode
recognition, directly imports the signals as samples into deep
neural networks, uses the network to extract signal features,
and directly derives the pattern classification results at the
last layer of the network. For example, [47], [48] discussed
how to use deep neural network with autoencoders for fault
diagnosis. The first half of the neural network is responsible
for signal extraction and the second half is responsible for
pattern recognition. The advantage of such fault diagnosis
method is that it can save the cost of manual signals extraction
and use the network training to perform feature extraction
autonomously.

However, such a fault diagnosis method has at least two
obvious shortcomings as follows.

« First, Difficulties in network training.
For neural networks, if the data samples and feature sizes are
relatively large, then it will be difficult to use neural networks
for training. On the one hand, network training takes a long
time, so that it is difficult to quickly put the model into use. On
the other hand, due to the huge scale of the network, training
convergence is difficult to be guaranteed.

« Second, poor interpretability.
Due to the black box training mode of neural network, the
interpretability of the parameters after training is very poor,
and the meaning of the fault features cannot be obtained
intuitively and clearly. When the scale of the training network
is large, even if high recognition accuracy is obtained, it is
difficult to judge whether the model has really learned the
features or the high accuracy is caused by overfitting [14].

C. DISCUSSION ON FAULT DIAGNOSIS METHOD

Intelligent fault diagnosis is different from artificial intelli-
gence applications. The interpretability and effectiveness of
its prediction results determine whether industrial activities
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can proceed smoothly and even affect important industrial
safety issues. Therefore, although neural networks can make
some progress in this filed, this paper still advocates using
signal processing to extract features, which can retain the
interpretability of the fault characteristics to the greatest
extent, and it is also convenient for the fault maintenance
personnel to evaluate the results of fault pattern recognition.

D. TRANSFER LEARNING FOR FAULT
PATTERN RECOGNITION
The research on fault transfer benefits from the development
of transfer learning [49]. The mainstream researches on fault
transfer includes the following three categories.

o (1) Transfer from Data

Due to the scarcity of fault data in a specific working condi-
tion, if fault data similar to the working condition are known,
these data can be directly used as auxiliary data. By introduc-
ing auxiliary data into the current working condition, the fault
classification model can be established, which can be used to
predict the potential fault in the unknown signal.

e (2) Transfer from Model and Parameter [50]

Unlike data transfer, model Transfer is performed from the
perspective of algorithm and model. In other words, the struc-
ture and parameters of the classification model established
under known work condition can be transferred to the new
work conditions. By fine-tuning the structure and parame-
ters [51], the model established under known work condition
can be easy to classify and predict faults under new work
condition.

¢ (3) Transfer from Feature

Feature transfer focuses on the relationship between auxiliary
data and the data generated by existing working condition.
In general, the auxiliary data generated from past known
working condition is large, and after a period of operation,
the sensor system will also obtain some fault data generated
under existing working condition. Therefore, data feature
matching between the both data can be used to classify and
predict based on the similarity of features.

All three above transfer strategies, to a certain extent, help
alleviate the problem of sparse fault data under specific work-
ing condition. From the perspective of industrial applications,
not all three are effective.

Data transfer is mainly used in situations where data are
generated by approximate data distribution. Once the data
distribution differs greatly under approximate working con-
dition, it will cause a huge prediction error in predictive
diagnosis.

The transfer of model and parameter is generally car-
ried out on neural networks. Compared to data transfer, this
method avoids the distribution error caused by the direct use
of auxiliary data. And, from the perspective of model training,
it does not need to train all parameters of the entire model, but
only needs do some fine-tuning based on the existing model.
However, the shortcoming of this method is also obvious,
that is, the method has a strong dependence on the model.
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Once the model selection or model parameter fine-tuning is
not done well, the effect of the entire model will be very poor.

Feature transfer is a method that can combine the feature
of auxiliary data with the signal of the current working con-
dition. This method considers the difference of data under
different working condition and advocates a simpler fault
prediction model. The process is as follows: In the first step,
the both signal from historical known working condition
and the current working condition have undergone spatial
transformation simultaneously, which significantly reduces
the difference between auxiliary data and current target data.
Then, in the second step, the transformed auxiliary data and
the predicted working condition data are combined into a
new sample. Due to the elimination of differences, a simpler
model can be used for fault classification and prediction,
which reduces the dependence of the classification on the
model.

Based on the above advantages of feature transfer, this
paper advocates using feature transfer to transfer fault data
under different working conditions. The specific modeling of
fault diagnosis based on feature transfer will be given in the
subsequent Section III.

lll. FAULT DIAGNOSIS BASED ON FEATURE TRANSFER

A. MODEL ASSUMPTIONS

Assume the auxiliary fault data under known conditions
is Dg, which is defined in Equation (1).

1,1 1d 1
'xS e xS yS
2 R
s s S

Ds = [Xs,ys] = . . (D
: ’ ng,d ng
x;"l e X Vs

where Xg represents the extracted fault signal features,
d represents the dimension of the fault signal features,
ng represents the number of samples under known conditions,
and yg represents the fault type corresponding to the fault
signal.

The fault data under the working condition to be diagnosed
is Dr, which is defined in Equation (2).

T T Ar
2,1 2,2 2.d
X A A
Dy = [X7] = (@)
nr,1 nr,2 nr,d
xT xT .« . 'xT

where X7 represents the extracted fault signal features, d rep-
resents the dimension of the fault signal features (consistent
with the dimension of Xs), and n7 represents the number of
samples under the working condition to be diagnosed.

The notation yr is used to indicate the fault type of the fault
data under the working condition to be diagnosed.
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B. FEATURE TRANSFER BASED ON TRANSFER
COMPONENT ANALYSIS

Feature transfer is performed by transfer component analysis
(TCA) [52]. Maximum mean discrepancy (MMD) is used
to characterize the difference between the distribution of
auxiliary data and the data to be diagnosed in TCA method.
MMD is given by Equation (3).

1 & 1 &
— > B(Xs)—— Y B (Xr)
ns T

That is, through mapping transformation ¢, X5 and X7 can
be mapped to a high-dimensional space, and in this space X
and X7 are as close as possible.

Considering the difficulty of solving the mapping transfor-
mation ¢, a kernel matrix K is introduced which is given by

dist (X, X7) = A3)

Equation (4).
Kss Ksr
K= ' ' 4
|:KT,S KT,T] @
And parameter matrix L is defined by Equation (5).
1
_2 ) Xiy xj € XS’
R
Lj=1—=5 xi, xj € Xr, (5)
I’lT 1
— , otherwise.
nsnr

Now, the original problem can be transformed into the
solution of K in the following Equation (6).

trace (KL) — Atrace (K) (6)

The problem can still be further structured by dimension
reduction.

K= (KK—%W) (WTK—%K) — KWwwTK %)

The matrix W here is a matrix with a lower dimension

than K. As long as W is solved, the original problem can be
solved.

Sort out the final optimization goals of TCA with W, which
can be formulated by Equation (8).

minr (WTKLKW) + utr (WT W)
s.t. WITKHKW = I, 8)

where tr (WTW) is norm penalty for parameter [53] and
H is a center matrix defined by Equation (9).
1
ns +nr
The optimization goal can be obtained by Lagrangian
duality [54]. Let D be the feature vector corresponding to
the maximum m eigenvalues of (KLK + ul )_IKHK , then
there is a relationship amongD, @ (Xs), and @ (X7), shown
in Equation (10).

ur 9)

H = ns+ny —

@ (Xs)

D= [VJ(XT)] (10)
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In this way, the features X5 and X7 after transformation
can are obtained. Where m determines the transformed fea-
ture dimension. Similar to the Principal Component Anal-
ysis [55], the larger m, the closer the transformed features
are.

C. FAULT DIAGNOSIS BASED ON FEATURE TRANSFER
Once the distance between auxiliary data and the current
target data is significantly reduced in the high-dimensional
space ¢, the auxiliary data can be used to build a fault classi-
fication model. The classification model here can be a neural
network, a support vector machine, a decision tree or other
learning algorithms. In this paper, we use k-Nearest Neighbor
(KNN) to do the classification work.

Signal sources
Unlabeled data
Target signal sample under
current condition with
(Signalr)

; Signals, Signalr

Signal feature extraction from Xsand Xr via signal processing

Labeled data
Auxiliary signal sample
under known condition

with (Signals, ys)

Auxiliary fault data under
s known conditions Xs

Target fault data under
current conditions Xr

; Xs, Xt yr

Feature transfer via TCA with MMD between ¢(Xs) and ¢(Xr)

I 00x9),00%)

Fault Diagnosis

Fault pattern training with
@(Xs) and ys

Fault pattern recognition for
@(Xr), and to get the label yr

FIGURE 1. The framework of fault diagnosis based on feature transfer.

Figure 1 shows the framework of fault diagnosis based on
feature transfer. What needs to be explained in Figure 1 is that,
for fault diagnosis itself, fault data and fault discrimination
results are constantly generated. Therefore, on the one hand,
it is possible to continuously generate new fault data into
the TCA and iteratively update the results of feature transfer.
On the other hand, maintenance personnel will continue to
label fault data under current working condition, which could
be added into the training of fault classification model for a
better fault diagnosis result.

From the perspective of algorithm, our framework of fault
diagnosis adopts TCA to predict the fault type in target
domain. The advantage of TCA is that the implementation
is simple. The method itself does not have too many lim-
itations, and it is as easy to use as Principal Component
Analysis (PCA). More importantly, compared with the tradi-
tional transfer learning framework, our framework also takes
the online maintenance of the target domain into account.
In other words, the framework allows the labeled fault data
obtained in the target domain to be added to the training
of the fault diagnosis model in real time. It will help to
further improve the accuracy of fault diagnosis in the target
domain.
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IV. CASE STUDY

A. DATA DESCRIPTION

The data used in this paper come from the bearing data
center of Case Western Reserve University (CWRU). CWRU
provides test data of different size bearings and corresponding
bearing faults. In CWRU experiments, the bearing is installed
on the 2 horsepower (hp) motor. The real-time acceleration
data are measured at different sampling frequencies (12K and
48K) by sensors installed near and far from the motor bearing.

FIGURE 2. Experimental equipment for bearing failure.

Figure 2 shows the basic structure of the test environ-
ment for bearing fault, which is composed of 2 hp motor
(left), torque sensor/encoder (Center), dynamometer (right)
and control electronics (not shown). The fault diameter
of bearing is 0.007,” 0.014,” 0.021,” 0.028” and 0.040,”
where 0.007” means 0.007 inch. This paper mainly stud-
ies on 0.007,” 0.014,” 0.021,” and 0.028.” In order to
simulate the difference of fault characteristics under differ-
ent working conditions, motor loads are composed of four
level, including 0, 1, 2, 3 (corresponding motor speeds from
1797 to 1720 rpm).

TABLE 1. The working conditions used in the case study.

Motor load (hp) Hp, Hp, Hp; Hp,
Working Condition .57 455, 1750 1730
(rpm)

TABLE 2. The fault diameter and the corresponding fault types ID used in
the case study.

Rolling bearing condition
Fault Diameter Fault Type Class Label
0.007" Inner Race 1
0.007" Ball 2
0.007" Outer Race 3
0.014" Inner Race 4
0.014" Ball 5
0.014" Outer Race 6
0.021" Inner Race 7
0.021" Ball 8
0.021" Outer Race 9

For clear expression of the experimental data, Table 1
shows the working conditions used in our case study, and
Table 2 shows the fault diameter and the corresponding fault
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FIGURE 3. Four groups of time series signals at speed 1772.

types ID (for example, if there is a fault of 0.007" in the inner
race of the bearing, the fault types ID will be called as ‘1°).
In addition, there are also normal data in the experiment.

We will use ‘0 as the type ID.
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(a) Normal Data of 3200 Points at Rpm 1772 Under 48K

(b) 0.007'"" Inner Race Fault Data of 800 Points at Rpm 1772 Under 12K

(C) 0.014" Inner Race Fault Data of 800 Points at Rpm 1772 Under 12K

(d) 0.007'" Ball Fault Data of 800 Points at Rpm 1772 Under 12K

B. FEATURE EXTRACTION FROM FAULT DATA

Figure 3 shows four groups of time series signals at speed
1772 rpm. Since the normal data in CRWU experiment are
collected at 48K, compared to 12K, its data points are 4 times
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than that of 12K. For intuitive presentation, the time series
signal of the normal data gives 3200 points of the time series
signal of the normal data are shown in sub-figure(a), and
800 points of fault data are shown in sub-figure (b) (c) (d).
It can be clearly seen from the signal comparison that the
data from normal operation have a lower value change range
and the signal is smoother than others. From the comparison
of (b) and (¢), it can be seen that the same fault type under dif-
ferent fault diameters has similar change patterns but different
amplitudes. Therefore, this situation has the possibility of
feature transfer. From the comparison of (b) and (d), it shows
that there are obvious differences in the signal changes cor-
responding to different fault types, so that it is possible to be
classified.

TABLE 3. Time domain indicators used in the case study.

Indicator Formulation
Peck to Peek . . .
Value (P2P) max(x(i)) — min(x(i))
Root Mean L A
Square (RMS) ﬁzi=1x ®
Waveform RMS
Factor (WF) mean(abs(x(i)))
Crest Factor max(|x(D)])
(CF)

RMS
Impulse Factor max(|x(@)])
(IF) mean(abs(x(i)))
LR G -t

4

1 N
ﬁzizl(xa) - w?

Through the comparison of Figure 3, we find that there
are obvious differences in the time series signals of different
faults, so the time domain indicators of the signals are used
to extract the features of the signals. Therefore, here we
mainly consider the following seven time-domain indicators
in Table 3 for feature extraction. And, set the time window
scale of feature extraction with every 800 points in the 12K
as a sample, and every 3200 points in the 48K as a sample.
Use the above time-domain indicators to process all samples,
and regularize all features to ensure that the scales between
different indicators are consistent.

Kurtosis (K)

Skewness (S)

C. FAULT RECOGNITION

1) FAULT RECOGNITION UNDER 12K

After feature extraction, for 12K, 150 samples are obtained
for each fault type and the normal operation. At 12K, the
accuracy of fault prediction after feature transfer for the
case of 0.007” and 0.021” is tested respectively. Here, each
data set includes three fault classes and one normal class
(four-classes fault recognition).

Table 4 gives the transfer results among four types of
speeds (See Table 1) one by one under the case of 0.007.”
For example, the result from Row 2, Column 3 means the
accuracy of the data feature from Hp4 to Hpg.
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TABLE 4. The transfer results among different speeds in the case of
0.007” under 12K.

Hp, Hp, Hps Hp,
Hp, - 0.965 0.987 0.970
Hp, 0.995 - 0.980 0.972
Hp, 0.985 0.977 - 0.967
Hp, 0.993 0.948 0.978 -

TABLE 5. The transfer results among different speeds in the case of
0.021” under 12K.

Hp, Hp, Hp, Hp,
Hp, - 0.998 0.993 1.000
Hp, 1.000 - 0.993 1.000
Hps 0.993 0.985 - 1.000
Hp, 0.977 0.978 0.998 -

Same as Table 4, Table 5 gives the results under the case
of 0.021.”

It can be found from Tables 4 and 5 that although the
feature transfer uses only seven time-domain indicators, its
prediction accuracy is quite high, proving the effectiveness
of the data feature transfer.

2) FAULT RECOGNITION UNDER 48K

Since the amount of data at 48K is more abundant, we test
more types of fault predictions in the 48K. Here we consider
six types of faults 1, 2, 4, 5, 7, 8 and normal operation 0. That
is, consider a seven-classes fault recognition, which is more
difficult than four-classes fault recognition problem under
12K. The fault recognition accuracy is tested at three speeds:
Hps, Hpg, Hp,4 and the results are shown in the following
Table 6.

TABLE 6. The transfer results among different speeds under 48K.

Hp, Hp; Hp,
Hp, - 0.995 0.882
Hp; 0915 - 0.995
Hp, 0.925 0.998 -

It can be found that its classification accuracy is still
very good. Therefore, the validity of feature transfer on fault
recognition is further proved.

According to Figure 1, the predicted results under the
current working condition can be compared with the actual
fault after inspection by maintenance personnel, then the
correct label can be obtained. By using these correct labeled
data under the current working condition and auxiliary data
under the historical similar working condition for training,
the accuracy of the model can also be improved. Now, assume
that 10% of the data have been labeled for the current working
condition. That is, for original 150 samples of each class,
15 samples have been labeled by maintenance personnel.
Table 7 gives the transfer results among different speeds
under 48K after 10% samples being labeled.
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TABLE 7. The transfer results among different speeds under 48K after
10% samples being labeled.

TABLE 9. The transfer results of different algorithms on group A and
group B.

Hp, Hp, Hp, Methods Group A Group B
Hp, - 1.000 0.956 TCA based method 0.892 0.914
Hp, 0.985 - 0.998 KNN 0.844 0.670
Hp, 0.975 0.998 - DBN 0.867 0.882
SVM 0.562 0.596
ANN 0.673 0.681
Bayesian 0.561 0.605
It can be found that this approach is feasible, and almost all Bagging 0.442 0.491
the results have been significantly improved than the original. Boosting 0.556 0.582

The rationality and effectiveness of our method are verified
again by compared with Table 6.

D. COMPARISON WITH OTHER ALGORITHMS

To verify the effectiveness of our TCA based method, deep
belief network (DBN), support vector machine (SVM), arti-
ficial neural network (ANN), Bayesian method, Bagging
method and Boosting method are used to compare with the
proposed method. The accuracy results of the above methods
for fault prediction have been given in [56]. Our proposed
method uses KNN for classification after TCA. In order to
illustrate the effectiveness of TCA for classification, KNN is
used as beachmark in following experiment.

The comparison experiments are conducted on two data
set, termed Group A and Group B. Group A represents trans-
ferring fault predict model from Hp to Hp5. Group B repre-
sents transferring the fault predict model from Hpg to Hp 4.
Both data set all come from sampling under 12K. Different
from Section IV.C, comparison experiments in this section
consider all fault types (Inner Race, Ball, Outer Race) and all
fault diameter (0.007,” 0014”* and 0.021”). Therefore, there
are nine fault classes and one normal class (i.e., ten-classes
fault recognition).

To eliminate the interference caused by different data,
we use the same method in [56] to generate the experiment
data. For each fault class and normal class, 300 samples are
generated for training, and 200 samples are used for testing.

For a clearer expression, Table 8 gives the experiment data
settings.

TABLE 8. Description of group A and group B.

Group A Group B
Rolling bearing Training Training Class
condition (Hp,)/ Testing (Hp3)/ Testing Label
(Hp;) (Hp,)
Normal 300/200 300/200 0
0.007"- Inner Race 300/200 300/200 1
0.007"- Ball 300/200 300/200 2
0.007"- Outer Race 300/200 300/200 3
0.014"- Inner Race 300/200 300/200 4
0.014"- Ball 300/200 300/200 5
0.014"- Outer Race 300/200 300/200 6
0.021"- Inner Race 300/200 300/200 7
0.021"- Ball 300/200 300/200 8
0.021"- Outer Race 300/200 300/200 9

Table 9 gives the comparison results of different methods.
It can be clearly seen that the proposed TCA based method
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outperforms other methods on both test groups. It can be seen
that the benchmark results (KNN results) are quite different
on Group A and B. The TCA based method can obtain good
results on both test groups, especially for Group B. It shows
that TCA has indeed learned the fault features between data
from source domain and target domain.

V. CONCLUSION

This paper studies data-driven fault diagnosis, and analyzes
the difference between classical signal processing-based fault
diagnosis and deep learning fusion diagnosis. It is clear that
the method using signal processing flow in fault diagnosis
has better results and robustness, and can be promoted into
various industrial fault diagnosis problems. Then, through
the combination of fault diagnosis process and data feature
transfer method, a fault diagnosis framework is proposed.
Then, the framework is used in the fault diagnosis of CWRU
bearing data, which proves the validity and rationality of the
proposed framework and corresponding methods.

At present, the mainstream transfer learning methods
require a high degree of similarity between different data
domains. It restricts the use of transfer learning in fault
diagnosis. Therefore, in future research, our research will
focus on the fault transfer in case of great difference of
working conditions. And, traditional transfer learning in fault
diagnosis is always one-to-one (i.e., one source domain to one
target domain). In many practical cases, there may be more
than one historical working conditions. How to use the data
from different historical working conditions to assist the fault
diagnosis under the target working condition will be an urgent
research work in the future.
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