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ABSTRACT A consensus problem for second-order agents network with time-varying delays under the
directed fixed topology is investigated in this paper. For the convenience of analysing, the original system
is converted into an equivalent system associated with disagreement terms. By applying a variable delay-
partitioning method, increased computational complexity is solved and obtain less conservatism. A suitable
Lyapunov-Krasovskii functional (LKF) is constructed, combining the reciprocally convex combination
lemmas with Wirtinger-based inequality to deal with integral items for the derivative of the LKF and further
reduce the conservatism. Following the linear matrix inequality theory, a sufficient condition is presented to
make all agents asymptotically reach consensus. Finally, simulations are given to illustrate the effectiveness
of the proposed results.

INDEX TERMS Second-order agents, consensus, fixed topology, time-varying delays, delay-partitioning
approach.

I. INTRODUCTION
In the past few decades, distributed cooperative control of
multi-agent systems have attracted more and more research
interest and widely applied to various fields such as sensor
networks [1], [2], formation control [3], [4], consensus prob-
lem [5]–[8], group synchronization [9], spacecraft attitude
tracking control [10], [11], distributed optimization calcula-
tion and control engineering. As one of the key problems
of distributed cooperative control, the consensus problem
means that a group of agents reaches consensus on a cer-
tain physical quantity based on local interaction rules. Many
scholars have studied the consensus problem from various
perspectives. For instance, event-triggered security consen-
sus control [12], sampled-data consensus [13]–[15], adaptive
control [16], [17] and so on.

In practical applications, time delays always inevitably
occur in the process of information exchange between mul-
tiple agents, the delay causes undesirable agent dynamic
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behaviour, deteriorates the performance of agents to reach
consensus and becomes a principal factor of instability
in a real multi-agent system. Therefore, the research on
the consensus of multi-agent systems with time delays
has attracted extensive attention. Among previous studies,
the time delays are mainly divided into two categories
which include time-invariant delays and time-varying delays.
Initially, [18] and [19] proved that first-order agents and
second-order agents could reach average-consensus in the
presence of time-invariant delays, respectively. Consider that
most of complicated multi-agent systems generally exhibit
time-varying behaviour, in reality, different consensus prob-
lems of multi-agent systems with time-varying delays were
solved [20]–[24]. All the above papers on consensus prob-
lem show that the time delays problem is typical and
significant.

Delay-partitioning is regarded as a practical approach to
reduce the conservatism of time-delayed systems, which is
broadly used in various time-delay systems. Unfortunately,
few of the mentioned references apply the delay-partitioning
approach to multi-agent systems with time-varying delays.
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Qin et al. in [25] employed a delay-partitioning approach to
process the time-invariant delays of second-order agents sys-
tem and proved that the conservatism of the system could be
reduced with the number of delay interval divisions increas-
ing. However, time-varying delays were not considered in the
paper. Furthermore, the delay-partitioning method of [25] is
based on the idea of evenly dividing the delay interval and
the computational complexity increases with the number of
delay interval divisions.

On the other hand, it has been point out that the lead-
ing indicator of measuring the conservatism is the maxi-
mum allowable delay. Mainly, integral inequalities play a
crucial role in the derivation of delay-dependent stability
criteria for time-delayed systems. Jensen inequality was uti-
lized to deal with the derivative of Lyapunov Krasovskii
functional (LKF) containing double integral terms in [25].
Although this inequality is frequently used to evaluate the
derivative of LKF for time-delayed systems, stability criteria
based on the inequality is relatively conservative, which limits
the further improvement of existing results.

Inspired by the above-mentioned work, we study con-
sensus for second-order agents networks with time-varying
delays under the directed fixed topology. For the convenience
of analysing, the original system is converted into an equiv-
alent system associated with disagreement terms. Different
from reference [25], here, we consider time-varying delays.
By adopting the same delay-partitioning method as [26],
based on the idea of variable interval delay dividing, segments
with two variable sizes can yield less conservatism than those
with n equal sizes. Meanwhile, the computational complex-
ity is also reduced. With the Lyapunov stability theory and
linear matrix inequality theory, we construct a suitable Lya-
punov Krasovskii functional (LKF) and perform the stabil-
ity analysis of the system for two cases which respectively
correspond to two variable subintervals. To further reduce
the conservatism, the reciprocally convex combination lem-
mas, combined with Wirtinger-based inequality, following
the same procedure as used in [27], based on the form of linear
matrix inequalities (LMIs), a sufficient condition is proposed
eventually to make all agents reach consensus asymptotically.
In brief, the innovation of this paper is first reflected in
the fact that a novel delay-partitioning method to deal with
time-varying delays, which was rarely used in multi-agent
systems in previous literature, and time-varying delays are
more general in practice. Furthermore, searching the optimal
division point is the key to this method. Compared with
the traditional delay-partitioning idea, the advantage of this
method is that it can reduce both computational complexity
and system conservatism. Another contribution is that using
the reciprocally convex combination lemmas and Wirtinger-
based inequality in the LKF, which is used to analyze the
stability of multi-agent systems.
Main Structure: Formulating the problem formulation

and several concepts related graph theory in Section 2 and
providing the stability analysis for the second-order agents
network with time-varying delays in Section 3. In Section 4,

simulation results are presented, and some conclusions are
given in Section 5.
Notations: Apply the following notations throughout this

paper. Rn indicates the n-dimensional Euclidean space. The
notations Rn×m and Rn×n are the set of n × m real matrices
and n-order real square matrices, respectively. Z+ stands for
a set of positive integers, and any scalar that belongs to this
set is a positive integer. In is the n × n-dimensional identity
matrix, and I is the identity matrix of compatible dimensions.
The symmetric block of a symmetric matrix will be denoted
by ∗. The notation AT represents the transpose of matrix A.
For any matrices A, B of appropriate dimension, the matrix

diag{A,B} means the diagonal matrix
[
A 0
0 B

]
.

II. PRELIMINARIES AND PROBLEM FORMULATION
A. PRELIMINARIES
Define G = (V, E,A) as a weighted directed graph, which
consists of n nodes. V = {v1, v2, . . . , vn} and E ⊆ V × V
are regarded as a set of these nodes and a set of edges,
respectively. Theweighted adjacencymatrix ofG is described
by A =

[
aij
]
whose all adjacency elements aij are non-

negative. 0 = {1, 2, . . . , n} represents a finite set of the node
indexes and Ni = {vj ∈ V : (vj, vi) ∈ E} denotes the set
of neighbors of node vi. Take adjacency elements related the
edges of G as positive values if there exists an edge between
node vi and vj, i.e., eij = (vi, vj) ∈ E ⇐⇒ aij > 0.
Furthermore, we suppose aii = 0 for all i ∈ 0.
A node ofG is balanced if and only if the equality degin(vi) =
degout (vi) holds, where degin(vi) =

∑n
j=1 aji and degout (vi) =∑n

j=1 aij represent the in-degree and out-degree of the node
vi, respectively. G is a balanced graph if and only if all of its
nodes are balanced.

Let L be the Laplacian matrix of the weighted digraph G,
which is defined as L = 1−A, where1 = [1ii] is a diagonal
matrix with1ii = degout (vi). If G is balanced, then 1Tn L = 0,
where 1n is a column vector with its all entries are one.
We say that square matrix W ∈ Rn×n is balanced if and

only if 1TnW = 0 and W1n = 0.
If there has a path between any two different nodes vi, vj ∈

E in G, then G is called a strongly connected graph.
Replace all directed edges of a directed graph with undi-

rected edges, if the obtained graph is connected, then the
directed graph is a weakly connected graph.
Lemma 1 (Wirtinger-Based Inequality [28]): Given a

symmetric positive definite matrix �, the following inequal-
ity holds for any continuously differential function δ :

[a, b]→ Rn:∫ b

a
δ̇(u)T�δ̇(u)du ≥

1
b− a

[
ς1
ς2

]T
�̃

[
ς1
ς2

]
, (1)

where

ς1 = δ(b)− δ(a), ς2 = δ(b)+ δ(a)−
2

b− a

∫ b

a
δ(u)du,

�̃ = diag{�, 3�}.
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Lemma 2 (Reciprocally Convex Combination Lemmas
[29]): For a given symmetric positive matrix E , assume that
there exists a matrix F ∈ Rn×n such that[

E F
∗ E

]
� 0, (2)

Then for all scalar β ∈ (0, 1), one has[
1
β
E 0
∗

1
1−βE

]
= 3(β)+

[
E F
∗ E

]
, (3)

where

3(β) =

[
1
β
E 0
∗

1
1−βE

]
−

[
E F
∗ E

]

=

√ 1−β
β
I 0

∗

√
−

β
1−β I

[E F
∗ E

]

×

√ 1−β
β
I 0

∗

√
−

β
1−β I

 � 0.

Lemma 3 [30]: For a given matrix

9 =


n− 1 −1 · · · −1
−1 n− 1 · · · −1
...

...
. . .

...

−1 −1 · · · n− 1

 ∈ Rn×n,

The following statements hold.
(1) 0 with multiplicity 1 and n with multiplicity n − 1 are

the eigenvalues of 9.
(2) The right eigenvector related the zero eigenvalue of 9

is the column vector 1n, while the left eigenvector related the
zero eigenvalue of 9 is the row vector 1Tn .

(3) 2n ∈ Rn×n denotes an orthogonal matrix which sat-

isfies 2T
n92n =

[
nIn−1 0
0 0

]
. 1n√

n is the last column of 2n.

4 ∈ Rn×n is regarded as the Laplacianmatrix of any balanced

graph, then 2T
n42n =

[
ϑ1 0
0 0

]
, ϑ1 ∈ R(n−1)×(n−1).

Lemma 4 [25]: Given any matrix 6 ∈ R2mn and nonzero
ω ∈ R2mn satisfying (εi⊗12n)Tω = 0, where i = 1, 2, . . . ,m,
m ∈ Z+, the inequality ωT6ω < 0 holds if and only if the
associated matrix 6̄ ∈ Rm(2n−1) of 6 is negative definite,
where εi ∈ Rm represents the column vector with one on the
ith entry and zeros elsewhere.

B. PROBLEM FORMULATION
A second-order network system consists of n agents is con-
sidered. Each node in the directed graph G corresponds to
an agent of the system. We assume that the following double
integrator dynamics are used to model ith agent:

ẋi = υi υ̇i = ui, (4)

where the position state and speed state of each agent in the
network are represented by xi and υi, respectively. ui denotes

the control input. We say all agents of (4) asymptotically
reach consensus if for any initial conditions,

lim
t→∞

(xi(t)− xj(t)) = 0, lim
t→∞

υi(t) = 0, ∀i, j ∈ V. (5)

We determine to utilize the following consensus protocol so
as to solve the second-order consensus problem of (4) with
time-varying delays:

ui(t) = −2κυi +
∑
j∈Ni

aij(t)(xj(t − τ (t))− xi(t − τ (t))), (6)

where the velocity damping gain κ is positive, i.e. κ > 0,
the time-varying delays functional τ (t) satisfying

τ1 ≤ τ (t) ≤ τ2, (7)

τ̇ (t) ≤ ν, (8)

Let

ϕ = [x1, y1, . . . , xn, yn]T , yi =
1
κ
υi + xi,

A =
[
−κ κ

κ −κ

]
,B =

[
0 0

1/κ 0

]
.

By (6), we can rewrite the network dynamics (4) into the
following matrix form

ϕ̇(t) = (In ⊗ A)ϕ(t)− (L ⊗ B)ϕ(t − τ (t)), (9)

where L signifies the Laplacian matrix of the weakly con-
nected and balanced directed graph G, the symbol ‘⊗’ indi-
cates the Kronecker product. The Kronecker product of two
positive definite matrices is also positive definite.

We introduce an disagreement function δ(t) for conver-
gence analysis of the protocol (6), which has the same def-
inition as the disagreement function mentioned in [25]. The
similar disagreement dynamics induced by (9) shows the
form as follows:

δ̇(t) = (In ⊗ A)δ(t)− (L ⊗ B)δ(t − τ (t)). (10)

where δ(t) ∈ R2n×2n denotes the disagreement vector satis-
fying

∑2n
i=1 δi(t) = 0.

Remark 1: Actually, the strongly connected and balanced
digraph and weakly connected and balanced digraph both
describe the same kind of graph and a weakly connected and
balanced digraph must be strongly connected. However, for
a given directed graph, the weakly connected and balanced
digraph is easier to verify. Hence, it is more appropriate to
consider weakly connected and balanced digraph in this paper
rather than strongly connected and balanced digraph.

III. STABILITY ANALYSIS
In this section a stability analysis of system (9) is per-
formed, a variable delay-partitioning method proposed in
[26] is applied to process the time-varying delay τ (t), where
the delay interval [τ1, τ2] was partitioned into two variable
segments: [τ1, γ ] and [γ, τ2], where γ is a positive scalar
satisfying τ1 < γ < τ2.
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For notation simplification, let

εs =

0, · · · , 0︸ ︷︷ ︸
s−1

, I , 0, · · · , 0︸ ︷︷ ︸
10−s

T , s = 1, 2, . . . , 10.

ξ1(t) = [%T1 (t), η
T
1 (t), δ̇

T (t)]T , (11)

ξ2(t) = [%T2 (t), η
T
2 (t), δ̇

T (t)]T , (12)

where

%1(t)

= [δT (t), δT (t − τ1), δT (t − τ (t)), δT (t − γ ),

δT (t − τ2)]T ,

%2(t)

= [δT (t), δT (t − τ1), δT (t − γ ), δT (t − τ (t)),

δT (t − τ2)]T ,

η1(t)

= [
1
τ1

∫ t

t−τ1
δT (s)ds,

1
τ (t)− τ1

∫ t−τ1

t−τ (t)
δT (s)ds,

×
1

γ − τ (t)

∫ t−τ (t)

t−γ
δT (s)ds,

1
τ2 − γ

∫ t−γ

t−τ2
δT (s)ds]T ,

η2(t)

= [
1
τ1

∫ t

t−τ1
δT (s)ds,

1
γ − τ1

∫ t−τ1

t−γ
δT (s)ds,

×
1

τ (t)− γ

∫ t−γ

t−τ (t)
δT (s)ds,

1
τ2 − τ (t)

∫ t−τ (t)

t−τ2
δT (s)ds]T .

Remark 2: Based on Algorithm 1 in literature [26], we set
γ = τ1+λτ1,2 can search the optimal division point γ of the
variable delay-partitioning approach, where τ1,2 = τ2 − τ1,
λ is a scalar which is positive and satisfies 0 < λ < 1.
On the basis of the previous preparations, we intend to
investigate the consensus of second-order agents networks
with time-varying delays. Here we construct an appropri-
ate Lyapunov Krasovskii functional V (δt ) and introduce
the above mentioned variable delay-partitioning approach,
Lemma 2.4 can be used to determine the negative definiteness
of V̇ (δt ). The main result in this section is stated by the
following theorem.
Theorem 1: By protocol (6), second-order consensus

problem for directed network of agents with fixed topology
and time-varying delay τ (t) can be globally asymptotically
solved if there exists scalars γ , ν, τ1, τ2 and symmetric
positive matrices P̄, Q̄, R̄, S̄i, X̄i, Ȳj, Z̄j ∈ R(2n−1)×(2n−1),
(i = 1, 2; j = 1, 2, 3) and any matrix M̄l , (l = 1, 2, 3, 4) with
proper dimensions, such that the following LMIs hold.

81 = 2ϒ1 + ϒ2 + ϒ3 + ϒ4 + 2ϒ5 < 0 (13)

82 = 251 +52 +53 +54 + 255 < 0 (14)

where

ϒ1 =
[
ε1, τ1ε6 + (τ (t)−τ1)ε7+(γ−τ (t))ε8, (τ2 − γ )ε9

]
×

P̄ Ȳ1 Ȳ2
∗ Q̄ Ȳ3
∗ ∗ R̄

 εT10
εT1 − ε

T
4

εT4 − ε
T
5

 ,
ϒ2 = (ε1S̄1εT1 + ε4(S̄2 − S̄1)ε

T
4 − ε5S2ε

T
5 ),

ϒ3 = (ε1X̄1εT1 + ε2(X̄2 − X̄1)ε
T
2 − (1− ν)ε3X̄2εT3 ),

ϒ4 = ε10(τ 21 Z̄1 + (γ − τ1)2Z̄2 + (τ2 − γ )2Z̄3)εT10

−
[
ε1 − ε2, ε1 + ε2 − 2ε6

] ˜̄Z1 [ εT1 − ε
T
2

εT1 + ε
T
2 − 2εT6

]
−
[
ε2 − ε3, ε2 + ε3 − 2ε7, ε3 − ε4, ε3 + ε4 − 2ε8

]
×

[
β1
˜̄Z2 0
0 1

1−β1
˜̄Z2
]

εT2 − ε
T
3

εT2 + ε
T
3 − 2εT7

εT3 − ε
T
4

εT3 + ε
T
4 − 2εT8


−
[
ε4 − ε5, ε4 + ε5 − 2ε9

] ˜̄Z3 [ εT4 − ε
T
5

εT4 + ε
T
5 − 2εT9

]
,

ϒ5 =
[
ε1M̄1 + ε10M̄2

] [
−ε10 + 4̄1ε1 − 4̄2ε3

]
,

51 =
[
ε1, τ1ε6 + (γ − τ1)ε7 + (τ (t)− γ )ε8, (τ2−τ (t))ε9

]
×

P̄ Ȳ1 Ȳ2
∗ Q̄ Ȳ3
∗ ∗ R̄

 εT10
εT1 − ε

T
3

εT3 − ε
T
5

 ,
52 = (ε1S̄1εT1 + ε3(S̄2 − S̄1)ε

T
3 − ε5S̄2ε

T
5 ),

53 = (ε1X̄1εT1 + ε2(X̄2 − X̄1)ε
T
2 − (1− ν)ε4X̄2εT4 ),

54 = ε10(τ 21 Z̄1 + (γ − τ1)2Z̄2 + (τ2 − γ )2Z̄3)εT10

−
[
ε1 − ε2, ε1 + ε2 − 2ε6

] ˜̄Z1 [ εT1 − ε
T
2

εT1 + ε
T
2 − 2εT6

]
−
[
ε2 − ε3, ε2 + ε3 − 2ε7

] ˜̄Z2 [ εT2 − ε
T
3

εT2 + ε
T
3 − 2εT7

]
−
[
ε3 − ε4, ε3 + ε4 − 2ε8, ε4 − ε5, ε4 + ε5 − 2ε9

]
×

[
β2
˜̄Z3 0
0 1

1−β2
˜̄Z3
]

εT3 − ε
T
4

εT3 + ε
T
4 − 2εT8

εT4 − ε
T
5

εT4 + ε
T
5 − 2εT9

 ,
55 =

[
ε1M̄3 + ε10M̄4

] [
−ε10 + 4̄1ε1 − 4̄2ε4

]
,

4̄1 = 2
T
1 (In ⊗ A)21, 4̄2 = 2

T
1 (L ⊗ B)21,

and 21 denotes the first 2n − 1 columns of 22n, related
definitions are given in Lemma 2.3.

Proof: Let In ⊗ A = 41 and L ⊗ B = 42. Then we can
take the network dynamics (9) as

ϕ̇(t) = 41ϕ(t)−42ϕ(t − τ (t)), (15)

and the disagreement dynamics (10) is rewritten as

δ̇(t) = 41δ(t)−42δ(t − τ (t)), (16)
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Given the Lyapunov-Krasovskii functional V (δt ) as follows:

V (δt ) =
4∑
i=1

Vi(δt ), (17)

where

V1(δt ) =

 δ(t)∫ t
t−γ δ(s)ds∫ t−γ
t−τ2

δ(s)ds


T P Y1 Y2
∗ Q Y3
∗ ∗ R


 δ(t)∫ t

t−γ δ(s)ds∫ t−γ
t−τ2

δ(s)ds

 ,
V2(δt ) =

∫ t

t−γ
δT (s)S1δ(s)ds+

∫ t−γ

t−τ2
δT (s)S2δ(s)ds,

V3(δt ) =
∫ t

t−τ1
δT (s)X1δ(s)ds+

∫ t−τ1

t−τ (t)
δT (s)X2δ(s)ds,

V4(δt ) = τ1

∫ 0

−τ1

∫ t

t+θ
δ̇T (s)Z1δ̇(s)dsdθ

+(γ − τ1)
∫
−τ1

−γ

∫ t

t+θ
δ̇T (s)Z2δ̇(s)dsdθ

+(τ2 − γ )
∫
−γ

−τ2

∫ t

t+θ
δ̇T (s)Z3δ̇(s)dsdθ,

Note, matrices P,Q,R, Si,Xi,Yj,Zj ∈ R2n×2n(i = 1, 2; j =
1, 2, 3) are positive definite. For τ (t) ∈ [τ1, γ ]. Along the
trajectories of the dynamics (16), the time derivative of V (δt )
in (17) is calculated as follows

V̇ (δt ) =
4∑
i=1

V̇i(δt ), (18)

where

V̇1(δt )

= 2

 δ(t)∫ t
t−γ δ(s)ds∫ t−γ
t−τ2

δ(s)ds


T P Y1 Y2
∗ Q Y3
∗ ∗ R



×

 δ̇(t)
δ(t)− δ(t − γ )

δ(t − γ )− δ(t − τ2)


= 2ξT1 (t)

×
[
ε1, τ1ε6 + (τ (t)− τ1)ε7 + (γ − τ (t))ε8, (τ2 − γ )ε9

]
×

P Y1 Y2
∗ Q Y3
∗ ∗ R


 εT10
εT1 − ε

T
4

εT4 − ε
T
5

 ξ1(t)
= 2ξT1 (t)2̃2̃

T

×
[
ε1, τ1ε6 + (τ (t)− τ1)ε7 + (γ − τ (t))ε8, (τ2 − γ )ε9

]
×

P Y1 Y2
∗ Q Y3
∗ ∗ R


 εT10
εT1 − ε

T
4

εT4 − ε
T
5

 2̃2̃T ξ1(t)

= 2ξT1 (t)2̃ϒ12̃
T ξ1(t), (19)

where 2̃ = diag{22n,22n, . . . ,22n}20n×20n,

V̇2(δt )

= δT (t)S1δ(t)+ δT (t − γ )(S2 − S1)δ(t − γ )

−δT (t − τ2)S2δ(t − τ2),

= ξT1 (t)(ε1S1ε
T
1 + ε4(S2 − S1)ε

T
4 − ε5S2ε

T
5 )ξ1(t)

= ξT1 (t)2̃2̃
T (ε1S1εT1 + ε4(S2 − S1)ε

T
4 − ε5S2ε

T
5 )

×2̃2̃T ξ1(t)

= ξT1 (t)2̃ϒ22̃
T ξ1(t),

V̇3(δt )

= δT (t)X1δ(t)+ δT (t − τ1)(X2 − X1)δ(t − τ1)

−(1− τ̇ (t))δT (t − τ (t))X2δ(t − τ (t)), (20)

By τ̇ (t) ≤ ν, we have

V̇3(δt )

≤ δT (t)X1δ(t)+ δT (t − τ1)(X2 − X1)δ(t − τ1)

−(1− ν)δT (t − τ (t))X2δ(t − τ (t))

= ξT1 (t)(ε1X1ε
T
1 + ε2(X2 − X1)ε

T
2

−(1− ν)ε3X2εT3 )ξ1(t)

= ξT1 (t)2̃2̃
T (ε1X1εT1 + ε2(X2 − X1)ε

T
2

−(1− ν)ε3X2εT3 )2̃2̃
T ξ1(t)

= ξT1 (t)2̃ϒ32̃
T ξ1(t),

V̇4(δt )

= τ 21 δ̇
T (t)Z1δ̇(t)− τ1

∫ t

t−τ1
δ̇T (s)Z1δ̇(s)ds

×(γ − τ1)2δ̇T (t)Z2δ̇(t)− (γ − τ1)
∫ t−τ1

t−γ
δ̇T (s)Z2δ̇(s)ds

×(τ2 − γ )2δ̇T (t)Z3δ̇(t)− (τ2 − γ )
∫ t−γ

t−τ2
δ̇T (s)Z3δ̇(s)ds,

(21)

From Lemma 2.1 and Lemma 2.2, we get

τ1

∫ t

t−τ1
δ̇T (s)Z1δ̇(s)ds

≥

[
ζ0

ζ1

]T
Z̃1

[
ζ0

ζ1

]
,

(γ − τ1)
∫ t−τ1

t−γ
δ̇T (s)Z2δ̇(s)ds

≥


ζ2

ζ3

ζ4

ζ5


T β1Z̃2 0

0
1

1− β1
Z̃2



ζ2

ζ3

ζ4

ζ5

 ,
(τ2 − γ )

∫ t−γ

t−τ2
δ̇T (s)Z3δ̇(s)ds

≥

[
ζ6

ζ7

]T
Z̃3

[
ζ6

ζ7

]
,
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where

Z̃i = diag{Zi, 3Zi},∀i = 1, 2, 3,

β1 =
τ (t)− τ1
γ − τ1

,∀β1 ∈ [0, 1] ,

ζ0 = δ(t)− δ(t − τ1),

ζ1 = δ(t)+ δ(t − τ1)−
2
τ1

∫ t

t−τ1
δ(s)ds,

ζ2 = δ(t − τ1)− δ(t − τ (t)),

ζ3 = δ(t − τ1)+ δ(t − τ (t))−
2

τ (t)− τ1

∫ t−τ1

t−τ (t)
δ(s)ds,

ζ4 = δ(t − τ (t))− δ(t − γ ),

ζ5 = δ(t − τ (t))+ δ(t − γ )−
2

γ − τ (t)

∫ t−τ (t)

t−γ
δ(s)ds,

ζ6 = δ(t − γ )− δ(t − τ2),

ζ7 = δ(t − γ )+ δ(t − τ2)−
2

τ2 − γ

∫ t−γ

t−τ2
δ(s)ds.

therefore

V̇4(δt )

≤ ξT1 (t)2̃2̃
T ε10(τ 21 Z1 + (γ − τ1)2Z2

+(τ2 − γ )2Z3)εT10

−
[
ε1 − ε2, ε1 + ε2 − 2ε6

]
Z̃1

[
εT1 − ε

T
2

εT1 + ε
T
2 − 2εT6

]
−
[
ε2 − ε3, ε2 + ε3 − 2ε7, ε3 − ε4, ε3 + ε4 − 2ε8

]
×

[
β1Z̃2 0
0 1

1−β1
Z̃2

]
εT2 − ε

T
3

εT2 + ε
T
3 − 2εT7

εT3 − ε
T
4

εT3 + ε
T
4 − 2εT8


−
[
ε4 − ε5, ε4 + ε5 − 2ε9

]
Z̃3

[
εT4 − ε

T
5

εT4 + ε
T
5 − 2εT9

]
×2̃2̃T ξ1(t)

= ξT1 (t)2̃ϒ42̃
T ξ1(t), (22)

We introduce a null identity as follows:

2
[
δT (t)M1 + δ̇

T (t)M2

]
×

[
−δ̇T (t)+41δ(t)−42δ

T (t − τ (t))
]
= 0,

whereM1 andM2 are regarded as two slack matrices, one has

2ξT1 (t) [ε1M1 + ε10M2] [−ε10 +41ε1 −42ε3] ξ1(t)

= 2ξT1 (t)2̃2̃
T [ε1M1 + ε10M2] [−ε10 +41ε1 −42ε3]

×2̃2̃T ξ1(t)

= 2ξT1 (t)2̃ϒ52̃
T ξ1(t), (23)

where the corresponding notations ϒ1 − ϒ5 in equations
(19)-(23) are defined in Theorem 1, M1 and M2 are arbitrary
matrices with appropriate dimensions.

Note that 41, 42,P,Q,R, Si,Xi,Yj and Zj(i = 1, 2; j =
1, 2, 3) all belong to balanced matrices, combining (19)-(23)
with Lemma 2.3, we can obtain

V̇ (δt ) ≤ ξT1 (t)81ξ1(t), τ (t) ∈ [τ1, γ ] , (24)

where 81 is defined in Theorem 1.

Since
∑2n

i=1 δi(t) = 0, by Lemma 2.4 and (19)-(23),
a effective result is obtained,i.e., for any nonzero vector ξ1(t)
which satisfies (εi⊗12n)T ξ1(t) = 0 for any i ∈ {1, 2, . . . , 10},
where εi ∈ R10×10 is the same notation as that defined in
Lemma 2.4 for the case m = 10, the inequality in (13) is
a sufficient condition to make V̇ (δt ) ≤ ξT1 (t)81ξ1(t) < 0
hold.

For τ (t) ∈ [γ, τ2], along the trajectories of the dynamics
(16), the derivative of V (δt ) in (17) with respect to t is
taken by

V̇ (δt ) =
4∑
i=1

V̇i(δt ), (25)

According to the same routine as used in the case τ (t) ∈
[τ1, γ ],we have

V̇1(δt )

= 2ξT2 (t)2̃512̃
T ξ2(t), (26)

V̇2(δt )

= ξT2 (t)2̃522̃
T ξ2(t), (27)

V̇3(δt )

≤ ξT2 (t)2̃532̃
T ξ2(t), (28)

V̇4(δt )

≤ ξT2 (t)2̃2̃
T ε10(τ 21 Z1 + (γ − τ1)2Z2

+(τ2 − γ )2Z3)εT10

−
[
ε1 − ε2, ε1 + ε2 − 2ε6

]
Z̃1

[
εT1 − ε

T
2

εT1 + ε
T
2 − 2εT6

]
−
[
ε2 − ε3, ε2 + ε3 − 2ε7

]
Z̃2

[
εT2 − ε

T
3

εT2 + ε
T
3 − 2εT7

]
−
[
ε3 − ε4, ε3 + ε4 − 2ε8, ε4 − ε5, ε4 + ε5 − 2ε9

]
×

[
β2Z̃3 0
0 1

1−β2
Z̃3

]
εT3 − ε

T
4

εT3 + ε
T
4 − 2εT8

εT4 − ε
T
5

εT4 + ε
T
5 − 2εT9

 2̃2̃T ξ2(t)

= ξT2 (t)2̃542̃
T ξ2(t),

β2 =
τ (t)− γ
τ2 − γ

, ∀β2 ∈ [0, 1] . (29)

Similar to (23), one has:

2ξT2 (t)2̃552̃
T ξ2(t) = 0, (30)

where the related notations51−55 for (26)-(30) are defined
in Theorem 1, M3 and M4 are arbitrary matrices with appro-
priate dimensions.

Through (26)-(30), the following inequality is obtained

V̇ (δt ) ≤ ξT2 (t)82ξ2(t), τ (t) ∈ [γ, τ2] . (31)

where 82 is defined in Theorem 1.
Similarly, by Lemma 2.4 and (26)-(30), we obtain that for

any nonzero vector ξ2(t) which satisfies the equality (εi ⊗
12n)T ξ2(t) = 0 for any i ∈ {1, 2, . . . , 10} and a sufficient
condition to guarantee V̇ (δt ) ≤ ξT2 (t)82ξ2(t) < 0 is that the
inequality in (14).
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FIGURE 1. Network topology (1) of the multi-agent system.

FIGURE 2. Network topology (2) of the multi-agent system.

FIGURE 3. Position trajectories of the network (1).

Thus, it is clear that, if (13) and (14) hold, then V̇ (δt ) < 0
holds for τ (t) ∈ [τ1, τ2]. This completes the proof.

IV. SIMULATION RESULTS
To demonstrate the validity of the theoretical results obtained
in the previous sections, we give numerical simulations in this
section.
Example 1: We study the consensus of a second-order

multi-agent system consists of 4 agents, whose topology is
shown in Fig. 1. It is a weakly connected and balanced
digraph with 0–1 adjacency elements. According to Theo-
rem 1, τ1 = 0.1, τ2 = 1.288, ν = 0.1. The parameter κ
of protocol (6) is taken as κ = 1. The scalar γ = 0.4559,
which is the optimal division point of the time-varying delays
interval [τ1, τ2]. Take account into two cases τ (t) ∈ [τ1, γ ]
and τ (t) ∈ [γ, τ2], feasible solutions are found by employing
the LMI toolbox of MATLAB, respectively. We suppose that
τ (t) = t − 0.4sin(t) and the initial values of position states
and speed states are [−2,−1.5, 0.8, 1.5], [−1,−0.8, 1, 1.8],
separately. Fig. 3 and Fig. 4 denote the position trajectories
and velocity trajectories of system (4) using protocol (6)
under the topology of Fig. 1, respectively.
Example 2: Consider the consensus of a second-order

multi-agent system, whose topology is shown in Fig. 2.
Obviously, it is weakly connected and balanced. According
to Theorem 1, we assume τ1, τ2, ν, κ and γ are given

FIGURE 4. Velocity trajectories of the network (1).

FIGURE 5. Position trajectories of the network (2).

FIGURE 6. Velocity trajectories of the network (2).

the same values as those in Example 1 and τ (t) = t −
0.4sin(t). The initial values of position states and speed
states are [−3,−0.5, 1.8, 2.5], [−2,−1.8, 0.1, 0.8], sepa-
rately. Fig. 5 and Fig. 6 denote the position trajectories and
velocity trajectories of system (4) using protocol (6) under
the topology of Fig. 2, respectively.
Clearly, the disagreement of agents is monotonically decreas-
ing and tends to 0 eventually, i.e. the positions converge to
a common value while t → ∞, which is reflected in both
Fig. 3 and Fig. 5. Moreover, from Fig. 4 and Fig. 6 one can
observe that the velocities converge to 0 while t → ∞.
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In summary, the consensus conditions (5) hold, that is to say
all agents can asymptotically reach consensus.

V. CONCLUSION
In this paper, a second-order consensus problem of multi-
agent systems with time-varying delays is studied, which
has broad prospects in practical applications such as UAV
formation control, intelligent robots, cooperative control of
unmanned vehicles, and attitude control of artificial satel-
lites. In our approach, the delay interval is divided into
two variable segments instead of n equal segments, which
can reduce the computational complexity. By appropriately
constructing a LKF, Wirtinger-based inequality is combined
with the reciprocally convex combination lemmas to deal
with the derivative of the LKF, the derived results guaran-
tee consensus under a directed fixed topology and effec-
tively tolerate relatively large bounded communication delay.
Nevertheless, the results proposed in this paper are still
somewhat conservative, which may be improved by the
improved Wirtinger-based inequality and it will appear in
our future work. Motivated by the work in [31] and [32],
the two directions for future research would be to investi-
gate the group consensus of leader-following systems with
time delays via pinning control and the finite-time consensus
problem of multi-agent systems with time-varying delays,
respectively.
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