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ABSTRACT Deep learning is the state-of-the-art learning algorithm for many machine learning tasks. Yet,
training a deep learning model on a large data set is often time-consuming, taking several days or even
months. During model training, it is desirable to offer a non-trivial progress indicator that can continuously
project the remaining model training time and the fraction of model training work completed. This makes
the training process more user-friendly. In addition, we can use the information given by the progress
indicator to assist in workload management. In this paper, we present the first set of techniques to support
non-trivial progress indicators for deep learning model training when early stopping is allowed. We report
an implementation of these techniques in TensorFlow and our evaluation results for both convolutional and
recurrent neural networks. Our experiments show that our progress indicator can offer useful information
even if the run-time system load varies over time. In addition, the progress indicator can self-correct its initial
estimation errors, if any, over time.

INDEX TERMS Deep learning, model training, progress indicator, TensorFlow.

LIST OF SYMBOLS
bc Floor function.
a Scaling factor of the inverse power-law func-

tion.
b Exponent of the inverse power-law function.
bmax Maximum number of batches allowed for model

training.
B Number of training instances in each batch.
c Bias term of the inverse power-law function.
cγ Coefficient used to compute γ .
d Number of input variables of the objective func-

tion.
ei Validation error at the i-th validation point.
f (i) Regression function’s value at the i-th validation

point.
g Number of batches of model training between

two consecutive validation points.
h(n) Sequence number of the current validation point

on the current segment.
Imax Maximum number of rounds allowed for the

inner loop in each round of the outer loop of the
truncated Newton method

The associate editor coordinating the review of this manuscript and
approving it for publication was Navanietha Krishnaraj Rathinam.

k Number of synthetic validation curves gener-
ated via Monte Carlo simulation at each valida-
tion point after the τv-th one.

K Size of the sliding time window used for com-
puting the model training speed.

li Number of validation points on the i-th segment
of the validation curve.

me Maximum number of epochs allowed for model
training.

n Number of validation points obtained thus far.
ni A simulated random noise at the i-th validation

point.
p Patience.
qj−1 Sequence number of the last validation point on

the previous segment of the validation curve.
r Number of disjoint intervals into which the pos-

sible range of the simulated number of valida-
tion points needed for model training is divided.

Rmax Maximum number of rounds allowed for the
loop.

s(i) Sequence number of the segment of the valida-
tion curve that the i-th validation point is on.

t Threshold used to identify the initial transient
stage of each segment of the validation curve.
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T Number of data instances in the training set.
Tmax Maximum number of rounds allowed for the

outer loop of the truncated Newton method.
U Unit of work.
V Number of data instances in the validation set.
vj−1 Number of validation points needed for model

training that is estimated at the last validation
point on the previous segment of the validation
curve.

vmax Maximum number of validation points allowed
for model training.

w Maximum number of validation points allowed to
fit the regression function.

w′ Number of validation points used to fit the regres-
sion function.

α Initial learning rate used in the exponential decay
schedule.

αi Learning rate at the i-th validation point.
βi Learning rate on the i-th segment of the validation

curve.
γ Threshold used to decide which interval is

regarded as a local mode.
δ min_delta.
ε Tolerance.
ρ Constant controlling the learning rate’s decay

speed in the exponential decay schedule.
σ̂ 2 Estimated variance of the random noise when a

fixed learning rate is used during the entire model
training process.

σ̂ 2
i Estimated variance of the random noise at the i-th

validation point.
σ̂ 2
(i) Estimated variance of the random noise on the

i-th segment of the validation curve.
τv Threshold on the number of validation points

reached, beyond which we use the validation
curve to refine the projected number of validation
points needed for model training.

I. INTRODUCTION
The need for non-trivial progress indicators for deep learning
model training

Deep learning is the state-of-the-art learning algorithm
for many machine learning tasks like image classification,
natural language processing, and speech recognition [1].
But, building a deep learning model on a large data set is
often time-consuming. Using 50 graphics processing units
(GPUs), a Google team spent two months training a deep
neural network on 300 million images [2]. With 200 cen-
tral processing units, Weyand et al. [3] took 2.5 months to
train a convolutional neural network on 126 million photos.
Akiba et al. [4] showed that 29 hours were needed to train
a convolutional neural network on the ImageNet data set [5]
with two GPUs. 15 minutes were needed with 1,024 GPUs.
As a standard human-computer interaction principle, for each
task running longer than 10 seconds, we need a non-trivial
progress indicator (see Fig. 1) to continuously project the

FIGURE 1. A progress indicator for deep learning model training.

remaining task running time and the fraction of the task com-
pleted [6, Ch. 5.5]. Thus, progress indicators are desirable for
deep learning model training.

Besides making the deep learning model training process
more user-friendly, we can use the information given by
the progress indicator to assist with workload management
as outlined in our papers [7], [8]. We recently talked with
Yasser M. Ibrahim, the head of distributed machine learning
at Amazon. Hementioned that using a large computer cluster,
his team took several months to train a deep neural network
supporting Alexa’s speech recognition function. Every so
often, his team retrains this neural network and would like to
finish the re-training in a given amount of time. As the amount
of training data, the neural network’s hyper-parameter values,
and the server capacity continue changing over time, his
team needs a method to find an appropriate cluster config-
uration for each round of re-training. A workload manage-
ment approach aided by progress indicators would serve this
purpose [7].

A neural network is trained in one or more epochs, each
of which requires going through all of the training instances
once. Some deep learning software supplies trivial progress
indicators during model training, e.g., by displaying the
number of epochs that has been completed [9] or the value
of the objective function achieved [10] over time. Yet, this
information is too coarse-grained for many purposes. On a
large data set, a large amount of time is needed to go through
an epoch. Moreover, early stopping is widely used in deep
learning model training to help avoid overfitting. When early
stopping is allowed, the number of epochs needed for model
training is unknown beforehand, but dynamically decided
during model training based on some stopping criterion [1].
Our prior work [11] presents a technique to support non-
trivial progress indicators for deep learning model training
when the number of epochs needed for model training is
known beforehand. This technique updates the projected
numbers for the model training task once every few seconds,
but is unable to handle early stopping. To the best of our
knowledge, no other technique has been published to offer
non-trivial progress indicators for deep learning model train-
ing. How to support such progress indicators in the presence
of early stopping remains an open problem.

A. OUR CONTRIBUTIONS
To address the gap, in this paper we present the first
set of techniques to support non-trivial progress indicators
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for deep learning model training when early stopping is
allowed. With low overhead, our techniques can handle var-
ious combinations of the deep learning model, the learning
rate schedule like learning rate decay, and the optimization
method [12].

A deep learning model is trained in batches. In each batch,
a fixed number of training instances are used to compute
the updates to the model’s parameters. Each batch’s running
cost is relatively stable and can be quickly measured. Thus,
the key to estimating the progress of model training is to
project the number of batches needed for model training.
During model training, we use the non-smooth learning curve
on the validation set (a.k.a. the validation curve) to make
this projection. This curve depicts the model’s error rates on
the validation set, i.e., the validation errors, obtained over
time. As Fig. 2 shows, the validation error tends to reduce
over time before early stopping occurs and also oscillates
over time. If we use a monotonically decreasing function
to model the validation curve without accommodating the
oscillations, and directly apply the early stopping criterion
to the projected curve, we seldom obtain a good estimate of
the number of batches needed for model training. To address
this challenge, we regard the validation curve as the sum of
a smooth trend curve and some zero-mean random noise.
We use a regression function to estimate the trend curve, and
historical data to gauge the random noise’s variance. If the
learning rate changes over time, we also model the change’s
impact on the random noise’s variance. Then we use a Monte
Carlo simulation approach to project the number of batches
needed for model training. By adding simulated random noise
to the projected trend curve, we generate several synthetic
validation curves. On each of them, we apply the early stop-
ping criterion to obtain a simulated number of batches needed
for model training. The estimated mode of these simulated
numbers forms the basis for the projected number of batches
needed for model training. To the best of our knowledge,
this is the first time Monte Carlo simulation has been used
for progress indication and is a main innovation of this
work.

FIGURE 2. The validation curve = a trend curve + some random noise.

We implemented our techniques in TensorFlow [13],
an open-source deep learning software package. We report
our evaluation results for both convolutional and recur-
rent neural networks. Our results show that with negligible
run-time overhead, the resulting progress indicator can

provide useful information even in the presence of varying
run-time system loads. Also, the progress indicator can self-
correct its initial estimation errors, if any, over time.

B. ORGANIZATION OF THE PAPER
The rest of the paper is organized as follows. Section II
reviews the related work. Section III describes our proposed
techniques for implementing progress indicators for deep
learning model training when early stopping is allowed.
Section IV reports an implementation of our techniques in
Tensorflow, as well as the performance evaluation results of
the resulting progress indicators. Section V presents some
interesting areas for future work. Section VI concludes the
paper.

II. RELATED WORK
In this section, we briefly review the related work. A detailed
discussion of the related work is available in our prior
paper [7].

A. SOPHISTICATED PROGRESS INDICATORS
For machine learning model training, we have built sophis-
ticated progress indicators for decision tree, random forest,
and neural network when the number of epochs needed
for model training is known beforehand [7], [11]. In addi-
tion, sophisticated progress indicators have been proposed
for database queries [8], [14]–[17], static program analy-
sis [18], program compilation [19], subgraph queries [20],
MapReduce jobs [21], [22], and automatic machine learning
model selection [23], [24]. As each kind of task has its own
unique properties, we cannot directly adopt the existing tech-
niques [7], [8], [11], [14]–[24] to implement progress indica-
tors for deep learning model training when early stopping is
allowed.

B. ESTIMATING DEEP LEARNING MODEL TRAINING TIME
Justus et al. [25] proposed a meta learning method for esti-
mating an epoch’s running time before starting to train a
deep learning model, by adopting features of the model,
the computational resources, and the training data set used
to train another deep learning model. This method predicts
neither the number of epochs nor the time needed for model
training.

For estimating a deep learningmodel’s training time before
model training starts, researchers have proposed several
methods including Bayesian optimization [26], meta learning
using Multivariate Adaptive Regression Splines [27], meta
learning via support vector regression [28], and meta learning
via polynomial regression [29]. The projected numbers are
frequently inaccurate, are not continuously refined, and could
differ significantly from the true model training time on a
loaded computer. To build a non-trivial progress indicator,
we need to continuously refine the projected model training
time.
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C. COMPLEXITY ANALYSIS FOR TRAINING NEURAL
NETWORKS
Much research has been done on computing the time com-
plexity of training a neural network [30, Ch. 24], [31], [32].
Yet, this information is not enough for constructing progress
indicators and provides no projected model training time on
a loaded computer. Time complexity typically ignores data
properties affecting the model training cost, as well as the
lower order terms and coefficients required for predicting
the model training cost. An ideal progress indicator should
continuously refine the model training cost as model training
proceeds.

III. IMPLEMENTATION TECHNIQUES
In this section, we describe our techniques for implementing
progress indicators for deep learning model training when
early stopping is allowed. Section III-A introduces some
concepts and notations that will be used throughout this paper.
Section III-B gives an overview of our progress indication
method. Sections III-C to III-E show how to estimate the
number of batches needed for model training when a fixed
learning rate is used during the entire model training process,
when a continuous decay schedule for the learning rate is
used, and when a step decay schedule for the learning rate is
used, respectively. Section III-F discusses the computational
complexity of estimating the number of batches needed for
model training.

A. SOME CONCEPTS AND NOTATIONS
In this section, we introduce some concepts and notations
that will be used throughout this paper. We have two pre-set
positive integers B and g, as well as a given early stopping
criterion. A deep learning model is trained in batches. In each
batch, B training instances are used to compute the updates to
the model’s parameters. After every g batches of model train-
ing, we reach a validation point. At that time, we compute
the model’s error rate on the validation set, i.e., the validation
error, and check whether the early stopping criterion is met.
If so, model training is ended.

The validation curve depicts the validation errors obtained
over time during model training. Many early stopping cri-
teria exist, most of which are based on the validation
curve [1], [33]–[35]. One criterion is to stop model training
when the validation error has not improved over the best one
recorded for a given number of validation points [1], [33].
Another criterion adopts the idea of stopping model train-
ing when the validation error is over the best one recorded
by at least a given threshold, while the model’s error
rate on the training set no longer improves much [33].
Duvenaud et al [34] proposed a criterion based on estimating
the log marginal likelihood without using a validation set.
Mahsereci et al. [35] proposed a criterion based on some local
statistics of the computed gradients without using a validation
set.

The goal of this paper is neither to handle all of the existing
early stopping criteria nor to make the progress indicator’s
projections reach the maximum possible accuracy. Instead,
our goal is to demonstrate via a case study, the feasibil-
ity of providing non-trivial and useful progress indication
for deep learning model training when early stopping is
allowed. Frequently, users can benefit from a rough estimate
of the remaining model training time [36]. Our demonstration
focuses on a widely used early stopping criterion with two
pre-set numbers: min_delta δ ≥ 0 and patience p > 0 [37].
The criterion is met if the validation error improves by ≤ δ
for p validation points consecutively. That is, letting ei denote
the validation error at the i-th validation point, model training
stops at the s-th validation point if es−p–ej < δ holds for each
of j = s− p+ 1, s− p+ 2, . . . , and s.

B. OVERVIEW OF OUR PROGRESS INDICATION METHOD
In this section, we give an overview of our progress indication
method.We start with an initial estimate of the model training
cost. Both the predicted model training cost and the current
model training speed are gauged byU , the unit of work. Each
U depicts the average amount of work needed for processing
each training instance once in two steps in model training.
The first step is to go forward through the neural network
once to compute its prediction result on the training instance.
The second step is to go backwards through the neural net-
work once for backpropagation.

During model training, we keep gathering multiple statis-
tics, such as the number of batches done, and use them to
keep refining the estimated model training cost. We keep
checking the model training speed defined as the number
of Us completed per second during the K seconds before
the current time point. By default, K ’s value is 10. At any
moment,

the projected remaining model training time
= the projected remaining model training cost / the

current model training speed.
Periodically, we update the progress indicator with the lat-
est information. As the model training task keeps running,
we gather more precise information of it. As a result, our
estimates tend to become increasingly accurate over time.

1) COMPUTING THE MODEL TRAINING COST
The model training cost is dominated by two components and
can be roughly regarded as their sum. The first component
is the cost of processing the training instances. The second
component is the cost of computing the validation errors. The
first one is easy to compute.

The cost of processing the training instances
= the number of batches needed for model training ×

the number of training instances per batch × the aver-
age amount of work needed for processing a training
instance once in model training

= the number of batches needed for model
training ×B× 1

= the number of batches needed for model training ×B.

79814 VOLUME 8, 2020



Q. Dong, G. Luo: Progress Indication for Deep Learning Model Training: A Feasibility Demonstration

Next, we compute the second component. We call each
data instance in the validation set a validation instance.

The cost of computing the validation errors
= the number of validation points needed for model train-

ing × the number of data instances in the validation
set × the average amount of work needed for process-
ing a validation instance once to compute the validation
error.

To process a validation instance once, we need to go for-
ward through the neural network once to compute its predic-
tion result on the validation instance. We use the number of
multiplication operations needed to estimate the processing
cost [31]. Each neuron typically takes multiple inputs, each
of which links to a distinct connection weight. When going
forward through the neural network, we need to compute
the neuron’s output by multiplying each input by its linked
connection weight. In comparison, when going backwards
through the neural network, we need to compute a partial
derivative with respect to each input and a partial derivative
with respect to each connection weight. The former step
requires doing a multiplication with the connection weight
linked to the input. The latter requires doing a multiplication
with the input linked to the connection weight. Hence, as a
rough approximation based on the number of multiplication
operations needed, we regard the cost of going backwards
through the neural network once to be twice that of going
forward through the neural network once. That is, the average
amount of work needed for processing a validation instance
one time = U /3. Consequently,

the cost of computing the validation errors
= the number of validation points needed for model

training ×V /3,
with V being the number of data instances in the validation
set.

Summing the two components, we have
the model training cost
= the number of batches needed for model training×B+

the number of validation points needed for model train-
ing ×V /3.

Before model training starts, we can easily know B and V ’s
values. Thus, to estimate the model training cost, we mainly
need to estimate the number of batches and the number of
validation points needed for model training.

Let T denote the number of data instances in the training
set. Before a deep neural network is trained, the user of
the deep learning software needs to specify the value of a
hyper-parameterme showing themaximumnumber of epochs
allowed for model training. Each epoch requires passing
through all of the training instances once and includes T /B
batches of model training. The maximum number of batches
allowed for model training is

bmax = me × T/B.

Before model training starts, we can easily know T and B’s
values and subsequently bmax’s value. Recall that a validation

point is reached every g batches of model training. If early
stopping occurs before finishing the bmax-th batch,

the number of batches needed for model training
= the number of validation points needed for model

training ×g.
If early stopping never occurs and model training reaches the
maximum number of batches allowed,

the number of batches needed for model training = bmax ,
and
the number of validation points needed for model training
= vmax
def
= bbmax/gc.

Here, bc is the floor function, e.g., b3.4c = 3. vmax is the
maximum number of validation points allowed for model
training. Thus, the key to estimating the model training cost is
to estimate the number of validation points needed for model
training, and subsequently, whether early stopping will ever
occur.

2) ESTIMATING THE NUMBER OF VALIDATION POINTS
NEEDED FOR MODEL TRAINING
Initially, with no extra information, we estimate the number
of validation points needed for model training to be vmax ,
the maximum number of validation points allowed for model
training. During model training, once the number of vali-
dation points reached is ≥ a given threshold τv, we start
using the validation curve to keep refining the projected
number of validation points needed for model training. In our
implementation, we choose 3 as τv’s default value to strike a
balance between having enough validation points to make a
reasonable projection and not having to wait too long before
the initial projected number could be refined.

As Fig. 2 shows, the validation curve often oscillates over
time. We regard it as the sum of a smooth trend curve and
some zero-mean random noise. At each validation point that
is after the τv-th one and where the early stopping criterion
is unmet, we first fit a smooth regression function to the
validation curve up to this point, and then use the fitted
function to estimate the trend curve beyond this point. Since
the regression function is smooth, the estimated trend curve
does not reflect the oscillations on the validation curve. Thus,
directly applying the early stopping criterion to the estimated
trend curve often does not lead to a good estimate of the
number of validation points needed for model training. For
example, as the validation error tends to decrease over time,
we use a monotonically decreasing regression function to
estimate the trend curve. When the min_delta δ = 0, the early
stopping criterion includes a term that the validation error
increases at some point. Thus, the criterion is never met
on the estimated trend curve, even if early stopping occurs
frequently in practice.

To address this issue, we use historical data to gauge
the random noise’s variance. Then we use a Monte Carlo
simulation approach to project the number of validation
points needed for model training. By adding simulated ran-
dom noise to the projected trend curve, we generate several
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synthetic validation curves. To each of them, we apply the
early stopping criterion and obtain the number of valida-
tion points needed. The smaller of this number and vmax ,
the maximum number of validation points allowed for model
training, becomes a simulated number of validation points
needed for model training. The estimated mode of these
simulated numbers forms the basis for our projected number
of validation points needed for model training.

Fig. 3 shows the flow chart of our method for estimating
the number of validation points needed for model training.
Sections III-C to III-E present the details of this method.

FIGURE 3. The flow chart of our method for estimating the number of
validation points needed for model training.

C. ESTIMATING THE NUMBER OF VALIDATION POINTS
NEEDED FOR MODEL TRAINING WHEN A FIXED
LEARNING RATE IS USED DURING THE ENTIRE
MODEL TRAINING PROCESS
This section focuses on the case where a fixed learning rate is
used during the entire model training process. We show how
to estimate the number of validation points needed for model

training upon reaching a validation point that is after the
τv-th one and at which the early stopping criterion is unmet.
Section III-C.1 shows the regression method used to estimate
the trend curve. Section III-C.2 covers how to estimate the
random noise’s variance. Section III-C.3 presents the Monte
Carlo simulation approach used to project the number of
validation points needed for model training.

1) ESTIMATING THE TREND CURVE
The validation error tends to decrease over time, whereas the
rate of decrease typically reduces over time. In keeping with
this, we use the same inverse power law function [7], [38] of
the form

f (i) = ai−b + c

as the regression function to model both the validation and
trend curves (see Fig. 2). Here, i is the sequence number of
the validation point, a > 0, b > 0, and c > 0. We first fit the
function to the validation curve up to the current validation
point, and then use the fitted function to estimate the trend
curve beyond that point.

Intuitively, the validation points well before the current
one may not accurately reflect the validation curve’s trend
beyond the current validation point and could be unsuitable
for function fitting. Thus, we use a pre-set window size w
whose default value is 50 to skip these validation points. Let
n denote the number of validation points obtained thus far.
When fitting the regression function to the validation curve,
we use the last

w′ = min(w, n)

validation points instead of all of the n validation points
obtained thus far. To compute a, b, and c’s values, we solve a
constrained minimization problem:

min
∑n

i=n−w′+1
[ei − (ai−b + c)]

2
(1)

the sum of the squared errors at the last w′ validation points,
subject to the constraints that a > 0, b > 0, and c > 0. Recall
that ei is the validation error at the i-th validation point. One
way to do constrained minimization is to use the truncated
Newton method [39, Ch. 7.1] and initialize a, b, and c as one,
one, and zero, respectively.

2) ESTIMATING THE RANDOM NOISE’S VARIANCE
Recall that we regard the validation curve as the sum of
a smooth trend curve and some zero-mean random noise.
ei, f (i), and ei-f(i) are the validation error, the estimated value
of the trend curve, and the estimated value of the random
noise at the i-th validation point, respectively. n is the number
of validation points obtained so far. w′ is the number of
validation points used to fit the regression function. We use
the last w′ validation points to estimate the random noise’s
variance as

σ̂ 2
=

1
w′

∑n

i=n−w′+1
[ei − f (i)]2. (2)
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3) PROJECTING THE NUMBER OF VALIDATION POINTS
NEEDED FOR MODEL TRAINING
We use a Monte Carlo simulation method to project the
number of validation points needed for model training. To the
best of our knowledge, this is the first time Monte Carlo
simulation has been used for progress indication. Our method
works as follows:

1) Step 1: For each i (n + 1 ≤ i ≤ vmax), compute the
estimated value f (i) of the trend curve at the i-th vali-
dation point. Recall that n is the number of validation
points obtained thus far. vmax is the maximal number
of validation points allowed for model training. All of
these f (i) (n+ 1 ≤ i ≤ vmax) form the estimated trend
curve beyond the current validation point, up to the last
one allowed for model training.

2) Step 2: For each i (n+1≤ i ≤ vmax), randomly sample
a number ni from the normal distribution N (0, σ̂ 2) as
simulated random noise at the i-th validation point.
Recall that σ̂ 2 is the estimated variance of the random
noise. f (i)+ni is a simulated validation error at the i-th
validation point. All of the f (i)+ ni (n+ 1 ≤ i ≤ vmax)
form a synthetic validation curve beyond the current
validation point, up to the last one allowed for model
training.

3) Step 3: Connect the actual validation curve up to the
current validation point and the synthetic validation
curve beyond that point to obtain a full synthetic vali-
dation curve, which goes from the first validation point
to the last one allowed for model training.

4) Step 4: For each i (n + 1 ≤ i ≤ vmax), check one
by one whether the early stopping criterion is met on
the full synthetic validation curve at the i-th valida-
tion point. If the early stopping criterion is not met
anywhere, we obtain vmax as a simulated number of
validation points needed for model training, and bmax
as a simulated number of batches needed for model
training. Recall that vmax and bmax are the maximum
number of validation points and the maximum number
of batches allowed for model training, respectively.
Otherwise, if the early stopping criterion is met on the
full synthetic validation curve for the first time at the
j-th (n + 1 ≤ j ≤ vmax) validation point, we obtain
j as a simulated number of validation points needed
for model training, and j ×g as a simulated number
of batches needed for model training. Recall that g is
the number of batches of model training between two
consecutive validation points.

5) Step 5: Repeat Steps 2-4 k times to obtain k simu-
lated numbers of validation points needed for model
training, which we term simulated estimates. k is a
pre-set parameter. We choose 2,000 as its default value
to obtain enough simulated estimates for our projec-
tion purpose without incurring excessive simulation
overhead.

One could use the mode of the k simulated estimates as
the projected number of validation points needed for model

training. Compared to the mean, the mode is a more robust
statistic in the presence of outliers [40]. Yet, using the mode
directly is suboptimal. When there are ≥2 local modes with
roughly the same frequency, which one of them is the global
mode is somewhat random, resulting in instability of the
projection. Considering this, we make a projection in the
following way.

6) Step 6: By definition, every simulated estimate
∈[n + 1, vmax]. Divide [n + 1, vmax] into r disjoint
intervals of equal width. r is a pre-set parameter whose
default value is 200. Set a threshold

γ = k × cγ ,

where cγ is a coefficient whose default value is 0.04.
Group the k simulated estimates by interval. Find every
interval containing> γ simulated estimates. Each such
interval is regarded as a local mode. If the number of
such intervals is≥1, average the simulated estimates in
all such intervals as the projected number of validation
points needed for model training. Otherwise, if no such
interval exists, the k simulated estimates spread rela-
tively evenly across a wide range with no significant
local mode. Their mean becomes the projected number
of validation points needed for model training.

D. ESTIMATING THE NUMBER OF VALIDATION POINTS
NEEDED FOR MODEL TRAINING WHEN A CONTINUOUS
DECAY SCHEDULE FOR THE LEARNING RATE IS USED
This section focuses on the case where a continuous decay
schedule for the learning rate is used. We show how to
estimate the number of validation points needed for model
training upon reaching a validation point that is after the
τv-th one and at which the early stopping criterion is unmet.
In a continuous decay schedule, the learning rate shrinks

continuously over epochs. For example, in an exponential
decay schedule, the learning rate used in the i-th epoch is
αe−iρ (see Fig. 4(a)). Here, α > 0 is the initial learning
rate. ρ > 0 is a constant controlling the learning rate’s
decay speed. Fig. 4(b) shows a typical validation curve in
this case. The curve has roughly the same shape as an inverse
power law function. Thus, we use the same method as that in
Section III-C.1 to estimate the trend curve.

To estimate the random noise’s variance, we modify the
method shown in Section III-C.2 in one respect. That method
treats the random noise’s variance as invariant over time.
However, that is not the case with a continuous decay sched-
ule, where the random noise’s variance tends to shrink over
time. The learning rate controls how much the neural net-
work’s weights and subsequently the validation error change
both over time and due to random variation. The smaller the
learning rate, the smaller the changes tend to be. If the learn-
ing rate = 0, the neural network’s weights and the validation
error never differ from their initial values over time, and thus
the random noise’s variance = 0.
Based on this intuition, we regard the random noise’s

standard deviation and variance as roughly proportional to the
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FIGURE 4. The learning rate over epochs and a typical validation curve
when an exponential decay schedule for the learning rate is used.

learning rate and its square, respectively. Let αi and σ̂ 2
i denote

the learning rate and the estimated variance of the random
noise at the i-th validation point, respectively. All of the αi
(1≤ i ≤ vmax) can be computed before model training begins.
Recall that n is the number of validation points obtained thus
far. To compute the estimated variance of the random noise
σ̂ 2
n at the current validation point, we still use the last w′

validation points, but change formula (2) in Section III-C.2 to

σ̂ 2
n =

1
w′

∑n

i=n−w′+1
[
ei − f (i)
αi/αn

]
2

to factor in the changes in variance over time. For each i
(n+ 1 ≤ i ≤ vmax), we compute

σ̂ 2
i = σ̂

2
n × (αi/αn)2.

To project the number of validation points needed
for model training, we modify the method shown in
Section III-C.3 at Step 2 alone. σ̂ 2

i is the estimated variance
of the random noise at the i-th validation point. For each
i (n + 1 ≤ i ≤ vmax), we randomly sample a number ni
from the normal distribution N (0, σ̂ 2

i ) instead of N (0, σ̂ 2) as
a simulated random noise at the i-th validation point.

E. ESTIMATING THE NUMBER OF VALIDATION POINTS
NEEDED FOR MODEL TRAINING WHEN A STEP DECAY
SCHEDULE FOR THE LEARNING RATE IS USED
This section focuses on the case where a step decay schedule
for the learning rate is used. We show how to estimate the
number of validation points needed for model training upon
reaching a validation point that is after the τv-th one and at
which the early stopping criterion is unmet.

In a step decay schedule, the learning rate is reduced by
a fixed factor >1 after a certain number of epochs (see
Fig. 5(a)). This number could vary over epochs in a pre-set
way. Fig. 5(b) shows a typical validation curve in this case.

FIGURE 5. The learning rate over epochs and a typical validation curve
when a step decay schedule for the learning rate is used.

We call each validation point where the learning rate is
reduced a decay point. The decay points split the validation
curve into multiple segments. For each i ≥1, the i-th decay
point is the first validation point on the (i + 1)-th segment.
Before model training starts, we can easily know the position
of and the learning rate used on each segment.

We first consider the case that the current validation point
is on the first segment of the validation curve. In this case,
we use the method in Section III-C.1 to estimate the trend
curve. We use the method in Section III-C.2 to compute σ̂ 2

(1),
the estimated variance of the random noise on the first seg-
ment. Let βi denote the learning rate on the i-th segment, and
s(i) denote the sequence number of the segment where the
i-th validation point is located. The learning rate at the i-th
validation point is αi = βs(i). Recall that n is the number
of validation points obtained thus far. vmax is the maximal
number of validation points allowed for model training. For
each i (n+1≤ i ≤ vmax), we compute the estimated variance
of the random noise at the i-th validation point as

σ̂ 2
i = σ̂

2
n × (αi/αn)2

= σ̂ 2
(1) × (βs(i)/β1)2.

Then we use the method mentioned in the last paragraph
of Section III-D to project the number of validation points
needed for model training.

Next, we consider the case that the current validation
point is on the j-th (j ≥2) segment of the validation curve.
As Fig. 5(b) shows, due to the learning rate reduction at a
decay point, the validation curve often drops suddenly at both
that point and the following several validation points. When
we reach a validation point not far after such a decay point,
if we use the method in Section III-C.1 to estimate the trend
curve, this drop could cause the estimated trend curve to be
inaccurate (see Fig. 6).
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FIGURE 6. When reaching a validation point not far after the most recent
decay point, using the method in Section III-C.1 to estimate the trend
curve.

To address this issue, we modify the estimation methods in
Sections III-C and III-D as follows. Let li denote the number
of validation points on the i-th segment of the validation
curve. Before model training starts, we can easily know
each li.

qj−1 =
∑j−1

i=1
li

is the sequence number of the last validation point on the
previous segment. Let vj−1 denote the number of validation
points needed for model training that is estimated at the last
validation point on the previous segment. If the estimated
final validation point needed for model training is located on
the current j-th segment, vj−1 − qj−1 is the sequence number
of that validation point on the current j-th segment. Let h(n)
denote the sequence number of the current validation point
on the current j-th segment. h(n) is ≤ lj. We use a pre-set
threshold t whose default value is 15 to identify the initial
transient stage of each segment, where the validation error
could change rapidly before becoming relatively stable on
the later part of the segment. We differentiate between two
possible sub-cases.

In the first sub-case, h(n) ≤min(lj − 1, t , vj−1 − qj−1).
We posit the current validation point to be at the initial
transient stage of the current segment of the validation curve.
Since it is hard to use rapidly changing validation errors to
obtain a good estimate of the number of validation points
needed for model training, we reuse vj−1 as the estimate
of this number. As t is small, we typically pass the initial
transient stage in a relatively short amount of time.

In the second sub-case, h(n) >min(lj − 1, t , vj−1 − qj−1).
We consider ourselves to have passed the initial transient
stage and have reached the relatively stable stage of the
current segment of the validation curve. Recall that to use
the validation curve to refine the projected number of val-
idation points needed for model training, we need at least
τv validation points. τv’s default value is three. Typically,
lj − 1 ≥ τv and t ≥ τv. If h(n)<τv, which can occur if
vj−1 − qj−1<τv, we project the current validation point as the
last one needed for model training. Otherwise, if h(n) ≥ τv,
we refine the projected number of validation points needed
for model training in the following way. As Fig. 5(b) shows,

if shifted to the left by qj−1 validation points, the current
segment has roughly the same shape as an inverse power law
function. Accordingly, we use the same shifted inverse power
law function of the form

f (i) = a(i− qj−1)−b + c

as the regression function to model the current segment of
both the validation and trend curves. Recall thatw is themaxi-
mum number of validation points allowed to fit the regression
function. n is the number of validation points obtained thus
far. h(n) is the sequence number of the current validation point
on the current segment. We use the last

w′ = min(w, h(n))

validation points on the current segment to fit the regression
function to the validation curve, as well as to estimate the
variance of the random noise at the current validation point
as

σ̂ 2
n =

1
w′

∑n

i=n−w′+1
[ei − f (i)]2.

Recall that vmax is the maximal number of validation points
allowed for model training. βi is the learning rate on the i-th
segment. s(i) is the sequence number of the segment where
the i-th validation point is located. The learning rate at the
i-th validation point is αi = βs(i). For each i (n + 1 ≤ i ≤
vmax), we compute the estimated variance of the random noise
at the i-th validation point as

σ̂ 2
i = σ̂

2
n × (αi/αn)2

= σ̂ 2
n × (βs(i)/βj)2.

Then we use the method mentioned in the last paragraph
of Section III-D to project the number of validation points
needed for model training.

F. COMPLEXITY ANALYSIS FOR ESTIMATING THE
NUMBER OF VALIDATION POINTS NEEDED
FOR MODEL TRAINING
The key and most time-consuming step of our progress indi-
cation method is to estimate the number of validation points
needed for model training. In this section, we discuss the
worst-case computational complexity of this step, by defining
each unit of computation as doing a basic (e.g., arithmetic)
operation or computing an elementary (e.g., exponential or
logarithmic) function.

As Fig. 3 shows, this estimation step typically involves
three actions: 1) a power regression to estimate the trend
curve, 2) estimating the random noise’s variance, and 3) a
Monte Carlo simulation to project the number of validation
points needed for model training.When a step decay schedule
is used for the learning rate and the current validation point
is on the j-th (j ≥2) segment of the validation curve, one
of two exceptions could occur. First, if h(n) is ≤min(lj − 1,
t , vj−1 − qj−1), we reuse vj−1 as the estimated number of
validation points needed for model training. Second, if h(n)
is >min(lj − 1, t , vj−1 − qj−1) and h(n) is <τv, we project
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the current validation point as the last one needed for model
training. In the case of either exception, our estimation step
has a computational complexity of O(1).
In the rest of this section, we focus on the case that neither

exception occurs. We first give the worst-case computational
complexity of each of the three actions. Then we show the
worst-case computational complexity of our estimation step.

1) THE WORST-CASE COMPUTATIONAL COMPLEXITY OF
ACTION 1: DOING POWER REGRESSION TO ESTIMATE THE
TREND CURVE
In this section, we give the worst-case computational com-
plexity of using the truncated Newton method to do power
regression to estimate the trend curve. As detailed in Nocedal
andWright [39, Ch. 7.1], to find the optimal point minimizing
the objective function, this method starts from an initial point
and uses a two-level nested loop to move the point towards
the optimal point iteratively. The inner loop produces a search
direction. In each round of the outer loop, the point is moved
along the search direction.

Either loop could be terminated in one of two ways:
1) We preset a tolerance ε. The loop is terminated when a

specific variable’s value becomes < ε.
2) We preset ε and Rmax , the maximum number of rounds

allowed for the loop. The loop is terminated when a
specific variable’s value becomes < ε or the loop has
run for Rmax rounds, whichever occurs the first.

To the best of our knowledge, when the first way is used
for both loops, the computational complexity of the truncated
Newton method has not been given in any prior study nor can
it be computed in an easy manner.

In the rest of this section, we focus on the second way
that is often used in practice [41], [42]. Let Tmax ≥1 denote
the maximum number of rounds allowed for the outer loop,
and Imax ≥1 denote the maximum number of rounds allowed
for the inner loop in each round of the outer loop. In the
worst case, the outer loop runs for Tmax rounds, in each
of which the inner loop runs for Imax rounds. From the
description of the truncated Newton method in Nocedal and
Wright [39, Ch. 7.1], we see that each round of the inner loop
computesO(1) Hessian-vector products, vector products, and
gradients. Excluding the inner loop, the rest of each round
of the outer loop computes O(1) gradients. Putting these two
parts together, each round of the outer loop computes

O(Imax)+ O(1) = O(Imax)

Hessian-vector products, vector products, and gradients.
Using the truncated Newton method to do power regression
requires computing O(Tmax × Imax) Hessian-vector products,
vector products, and gradients.

Computing a vector product involves O(d) basic opera-
tions, where d is the number of input variables of the objective
function. For our objective function shown in formula (1)
with three input variables a, b, and c, d = 3.

To calculate a Hessian-vector product or a gradient, we can
use finite differencing [39, Ch. 8.1] that involves computing

our objective function O(d) times. Each such computation
requires doing O(w′) basic operations and calculating O(w′)
elementary functions. Recall w′ is the number of validation
points used to fit the regression function.

Putting everything together, calculating a Hessian-vector
product or a gradient has a computational complexity of

O(d)× O(w′) = O(w′).

The worst-case computational complexity of using the trun-
cated Newton method to do power regression is

O(Tmax × Imax)× (O(d)+ O(w′)) = O(Tmax × Imax × w′).

2) THE COMPUTATIONAL COMPLEXITY OF ACTION 2:
ESTIMATING THE RANDOM NOISE’S VARIANCE
The last w′ validation points are used to estimate the random
noise’s variance, with a computational complexity of O(w′).

3) THE WORST-CASE COMPUTATIONAL COMPLEXITY OF
ACTION 3: DOING MONTE CARLO SIMULATION TO PROJECT
THE NUMBER OF VALIDATION POINTS NEEDED FOR MODEL
TRAINING
In this section, we give the worst-case computational com-
plexity of doing Monte Carlo simulation to project the num-
ber of validation points needed for model training. As shown
in Section III-C.3, this simulation is done in six steps.
We compute each step’s computational complexity and sum
them to obtain the final result.

In Step 1, the estimated value f (i) of the trend curve is
computed at vmax − n validation points. Recall vmax is the
maximum number of validation points allowed for model
training. n is the number of validation points obtained thus
far. Computing f (i) at a single validation point has a compu-
tational complexity ofO(1). Thus, Step 1 has a computational
complexity of O(vmax − n).

In Step 2, we generate vmax − n random samples ni (n +
1 ≤ i ≤ vmax) from a normal distribution and compute
f (i) + ni. Each sample can be obtained via the Box-Muller
transform [43], which has a computational complexity of
O(1). Generating the vmax − n random samples ni (n + 1 ≤
i ≤ vmax) has a computational complexity of O(vmax − n).
Computing f (i) + ni (n + 1 ≤ i ≤ vmax) has the same
computational complexity. Putting these two parts together,
Step 2 has a computational complexity of O(vmax − n).
In Step 3, vmax − n points on the synthetic validation

curve are connected with the actual validation curve to obtain
the full synthetic validation curve. This has a computational
complexity of O(vmax − n).
In Step 4, for each i (n + 1 ≤ i ≤ vmax), we check one

by one whether the early stopping criterion is met on the full
synthetic validation curve at the i-th validation point. In the
worst case, we go over all of these vmax−n points and find out
the early stopping criterion is not met anywhere. Thus, Step 4
has a worst-case computational complexity of O(vmax − n).
Summing Steps 2-4, we get a worst-case computational

complexity of O(vmax − n). In Step 5, Steps 2-4 are repeated
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k times, with a worst-case computational complexity of
O(k(vmax − n)).

In Step 6, we divide [n+1, vmax] into r disjoint intervals of
equal width, group the k simulated estimates by interval, and
compute the projected number of validation points needed
for model training. This has a computational complexity of
O(r)+ O(k).
Summing the six steps, we obtain the worst-case computa-

tional complexity of doing Monte Carlo simulation as

O(vmax − n)+ O(k(vmax − n))+ O(r)+ O(k)

= O(max{k(vmax − n), r}).

The above derivation uses the fact that k >1 and vmax−n ≥1.
If n = vmax , we are at the last validation point ever allowed for
model training. Monte Carlo simulation is not needed there.

4) THE WORST-CASE COMPUTATIONAL COMPLEXITY OF
OUR ESTIMATION STEP
Summing the three actions, we obtain the worst-case com-
putational complexity of estimating the number of validation
points needed for model training as

O(Tmax × Imax × w′)+ O(w′)+ O(max{k(vmax − n), r})

= O(max{Tmax × Imax × w′, k(vmax − n), r}).

The above derivation uses the fact that Tmax × Imax ×w′≥ w′

because Tmax ≥1 and Imax ≥1.

IV. PERFORMANCE
In this section, we report the performance results of
our progress indicators for deep learning model training.
We implemented our techniques given in Section III in
TensorFlow Version 1.13.1. TensorFlow is a widely used
open-source deep learning software package developed by
Google [13]. In all of our tests, the progress indicators could
provide useful estimates and revise them every 10 seconds
with negligible overhead. We regard this as having ful-
filled the three progress indication goals set out in our prior
paper [7]: continuously revised estimates, acceptable pacing,
and minimal overhead.

A. EXPERIMENT DESCRIPTION
We conducted the experiments by running TensorFlow on a
Digital Storm workstation with one GeForce RTX 2080 Ti
GPU, one eight-core Intel Core i7-9800X 3.8GHz central
processing unit, 64GB memory, one 500GB solid-state drive,
one 3TB SATA disk, and running the Ubuntu 18.04.02 oper-
ating system. All of the deep learning models were trained on
the GPU.

We tested two popular deep learning models: GoogLeNet
[44], a convolutional neural network, and the Gated Recur-
rent Unit (GRU) model in Purushotham et al. [45], a recur-
rent neural network. Except for the learning rate schedule,
the number of training instances in each batch, and the max-
imum number of epochs allowed for model training, all of
the hyper-parameters were set to their default values used in

the two models’ open source code [46], [47]. For each model,
we tested three learning rate schedules: with a fixed learning
rate, an exponential decay, and a step decay, respectively. For
each model, we also tested four widely used optimization
methods for deep learning model training: adaptive moment
estimation (Adam) [48], classical stochastic gradient descent
(SGD) [49], root mean square propagation (RMSprop) [50],
and adaptive gradient (AdaGrad) [51]. We show the test
results for Adam and RMSprop. The test results for SGD and
AdaGrad are similar and put in the Appendix. For RMSprop,
we show the test results when a fixed learning rate is used
to train GoogLeNet. The test results for the other cases of
RMSprop are similar and put in the Appendix. All of the other
test results shown in Section IV are for the case using the
Adam optimization method.

We used two well-known benchmark data sets:
CIFAR-10 [52] and MIMIC-III [53] (Table 1). Each data
instance in CIFAR-10 is an image whose size is shown
in Table 1. We trained GoogLeNet on CIFAR-10, by split-
ting CIFAR-10 into a training set and a validation set in
the same way as that in Krizhevsky [52]. We trained the
GRU model on a subset of the MIMIC-III data set, which
Purushotham et al. [45] termed the ‘‘Feature Set A, 48-h
data,’’ for the mortality prediction task. Each data instance
in this subset is a sequence whose length is shown in Table 1.
This subset was split into a training set and a validation set in
the same way as that in Purushotham et al. [45].

TABLE 1. The data sets used for testing our progress indication method.

We ran two kinds of tests:
1) Unloaded system test: The model was trained on an

unloaded system.
2) Workload interference test: We began model training

on an unloaded system. In themiddle of model training,
we started another model training task that competed
with the first model training task for GPU resources.

For the unloaded system test, we report the test results
for each combination of a learning rate schedule and a deep
learning model. The only exception is that for the step decay
schedule, we show the test results for training GoogLeNet.
The test results for training the GRU model are similar and
put in the Appendix. For the workload interference test,
we present the test results of using a fixed learning rate to
train GoogLeNet. The test results for the other cases of the
workload interference test provide no extra information and
are omitted.

In each test, the number of training instances in each batch
was set to 128. The number of batches of model training
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between two consecutive validation points was set to 200 and
50 for GoogLeNet and the GRU model, respectively. The
maximum number of epochs allowed for model training was
set to 150. The initial learning rate was set to 0.001, regardless
of which learning rate schedule was used. The patience pwas
set to 39, an integer randomly chosen from the range [5, 50].
The min_delta δ was set to 0.00207, a number randomly
chosen from the range [0, 0.01].

B. ACCURACY MEASURE
We adopted the average estimation error used in
Chaudhuri et al. [14] to measure the accuracy of the estimates
provided by the progress indicator. As shown in Fig. 7,
the average estimation error is defined as the ratio of two
numbers. The numerator is the area of the region between
a curve and a straight diagonal line. The curve gives the
remaining model training time projected by the progress
indicator over time. The straight diagonal line depicts the
actual remaining model training time. The denominator is
the area of the right triangle formed by the straight diagonal
line, the x-axis, and the y-axis. The smaller the average
estimation error, the more accurate the estimates provided by
the progress indicator.

FIGURE 7. The numerator and denominator used to compute the average
estimation error.

For each combination of a deep learning model, a learn-
ing rate schedule, a test type, and an optimization method,
we trained the model five times, each in a separate run.
We randomly choose one of these five runs and show
the progress indicator’s outputs over time in that run in
Sections IV-C to IV-E and Sections A to C of the Appendix.
In addition, we show the mean and the standard devia-
tion of the average estimation error across the five runs in
Section IV-F and Section D of the Appendix.

C. TEST RESULTS OF USING A FIXED LEARNING RATE
DURING THE ENTIRE MODEL TRAINING PROCESS
In this section, we show the test results of using a
fixed learning rate during the entire model training
process.

FIGURE 8. Model training cost projected over time (unloaded system test
for training GoogLeNet using a fixed learning rate and Adam).

1) UNLOADED SYSTEM TEST RESULTS FOR TRAINING
GoogLeNet
In this test, GoogLeNet was trained on an unloaded system.
The test’s purpose is to show that when training GoogLeNet
on an unloaded system using a fixed learning rate during
the entire model training process, the progress indicator’s
estimates can be reasonably accurate for various optimization
methods.

a: USING THE ADAM OPTIMIZATION METHOD
We first consider the case that GoogLeNet was trained using
the Adam optimization method. Fig. 8 shows the model
training cost projected by the progress indicator over time,
with the actual model training cost given by the horizontal
dotted line. At the beginning of model training with no extra
information, the progress indicator projected the model train-
ing cost based on the maximum number of validation points
allowed for model training, which differed significantly from
the actual number of validation points needed. Hence, the
projected model training cost differed greatly from the actual
model training cost. After reaching at least τv = 3 validation
points within 152 seconds, the progress indicator was able
to revise the projected model training cost and make it more
accurate.

Fig. 9 shows the model training speed monitored by the
progress indicator over time. During the entire model training
process, the monitored model training speed was relatively
stable.

Fig. 10 shows the remaining model training time projected
by the progress indicator over time, with the actual remaining
model training time given by the dashed line. At the beginning
of model training, the progress indicator’s projected model
training cost differed greatly from the actual model training
cost. Thus, the remaining model training time projected by
the progress indicator differed significantly from the actual
one. Within 152 seconds, once the progress indicator was
able to revise the projected model training cost and improve
its accuracy, the projected remaining model training time
became more precise.
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FIGURE 9. Model training speed over time (unloaded system test for
training GoogLeNet using a fixed learning rate and Adam).

FIGURE 10. Remaining model training time projected over time (unloaded
system test for training GoogLeNet using a fixed learning rate and Adam).

Recall that the patience p was set to 39. By 4,392 sec-
onds, the validation error had improved by ≤ the min_delta
δ for eight validation points consecutively. From 4,392 to
5,690 seconds, the number of consecutive validation points
for which the validation error had improved by ≤ δ kept
rising, causing the progress indicator to mistakenly project
that model training could finish by ∼5,800 seconds. Yet, the
reality is that model training continued until 7,685 seconds.
At 5,739 seconds, the validation error improved by > δ,
making the progress indicator realize that model training
would take much longer than 5,800 seconds and revise its
projections accordingly.

Fig. 11 shows the progress indicator’s estimated percent-
age of model training work completed over time. Most of
the time, the completed percentage curve is relatively close
to the dotted diagonal line connecting the lower left corner
and the upper right corner. A non-trivial deviation between
the completed percentage curve and the diagonal line exists
between 4,392 and 5,739 seconds for the reason given above.

b: USING THE RMSPROP OPTIMIZATION METHOD
Next, we consider the case that GoogLeNet was trained using
the RMSprop optimization method. The performance results
are shown in Fig. 12-15 and are similar to those shown
in Fig. 8-11.

FIGURE 11. Completed percentage estimated over time (unloaded system
test for training GoogLeNet using a fixed learning rate and Adam).

FIGURE 12. Model training cost projected over time (unloaded system
test for training GoogLeNet using a fixed learning rate and RMSprop).

FIGURE 13. Model training speed over time (unloaded system test for
training GoogLeNet using a fixed learning rate and RMSprop).

In the rest of Section IV, all of the test results shown
were for training the deep learning model using the Adam
optimization method.

2) WORKLOAD INTERFERENCE TEST RESULTS FOR
TRAINING GoogLeNet
In the workload interference test, we began training
GoogLeNet on an unloaded system using the same
hyper-parameter values as those used in Section IV-C.1.
In the middle of model training (at 3,600 seconds), we started
another GoogLeNet training task that competed with the first
model training task for GPU resources throughout the rest
of the first task’s execution. This extended the first task’s
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FIGURE 14. Remaining model training time projected over time
(unloaded system test for training GoogLeNet using a fixed learning rate
and RMSprop).

FIGURE 15. Completed percentage estimated over time (unloaded system
test for training GoogLeNet using a fixed learning rate and RMSprop).

running time. We present the performance results of the first
task. This test’s purpose is to show that our progress indicator
can adjust to varying run-time system loads. In each figure of
Section IV-C.2, we use a vertical dash-dotted line to give
the point in time when the second GoogLeNet training task
started running.

Fig. 16 shows the model training speed monitored by the
progress indicator over time. Before the second model train-
ing task started running at 3,600 seconds, the shape of the
curve in Fig. 16 is similar to that in Fig. 9. Once the second
task started running, the monitored model training speed of
the first task dropped roughly by half, as the second task was
competing for GPU resources.

Fig. 17 shows the remaining model training time projected
by the progress indicator over time, with the actual remaining
model training time given by the dashed line. Before the sec-
ond model training task started running at 3,600 seconds,
the shape of the curve in Fig. 17 is similar to that in Fig. 10.
The progress indicator’s projection error for the remain-
ing model training time is mainly due to the unexpected
large rise in system load starting from 3,600 seconds. After
3,600 seconds, the remaining model training time projected
by the progress indicator became much more precise. The
curve showing the projected remaining model training time
becomes reasonably close to the dashed line.

FIGURE 16. Model training speed over time (workload interference test
for training GoogLeNet using a fixed learning rate and Adam).

FIGURE 17. Remaining model training time projected over time
(workload interference test for training GoogLeNet using a fixed learning
rate and Adam).

FIGURE 18. Completed percentage estimated over time (workload
interference test for training GoogLeNet using a fixed learning rate and
Adam).

Fig. 18 shows the progress indicator’s estimated percent-
age of model training work completed over time. The esti-
mated percentage tends to increase over time. The impact of
running the second model training task is apparent starting at
3,600 seconds.

3) UNLOADED SYSTEM TEST RESULTS FOR TRAINING THE
GRU MODEL
In this test, the GRU model was trained on an unloaded sys-
tem. The test’s purpose is to show that the progress indicator’s
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estimates can be reasonably accurate for different types of
neural networks.

Fig. 19 shows the model training cost projected by the
progress indicator over time, with the actual model training
cost given by the horizontal dotted line. After reaching at least
τv = 3 validation points within 12 seconds, the progress indi-
cator was able to project the model training cost reasonably
accurately.

FIGURE 19. Model training cost projected over time (unloaded system
test for training the GRU model using a fixed learning rate and Adam).

Fig. 20 shows the model training speed monitored by the
progress indicator over time. Compared to that in Fig. 9,
the curve in Fig. 20 is closer to a horizontal line, showing
a more stable model training speed over time. The model
training speed is computed based on the amount of work done
in the past K = 10 seconds. As mentioned in Section III-B,
we regard the average amount of work needed for processing
a validation instance one time to be U /3, as a rough approxi-
mation. Yet, this is not fully accurate, resulting in estimation
errors on the amount of work done. In training the GRU
model, it took about 3.5 seconds to go from one validation
point to the next. As roughly the same number of validation
instances were processed in each 10-second period, the esti-
mation error of the amount of work completed is approxi-
mately the same across different 10-second periods, leading
to a stable model training speed over time. By comparison,
in training GoogLeNet, it took about 50 seconds to go from
one validation point to the next one. The number of validation
instances processed, and subsequently the estimation error of

FIGURE 20. Model training speed over time (unloaded system test for
training the GRU model using a fixed learning rate and Adam).

the amount of work completed, varies significantly across
different 10-second periods, causing the monitored model
training speed to vary more over time.

Fig. 21 shows the remaining model training time projected
by the progress indicator over time, with the actual remaining
model training time given by the dashed line. The projected
remaining model training time is reasonably accurate.

FIGURE 21. Remaining model training time projected over time
(unloaded system test for training the GRU model using a fixed learning
rate and Adam).

Fig. 22 shows the progress indicator’s estimated percent-
age of model training work completed over time. The com-
pleted percentage curve is relatively close to the dotted diag-
onal line connecting the lower left corner and the upper right
corner.

FIGURE 22. Completed percentage estimated over time (unloaded system
test for training the GRU model using a fixed learning rate and Adam).

D. TEST RESULTS OF USING AN EXPONENTIAL DECAY
SCHEDULE FOR THE LEARNING RATE
In this section, we show the test results of using an exponen-
tial decay schedule for the learning rate. Here, the constant ρ
controlling the learning rate’s decay speed was set to 0.05.
The test’s purpose is to show that the progress indicator’s
estimates can be reasonably accurate when an exponential
decay schedule for the learning rate is used.

1) UNLOADED SYSTEM TEST RESULTS FOR TRAINING
GoogLeNet
In this test, GoogLeNet was trained on an unloaded system
using an exponential decay schedule for the learning rate.
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FIGURE 23. Model training cost projected over time (unloaded system
test for training GoogLeNet using an exponential decay schedule for the
learning rate and Adam).

FIGURE 24. Model training speed over time (unloaded system test for
training GoogLeNet using an exponential decay schedule for the learning
rate and Adam).

FIGURE 25. Remaining model training time projected over time
(unloaded system test for training GoogLeNet using an exponential decay
schedule for the learning rate and Adam).

The performance results are shown in Fig. 23-26. From 0 to
3,945 seconds, the projected model training cost differed sig-
nificantly from the actual one, leading to inaccurate projec-
tions of the remaining model training time and the percentage
of model training work completed. Much of this inaccuracy
results from the imprecise approximation we make in han-
dling the exponential decay schedule, by treating the random
noise’s variance as roughly proportional to the square of the
learning rate. After 3,945 seconds, the projections given by
the progress indicator became much more accurate.

FIGURE 26. Completed percentage estimated over time (unloaded system
test for training GoogLeNet using an exponential decay schedule for the
learning rate and Adam).

2) UNLOADED SYSTEM TEST RESULTS FOR TRAINING THE
GRU MODEL
In this test, the GRU model was trained on an unloaded sys-
tem using an exponential decay schedule for the learning rate.
The performance results are plotted in Fig. 27-30, showing
the progress indicator made reasonably accurate projections.

FIGURE 27. Model training cost projected over time (unloaded system
test for training the GRU model using an exponential decay schedule for
the learning rate and Adam).

FIGURE 28. Model training speed over time (unloaded system test for
training the GRU model using an exponential decay schedule for the
learning rate and Adam).

E. UNLOADED SYSTEM TEST RESULTS FOR TRAINING
GoogLeNet USING A STEP DECAY SCHEDULE FOR THE
LEARNING RATE
In this section, we show the test results for training
GoogLeNet on an unloaded system using a step decay
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FIGURE 29. Remaining model training time projected over time
(unloaded system test for training the GRU model using an exponential
decay schedule for the learning rate and Adam).

FIGURE 30. Completed percentage estimated over time (unloaded system
test for training the GRU model using an exponential decay schedule for
the learning rate and Adam).

schedule for the learning rate. Here, the learning rate was cut
from 10−3 to 10−4 and 10−5 at the beginning of the 64-th
and the 115-th epoch, respectively. The test’s purpose is to
show the progress indicator’s estimates can be reasonably
accurate when a step decay schedule for the learning rate is
used.

In the test, early stopping occurred on the second seg-
ment of the validation curve, i.e., after the first decay
point (see Fig. 5). The performance results are shown
in Fig. 31-34 and similar to those shown in Fig. 8-11. In each
figure of this section, we use a vertical dash-dotted line to
give the time when the learning rate decay occurred.

F. SUMMARY STATISTICS OF THE AVERAGE ESTIMATION
ERROR ACROSS THE FIVE RUNS
Recall that for each combination of a deep learning model,
a learning rate schedule, a test type, and an optimization
method, we trained the model five times, each in a separate
run. For each combination presented in Sections IV-C to IV-E,
we show the mean and the standard deviation of the average
estimation error across the five runs in Table 2. Except for
one case, the average estimation error is ≤0.417 for every
combination, indicating that our progress indicator offered
reasonably accurate estimates of the remaining model train-
ing time.

FIGURE 31. Model training cost projected over time (unloaded system
test for training GoogLeNet using a step decay schedule for the learning
rate and Adam).

FIGURE 32. Model training speed over time (unloaded system test for
training GoogLeNet using a step decay schedule for the learning rate
and Adam).

FIGURE 33. Remaining model training time projected over time
(unloaded system test for training GoogLeNet using a step decay
schedule for the learning rate and Adam).

G. SELECTING THE DEFAULT VALUES OF w, r, AND cγ

Our progress indication method uses three key parameters:
1) w, the maximum number of validation points allowed
to fit the regression function; 2) r , the number of disjoint
intervals into which the possible range [n + 1, vmax] of
the simulated number of validation points needed for model
training is divided; and 3) cγ , the coefficient used to compute
the threshold γ . In this section, we show how we selected
these parameters’ default values by minimizing the mean of
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TABLE 2. For each combination of a deep learning model, a learning rate schedule, a test type, and an optimization method presented in Sections IV-C to
IV-E, the summary statistics of the average estimation error across the five runs.

FIGURE 34. Completed percentage estimated over time (unloaded system
test for training GoogLeNet using a step decay schedule for the learning
rate and Adam).

the average estimation errors of our progress indicator across
several deep learning model training processes.

To do this selection, we used three popular deep learn-
ing models: VGG19 [54], a convolutional neural network,
the long short-term memory (LSTM) model [55], a recur-
rent neural network, and the GRU model. We used three
benchmark data sets: ImageNet Large Scale Visual Recog-
nition Challenge 2012 (ILSVRC2012) [56], the Large Movie
Review Dataset [57], and THUCNews [58] (Table 3 ).

TABLE 3. The data sets used for selecting the default values of w, r,
and cγ .

We trained VGG19 on a subset of ILSVRC2012.
ILSVRC2012 has 1,000 image classes, ∼1.2 million images
intended for model training, and 50,000 images intended for
model validation. We randomly chose 35 image classes and
resized each image in them to 32 × 32 to make it suitable

FIGURE 35. The mean of the average estimation errors vs. w .

FIGURE 36. The mean of the average estimation errors vs. r .

FIGURE 37. The mean of the average estimation errors vs. cγ .

for training VGG19. All of the 44,570 images intended for
model training in these classes were put into the training set.
All of the 1,750 images intended for model validation in these
classes were put into the validation set.

We trained the LSTM model on the Large Movie Review
Dataset. Each data instance in this data set is a sequence.
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FIGURE 38. Model training cost projected over time (unloaded system
test for training GoogLeNet using a fixed learning rate and SGD).

FIGURE 39. Model training speed over time (unloaded system test for
training GoogLeNet using a fixed learning rate and SGD).

FIGURE 40. Remaining model training time projected over time (unloaded
system test for training GoogLeNet using a fixed learning rate and SGD).

Table 3 shows the length distribution of all of these sequences.
This data set includes 25,000 data instances that can be
used for model training and validation. We randomly chose
2,000 of them to put into the validation set. The rest of them
were put into the training set.

THUCNews has 14 classes and 740,000 data instances.
Each data instance in this data set is a sequence. We trained
the GRU model on a subset of THUCNews used in the
model’s open source code [59]. This subset includes ten
classes, each with 5,000 data instances for training and
500 data instances for validation. Table 3 shows the length
distribution of all of the sequences in this subset.

FIGURE 41. Completed percentage estimated over time (unloaded system
test for training GoogLeNet using a fixed learning rate and SGD).

FIGURE 42. Model training cost projected over time (unloaded system
test for training GoogLeNet using a fixed learning rate and AdaGrad).

FIGURE 43. Model training speed over time (unloaded system test for
training GoogLeNet using a fixed learning rate and AdaGrad).

When training VGG19 and the LSTM model, the num-
ber of batches of model training between two consecutive
validation points was set to 200. When training the GRU
model, the number of batches of model training between two
consecutive validation points was set to 10. For all of the three
models, the patience p was set to 27, an integer randomly
chosen from the range [5, 50]. The min_delta δ was set to
0.00443, a number randomly chosen from the range [0, 0.01].
Moreover, we used the same hyper-parameter values, learning
rate schedule, and optimization method as those used in the
three model’s open source code [59]–[61]:

1) When training VGG19, the Adam optimization method
and a step decay schedule for the learning rate were
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FIGURE 44. Remaining model training time projected over time
(unloaded system test for training GoogLeNet using a fixed learning rate
and AdaGrad).

FIGURE 45. Completed percentage estimated over time (unloaded system
test for training GoogLeNet using a fixed learning rate and AdaGrad).

FIGURE 46. Model training cost projected over time (unloaded system
test for training the GRU model using a fixed learning rate and RMSprop).

used. The initial learning rate was set to 10−3. The
learning rate was reduced to 10−4 and 10−5 at the
beginning of the 50-th and the 70-th epoch, respec-
tively. The number of training instances in each batch
was set to 128. The maximum number of epochs
allowed for model training was set to 100.

2) When training the LSTM model, the Adam optimiza-
tion method and a fixed learning rate of 10−3 were
used. The number of training instances in each batch
was set to 24. Themaximum number of epochs allowed
for model training was set to 104.

FIGURE 47. Model training speed over time (unloaded system test for
training the GRU model using a fixed learning rate and RMSprop).

FIGURE 48. Remaining model training time projected over time
(unloaded system test for training the GRU model using a fixed learning
rate and RMSprop).

FIGURE 49. Completed percentage estimated over time (unloaded system
test for training the GRU model using a fixed learning rate and RMSprop).

3) When training the GRUmodel, the Adam optimization
method and a fixed learning rate of 10−3 were used.
The number of training instances in each batch was set
to 128. The maximum number of epochs allowed for
model training was set to 10.

On an unloaded system, we trained VGG19 five times,
the LSTM model five times, and the GRU model five times,
each in a separate run. We found for our progress indication
method, the mean of the average estimation errors across
the 15 runs was minimized when w = 50, r = 200, and
cγ = 0.04. These values were chosen as the default values of
w, r , and cγ .
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FIGURE 50. Model training cost projected over time (unloaded system
test for training the GRU model using a fixed learning rate and SGD).

FIGURE 51. Model training speed over time (unloaded system test for
training the GRU model using a fixed learning rate and SGD).

FIGURE 52. Remaining model training time projected over time
(unloaded system test for training the GRU model using a fixed learning
rate and SGD).

H. SENSITIVITY ANALYSIS OF w, r, AND cγ

In this section, we use several experiments to evaluate the
impact of w, r , and cγ on the accuracy of the estimates pro-
vided by the progress indicator. In each experiment, we var-
ied one parameter’s value while keeping the other parame-
ters’ values constant. The mean of the average estimation
errors across all runs of all of the unloaded system tests
shown in Sections IV-C to IV-E and Sections A-C in the
Appendix served as the accuracy measure for the estimates
provided by the progress indicator.

w (the maximum number of validation points allowed to fit
the regression function)

FIGURE 53. Completed percentage estimated over time (unloaded system
test for training the GRU model using a fixed learning rate and SGD).

FIGURE 54. Model training cost projected over time (unloaded system
test for training the GRU model using a fixed learning rate and AdaGrad).

FIGURE 55. Model training speed over time (unloaded system test for
training the GRU model using a fixed learning rate and AdaGrad).

The first experiment concerns w, the maximum number
of validation points allowed to fit the regression function.
The default value of w is 50. We varied w from 3 to 90.
Fig. 35 shows w’s impact on the mean of the average esti-
mation errors. When w = 10, 20, 30, 40, or 60, the accuracy
measures are approximately the same as whenw = 50.When
w is too small, not enough validation points are used to fit
the regression function. When w is too large, many validation
points that are too old to properly reflect the validation curve’s
future trend are used to fit the regression function. In either
case, the fitted regression function may not reflect the val-
idation curve’s future trend well, degrading the accuracy of
the estimates provided by the progress indicator. The safe
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FIGURE 56. Remaining model training time projected over time
(unloaded system test for training the GRU model using a fixed learning
and AdaGrad).

FIGURE 57. Completed percentage estimated over time (unloaded system
test for training the GRU model using a fixed learning rate and AdaGrad).

FIGURE 58. Model training cost projected over time (unloaded system
test for training GoogLeNet using an exponential decay schedule for the
learning rate and RMSprop).

range for w is between 10 and 60. If w is outside of this safe
range, the accuracy of the estimates provided by the progress
indicator will drop.

r (the number of disjoint intervals into which the possible
range of the simulated number of validation points needed
for model training is divided)

The second experiment concerns r , the number of disjoint
intervals into which the possible range [n + 1, vmax] of
the simulated number of validation points needed for model
training is divided (see Section III-C.3). The default value
of r is 200. We varied r from 75 to 550. Fig. 36 shows r’s

FIGURE 59. Model training speed over time (unloaded system test for
training GoogLeNet using an exponential decay schedule for the learning
rate and RMSprop).

FIGURE 60. Remaining model training time projected over time
(unloaded system test for training GoogLeNet using an exponential decay
schedule for the learning rate and RMSprop).

FIGURE 61. Completed percentage estimated over time (unloaded system
test for training GoogLeNet using an exponential decay schedule for the
learning rate and RMSprop).

impact on the mean of the average estimation errors. When
r = 150, 250, 300, 350, 400, or 450, the accuracy measures
are approximately the same as when r = 200. Recall that
the projected number of validation points needed for model
training is computed based on the intervals identified as local
modes. When r is too small, each of the r divided intervals
is large. An interval regarded as a local mode can contain
much more than the actual local mode, introducing noise in
estimating the number of validation points needed for model
training. When r is too large, each of the r divided intervals is
small. None of the r intervals may contain enough simulated
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FIGURE 62. Model training cost projected over time (unloaded system
test for training GoogLeNet using an exponential decay schedule for the
learning rate and SGD).

FIGURE 63. Model training speed over time (unloaded system test for
training GoogLeNet using an exponential decay schedule for the learning
rate and SGD).

FIGURE 64. Remaining model training time projected over time
(unloaded system test for training GoogLeNet using an exponential decay
schedule for the learning rate and SGD).

numbers of validation points needed for model training and
pass the threshold of being regarded as a local mode, even
if some relevant local modes do indeed exist. In either case,
the accuracy of the estimates provided by the progress indica-
tor can degrade. The safe range for r is between 150 and 450.

cγ (the coefficient used to compute γ )
The third experiment concerns cγ , the coefficient used to

compute the threshold γ . Recall that γ is used to decide
whether an interval split from [n + 1, vmax] is a local mode
or not. The projected number of validation points needed

FIGURE 65. Completed percentage estimated over time (unloaded system
test for training GoogLeNet using an exponential decay schedule for the
learning rate and SGD).

FIGURE 66. Model training cost projected over time (unloaded system
test for training GoogLeNet using an exponential decay schedule for the
learning rate and AdaGrad).

FIGURE 67. Model training speed over time (unloaded system test for
training GoogLeNet using an exponential decay schedule for the learning
rate and AdaGrad).

for model training is computed based on the identified local
modes. The default value of cγ is 0.04. We varied cγ from
0.01 to 0.11. Fig. 37 shows cγ ’s impact on the mean of
the average estimation errors. When cγ = 0.03, 0.05, 0.06,
or 0.07, the accuracy measures are roughly the same as when
cγ =0.04. When cγ is too large, some relevant local modes
may be excluded. When cγ is too small, some intervals
regarded as local modesmay not be real local modes. In either
case, the accuracy of the estimates provided by the progress
indicator can degrade. The safe range for cγ is between
0.03 and 0.07.
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FIGURE 68. Remaining model training time projected over time
(unloaded system test for training GoogLeNet using an exponential decay
schedule for the learning rate and AdaGrad).

FIGURE 69. Completed percentage estimated over time (unloaded system
test for training GoogLeNet using an exponential decay schedule for the
learning rate and AdaGrad).

FIGURE 70. Model training cost projected over time (unloaded system
test for training the GRU model using an exponential decay schedule for
the learning rate and RMSprop).

In summary, each of the parameters has a reasonably large
safe range, within which the accuracy of the estimates pro-
vided by the progress indicator is insensitive to parameter
value changes. For each parameter, its default value is within
its safe range. If a parameter is outside of its safe range,
the accuracy of the estimates provided by the progress indi-
cator may drop.

V. DISCUSSION
This work focuses on developing system techniques to sup-
port progress indicators for deep learning model training.

FIGURE 71. Model training speed over time (unloaded system test for
training the GRU model using an exponential decay schedule for the
learning rate and RMSprop).

FIGURE 72. Remaining model training time projected over time
(unloaded system test for training the GRU model using an exponential
decay schedule for the learning rate and RMSprop).

FIGURE 73. Completed percentage estimated over time (unloaded system
test for training the GRU model using an exponential decay schedule for
the learning rate and RMSprop).

In this section, we describe several theoretical issues as being
potentially interesting areas for future work.

When a fixed learning rate is used during the entire model
training process, the method for estimating the number of
validation points needed for model training in Section III-C
treats the random noise’s variance as invariant over time. Yet,
in reality, as the validation error tends to decreasemore slowly
over time, the random noise’s variance tends to reduce over
time. Factoring this into our estimationmethod could improve
its accuracy. One way to do this is to use a decay factor
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FIGURE 74. Model training cost projected over time (unloaded system
test for training the GRU model using an exponential decay schedule for
the learning rate and SGD).

FIGURE 75. Model training speed over time (unloaded system test for
training the GRU model using an exponential decay schedule for the
learning rate and SGD).

FIGURE 76. Remaining model training time projected over time
(unloaded system test for training the GRU model using an exponential
decay schedule for the learning rate and SGD).

to model the reduction of the random noise’s variance over
time. Ideally, the decay factor should be derived based on a
theoretical underpinning.

This work gives no upper bound on the progress indica-
tor’s estimation errors for the model training cost. It would
be interesting to derive such upper bounds, possibly under
certain conditions, similar to what Chaudhuri et al. [62] did
for database query progress indicators.

This work uses only the data collected from the current
model training process to estimate the regression function and
the random noise’s variance. In practice, a lot of data from

FIGURE 77. Completed percentage estimated over time (unloaded system
test for training the GRU model using an exponential decay schedule for
the learning rate and SGD).

FIGURE 78. Model training cost projected over time (unloaded system
test for training the GRU model using an exponential decay schedule for
the learning rate and AdaGrad).

FIGURE 79. Model training speed over time (unloaded system test for
training the GRU model using an exponential decay schedule for the
learning rate and AdaGrad).

the previous model building processes are often available.
Meta-learning can be done on these data to improve the
progress indicator’s estimates for the current model training
process. One way to do this is to compute weights based
on the similarities of the validation curves from the pre-
vious model training processes and the current validation
curve [63]. Then a weighted likelihood approach [64] is used
to estimate the regression function and the random noise’s
variance for the current model training process.

In estimating the model training cost, as a rough approx-
imation, we regard the cost of going backwards through the
neural network once to be twice that of going forward through
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FIGURE 80. Remaining model training time projected over time
(unloaded system test for training the GRU model using an exponential
decay schedule for the learning rate and AdaGrad).

FIGURE 81. Completed percentage estimated over time (unloaded system
test for training the GRU model using an exponential decay schedule for
the learning rate and AdaGrad).

FIGURE 82. Model training cost projected over time (unloaded system
test for training GoogLeNet using a step decay schedule for the learning
rate and RMSprop).

the neural network once. Yet, this is not fully accurate, result-
ing in estimation errors. To improve the estimation accuracy,
we can develop more precise cost estimation models based
on the type and architecture of the deep neural network and
the activation functions used.

VI. CONCLUSIONS
In this paper, we present a detailed progress indicator imple-
mentation method for deep learning model training when
early stopping is allowed. Our main idea is to use the val-
idation curve to project the number of batches needed for

FIGURE 83. Model training speed over time (unloaded system test for
training GoogLeNet using a step decay schedule for the learning rate and
RMSprop).

FIGURE 84. Remaining model training time projected over time
(unloaded system test for training GoogLeNet using a step decay
schedule for the learning rate and RMSprop).

FIGURE 85. Completed percentage estimated over time (unloaded system
test for training GoogLeNet using a step decay schedule for the learning
rate and RMSprop).

model training. During model training, we keep refining the
projected model training cost and checking the current model
training speed. Periodically, we revise the projected fraction
of model training work completed and the projected remain-
ing model training time displayed to the user. Our experi-
ments show that the resulting progress indicator can offer
useful information even if the run-time system load varies
over time. In addition, the progress indicator can self-correct
its initial estimation errors, if any, over time. This demon-
strates for the first time the feasibility of providing non-trivial
progress indicators for deep learning model training when
early stopping is allowed.
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FIGURE 86. Model training cost projected over time (unloaded system
test for training GoogLeNet using a step decay schedule for the learning
rate and SGD).

FIGURE 87. Model training speed over time (unloaded system test for
training GoogLeNet using a step decay schedule for the learning rate
and SGD).

FIGURE 88. Remaining model training time projected over time
(unloaded system test for training GoogLeNet using a step decay
schedule for the learning rate and SGD).

APPENDIX
In the appendix, we show the performance results not
included in Section IV.

A. ADDITIONAL TEST RESULTS OF USING A FIXED
LEARNING RATE DURING THE ENTIRE MODEL TRAINING
PROCESS
1) UNLOADED SYSTEM TEST RESULTS FOR TRAINING
GoogLeNet
a: USING THE SGD OPTIMIZATION METHOD
In this test, GoogLeNet was trained on an unloaded system
using the SGD optimization method and a fixed learning rate
during the entire model training process. The performance

FIGURE 89. Completed percentage estimated over time (unloaded system
test for training GoogLeNet using a step decay schedule for the learning
rate and SGD).

FIGURE 90. Model training cost projected over time (unloaded system
test for training GoogLeNet using a step decay schedule for the learning
rate and AdaGrad).

FIGURE 91. Model training speed over time (unloaded system test for
training GoogLeNet using a step decay schedule for the learning rate and
AdaGrad).

results are shown in Fig. 38-41. The early stopping criterion
was never satisfied during the whole model training process.
The progress indicator figured this out correctly and made
accurate projections.

b: USING THE ADAGRAD OPTIMIZATION METHOD
In this test, GoogLeNet was trained on an unloaded system
using the AdaGrad optimization method and a fixed learning
rate during the entire model training process. The perfor-
mance results are shown in Fig. 42-45 and are similar to those
shown in Fig. 38-41.
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FIGURE 92. Remaining model training time projected over time
(unloaded system test for training GoogLeNet using a step decay
schedule for the learning rate and AdaGrad).

FIGURE 93. Completed percentage estimated over time (unloaded system
test for training GoogLeNet using a step decay schedule for the learning
rate and AdaGrad).

FIGURE 94. Model training cost projected over time (unloaded system
test for training the GRU model using a step decay schedule on the
learning rate and Adam).

2) UNLOADED SYSTEM TEST RESULTS FOR TRAINING THE
GRU MODEL
a: USING THE RMSPROP OPTIMIZATION METHOD
In this test, the GRU model was trained on an unloaded
system using the RMSprop optimization method and a fixed
learning rate during the entire model training process. The
performance results are shown in Fig. 46-49 and are similar
to those shown in Fig. 19-22.

b: USING THE SGD OPTIMIZATION METHOD
In this test, the GRU model was trained on an unloaded
system using the SGD optimization method and a fixed
learning rate during the entire model training process.

FIGURE 95. Model training speed over time (unloaded system test for
training the GRU model using a step decay schedule on the learning rate
and Adam).

FIGURE 96. Remaining model training time projected over time
(unloaded system test for training the GRU model using a step decay
schedule on the learning rate and Adam).

FIGURE 97. Completed percentage estimated over time (unloaded system
test for training the GRU model using a step decay schedule on the
learning rate and Adam).

The performance results are shown in Fig. 50-53. From 163 to
388 seconds, the projectedmodel training cost differed signif-
icantly from the actual one, leading to inaccurate projections
of the remaining model training time and the percentage of
model training work completed. Much of this inaccuracy
results from power regression’s inability to accurately esti-
mate the trend curve during this time period.

c: USING THE ADAGRAD OPTIMIZATION METHOD
In this test, the GRU model was trained on an unloaded
system using the AdaGrad optimization method and a fixed
learning rate during the entire model training process. The
performance results are shown in Fig. 54-57. At 10 seconds,
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FIGURE 98. Model training cost projected over time (unloaded system
test for training the GRU model using a step decay schedule on the
learning rate and RMSprop).

FIGURE 99. Model training speed over time (unloaded system test for
training the GRU model using a step decay schedule on the learning rate
and RMSprop).

only three validation points were available, making it difficult
to estimate the trend curve accurately. Hence, the progress
indicator made inaccurate projections. After 20 seconds,
the projections given by the progress indicator became much
more accurate as more validation points became available.

B. ADDITIONAL TEST RESULTS OF USING AN
EXPONENTIAL DECAY SCHEDULE FOR THE
LEARNING RATE
1) UNLOADED SYSTEM TEST RESULTS FOR TRAINING
GoogLeNet
a: USING THE RMSPROP OPTIMIZATION METHOD
In this test, GoogLeNet was trained on an unloaded system
using an exponential decay schedule for the learning rate
and the RMSprop optimization method. The performance
results are shown in Fig. 58-61 and are similar to those shown
in Fig. 23-26.

b: USING THE SGD OPTIMIZATION METHOD
In this test, GoogLeNet was trained on an unloaded system
using an exponential decay schedule for the learning rate
and the SGD optimization method. The performance results
are shown in Fig. 62-65 and are similar to those shown
in Fig. 23-26.

c: USING THE ADAGRAD OPTIMIZATION METHOD
In this test, GoogLeNet was trained on an unloaded system
using an exponential decay schedule for the learning rate and

FIGURE 100. Remaining model training time projected over time
(unloaded system test for training the GRU model using a step decay
schedule on the learning rate and RMSprop).

FIGURE 101. Completed percentage estimated over time (unloaded
system test for training the GRU model using a step decay schedule on
the learning rate and RMSprop).

FIGURE 102. Model training cost projected over time (unloaded system
test for training the GRU model using a step decay schedule on the
learning rate and SGD).

the AdaGrad optimization method. The performance results
are shown in Fig. 66-69 and are similar to those shown
in Fig. 23-26.

2) UNLOADED SYSTEM TEST RESULTS FOR TRAINING THE
GRU MODEL
a: USING THE RMSPROP OPTIMIZATION METHOD
In this test, the GRU model was trained on an unloaded
system using an exponential decay schedule for the learning
rate and the RMSprop optimizationmethod. The performance
results are shown in Fig. 70-73 and are similar to those shown
in Fig. 27-30.
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FIGURE 103. Model training speed over time (unloaded system test for
training the GRU model using a step decay schedule on the learning rate
and SGD).

FIGURE 104. Remaining model training time projected over time
(unloaded system test for training the GRU model using a step decay
schedule on the learning rate and SGD).

FIGURE 105. Completed percentage estimated over time (unloaded
system test for training the GRU model using a step decay schedule on
the learning rate and SGD).

b: USING THE SGD OPTIMIZATION METHOD
In this test, the GRU model was trained on an unloaded
system using an exponential decay schedule for the learning
rate and the SGD optimization method. The performance
results are shown in Fig. 74-77 and are similar to those shown
in Fig. 23-26.

c: USING THE ADAGRAD OPTIMIZATION METHOD
In this test, the GRU model was trained on an unloaded
system using an exponential decay schedule for the learning
rate and the AdaGrad optimization method. The performance

FIGURE 106. Model training cost projected over time (unloaded system
test for training the GRU model using a step decay schedule on the
learning rate and AdaGrad).

FIGURE 107. Model training speed over time (unloaded system test for
training the GRU model using a step decay schedule on the learning rate
and AdaGrad).

FIGURE 108. Remaining model training time projected over time
(unloaded system test for training the GRU model using a step decay
schedule on the learning rate and AdaGrad).

results are plotted in Fig. 78-81, showing the progress indica-
tor made reasonably accurate projections.

C. ADDITIONAL TEST RESULTS OF USING A STEP DECAY
SCHEDULE FOR THE LEARNING RATE
1) UNLOADED SYSTEM TEST RESULTS FOR TRAINING
GoogLeNet
In this section, we show the test results for model training
using a step decay schedule for the learning rate. In each
figure of this section, we use a vertical dash-dotted line to
give the time when a learning rate decay occurred.

79840 VOLUME 8, 2020



Q. Dong, G. Luo: Progress Indication for Deep Learning Model Training: A Feasibility Demonstration

FIGURE 109. Completed percentage estimated over time (unloaded
system test for training the GRU model using a step decay schedule on
the learning rate and AdaGrad).

a: USING THE RMSPROP OPTIMIZATION METHOD
In this section, we show the test results for training
GoogLeNet on an unloaded system using a step decay sched-
ule for the learning rate and the RMSprop optimization
method. The performance results are shown in Fig. 82-85 and
are similar to those shown in Fig. 31-34.

b: USING THE SGD OPTIMIZATION METHOD
In this section, we show the test results for training
GoogLeNet on an unloaded system using a step decay sched-
ule for the learning rate and the SGD optimization method.
The performance results are plotted in Fig. 86-89, showing
the progress indicator made reasonably accurate projections.

c: USING THE ADAGRAD OPTIMIZATION METHOD
In this section, we show the test results for training
GoogLeNet on an unloaded system using a step decay sched-
ule for the learning rate and the AdaGrad optimization
method. The performance results are shown in Fig. 90-93 and
are similar to those shown in Fig. 86-89.

2) UNLOADED SYSTEM TEST RESULTS FOR TRAINING THE
GRU MODEL
In each test shown in this section, early stopping occurred
before the first decay point (see Fig. 5).

a: USING THE ADAM OPTIMIZATION METHOD
In this section, we show the test results for training the GRU
model on an unloaded system using a step decay schedule
for the learning rate and the Adam optimization method. The
performance results are plotted in Fig. 94-97, showing the
progress indicator made reasonably accurate projections.

b: USING THE RMSPROP OPTIMIZATION METHOD
In this section, we show the test results for training the GRU
model on an unloaded system using a step decay schedule for
the learning rate and the RMSprop optimization method. The
performance results are shown in Fig. 98-101 and are similar
to those shown in Fig. 94-97.

c: USING THE SGD OPTIMIZATION METHOD
In this section, we show the test results for training the GRU
model on an unloaded system using a step decay schedule for
the learning rate and the SGD optimization method. The per-
formance results are shown in Fig. 102-105. At 10 seconds,
only three validation points were available, making it difficult
to estimate the trend curve accurately. Hence, the progress
indicator made inaccurate projections. After 20 seconds,
the projections given by the progress indicator became much
more accurate as more validation points became available.

d: USING THE ADAGRAD OPTIMIZATION METHOD
In this section, we show the test results for training the GRU
model on an unloaded system using a step decay schedule for
the learning rate and the AdaGrad optimization method. The
performance results are plotted in Fig. 106-109, showing the
progress indicator made reasonably accurate projections.

D. SUMMARY STATISTICS OF THE AVERAGE ESTIMATION
ERROR ACROSS THE FIVE RUNS
Recall that for each combination of a deep learning model,
a learning rate schedule, and an optimization method in the
unloaded system test, we trained the model five times, each in
a separate run. For each combination presented in Sections A
to C, we show the mean and the standard deviation of the
average estimation error across the five runs in Table 4.

TABLE 4. For each combination of a deep learning model, a learning rate
schedule, and an optimization method in the unloaded system test
presented in Sections A to C, the summary statistics of the average
estimation error across the five runs.
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