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ABSTRACT Firearm violence is one of the leading causes of death in many countries around the world,
including Thailand. This work proposes a fast and accurate automatedmethod to classify firearm brands from
bullet markings. Specifically, a panoramic image of a bullet collected from a crime scenewas captured using a
developedmobile phone application and custom-built portable hardware. The top three state-of-the-art CNNs
pretrained on ImageNet—DenseNet121, ResNet50, and Xception—were further trained on the same training
set, which was composed of 718 bullets collected from eight different firearm brands—Beretta, Browning,
CZ, Glock, Norinco, Ruger, Sig Sauer, and Smith & Wesson—using a five-fold cross validation technique.
DenseNet121 provided the highest AUC of 0.99 for CZ classification (the most common registered firearm
brand in Thailand) and the highest average AUC for the eight firearm brands (0.9780 ± 0.0130 SD), which
was significantly higher than those of ResNet50 and Xception. In addition, there were no interaction effects
between the CNN model and firearm brand on AUC. DenseNet121, which had the highest AUC, was
evaluated on the test set (72 bullets), and the results showed that the Beretta and CZ classifications had
the lowest accuracy (91.18%), followed by the Browning and Norinco classifications (96.88%), whereas
the Glock, Ruger, Sig Sauer, and Smith & Wesson classifications had the highest accuracy (98.41%). These
results suggest that the developed mobile phone application based on a deep learning algorithm and the
custom-built portable hardware have promising potential for use at crime scenes to classify firearms from
bullet markings. By narrowing down the list of suspects, this convenient approach can potentially accelerate
bullet identification processes for many forensic science examiners.

INDEX TERMS Forensic science, automated firearm classification, 9mmbullet marking, densely connected
convolutional network.

I. INTRODUCTION
The right to bear arms is one of the most contentious issues
worldwide. In 2016, there were 250,000 deaths worldwide
as a result of firearm attacks, making firearm violence one of
the leading causes of death inmany countries, including Thai-
land. In 2017, Thailand had a gun violence rate of 3.71 vic-
tims in every 100,000 people; many of these events occurred
in southern Thailand [1]. Thailand has the 19th highest gun
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violence rate in the world. Moreover, among the countries
in East Asia, Southeast Asia, and Australasia, Thailand has
the second highest firearm violence rate after the Republic of
the Philippines. In fact, Thailand has a higher gun violence
rate than other countries with a notoriety for violence, such
as Iraq, which has a gun violence rate of 3.54 victims in every
100,000 people [2].

Apart from the high number of registered firearms, the high
rate of gun violence in Thailand is predominantly a conse-
quence of the prolonged process of firearm identification.
There are only two laboratories in Thailand: the Central
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Institute of Forensic Sciences (CIFS) and the Office of
Police Forensic Sciences. Most investigations can take up to
30 days, not including the number of days taken to collect
and transport physical evidence. In consideration of the death
rates attributed to firearm violence, forensic investigation
processes should be improved and accelerated to help solve
current crimes and prevent future crimes.

A. BACKGROUND
Currently, forensic investigation processes are dependent on
the physical evidence collected from crime scenes [3]; how-
ever, some types of evidence are easily destroyed. These types
of easily destroyed physical evidence include fingerprints,
blood, footwear impressions, tire tracks, and gunshot residue
[4]. Criminals can carry out precautionary acts to avoid leav-
ing clues to the crime, their connection to the crime, or their
identity, which can confuse and interfere with crime investi-
gation or forensic science efforts [5]. Since discharged bullets
are more difficult to destroy than most physical evidence,
bullets provide forensic scientists essential information about
the identities of criminals [6].

When a bullet is fired, it is ignited within the chamber
and travels through the barrel of the firearm. Since bullets
are intentionally designed to be wider than the barrel of the
firearm, as the bullet passes through the barrel, the barrel
compresses, thereby leaving toolmarks on the bullet [7], [8].
These toolmarks become a ‘‘ballistic fingerprint’’ that exam-
iners can use to identify specific characteristics of the firearm
that discharged the bullet [9].

In semiautomatic firearms, apart from the discharged bul-
lets, an empty cartridge case is also ejected. Similar to
the phenomenon observed in bullets, the ejection process
leaves distinct marks on the empty cartridge case, making
the cartridge case another ‘‘ballistic fingerprint’’ that can be
used to identify the firearm [10], [11]. However, cartridge
identification complicates investigation processes, since the
identification of one empty cartridge case from numerous
cartridge cases in a crime scene does not necessarily suggest
that it was expelled from the firearm used to shoot the victim.
Hence, in this paper, the classification of firearms will be
made by a collection of data from bullet markings.

The toolmarks imprinted on bullets consist of various stri-
ations. The width, depth, and pitch of the striations depend
on the material of the bullet [12]. These toolmarks are cre-
ated by the barrel as the bullet passes through it, and there
are four types of striations: (a) 4-groove right-hand twist,
(b) 5-groove right-hand twist, (c) 6-groove right-hand twist,
and (d) 6-groove left-hand twist, as shown in Fig. 1. When
a bullet is fired, nitrocellulose-based propellants increase the
temperature and pressure of the bullet, causing the bullet to
move through the barrel at a high velocity [13]. This action
creates the striations on the bullet.

Rifling in barrels is dependent on two characteristics: class
characteristics and individual characteristics [14]. The class
characteristics of a bullet are the rifling specifications of the
barrel, including the caliber, number, direction of twist, and

FIGURE 1. Side views and cross-section of fired bullet with (a) 4-groove
right-hand twist, (b) 5-groove right-hand twist, (c) 6-groove right-hand
twist, and (d) 6-groove left-hand twist (modified from Fig. 1 in [12]).

TABLE 1. Class characteristics of eight commonly registered firearms in
Thailand.

widths of the lands and grooves [8], [14]. Table 1 summarizes
class characteristics of eight commonly registered firearms
in Thailand. On the other hand, the individual characteristics
are the random imperfections in the barrels that create the
toolmarks on the bullets [14]. The class and individual charac-
teristics of all the firearm brands used in this paper are shown
in Fig. 2. Individual characteristics are more specific and are
normally used for bullet identification; however, the individ-
ual characteristics of firearms can be switched by exchanging
the barrel with that from another firearm from the same
manufacturer. For this reason, analyzing the individual char-
acteristics of a discharged bullet does not necessarily indicate
the identity of the criminal. Hence, class characteristics can
prevent incorrect associations with unrelated suspects.

B. RELATED WORK
To date, many traditional bullet identification methods have
been developed to help identify unknown firearms, including
microscopic detection [8], [15], [16], the continuous shooting
method [17], and roughness measurements with a stylus [18].
These identification methods are time consuming and are
likely to be subjective [19]–[21]. Although there are accepted
methodologies that allow qualitative comparisons of bullets
[22], there has not beenmuch quantitative proof to makemor-
phological deductions. Furthermore, professional examiners
must be present during the process for accurate conclusions
to be drawn.

Since the abovementioned identification methods are time
consuming and have certain limitations, many forensic sci-
ence examiners have used integrated ballistics identification
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FIGURE 2. Markings on bullets fired by eight commonly registered
firearms in Thailand: (a) Beretta, (b) Browning, (c) CZ, (d) Glock,
(e) Norinco, (f) Ruger, (g) Sig Sauer, and (h) Smith & Wesson.

systems (IBIS Heritage) [19] to digitally compare images of
ballistic evidence to real bullet markings [19], [20]. However,
using the IBIS Heritage can lead to loss of information
because the correspondence and the surface topography
are not one to one, possibly reducing the accuracy of the

conclusions. Furthermore, the list of firearm rankings gen-
erated by the IBIS Heritage is limited to the firearms that
are inside its database [23], [24], thereby requiring a high
level of expertise for analysis. Most importantly, the price
for adopting the IBIS Heritage is quite high for developing
countries including Thailand, as the system costs approx-
imately 98,000,000 Baht (approximately 3,250,000 USD),
not including annual maintenance costs. For this reason,
the IBIS Heritage is available in only six of the seventy-seven
provinces in Thailand.

Most studies have used image processing for bullet iden-
tification, but image processing has drawbacks. Chu et al.
proposed an algorithm to perform correlation calculations to
identify 48 bullets fired from six different barrel manufactur-
ers, which were further classified into their class characteris-
tics according to their land-engraved areas [19]. After further
applying the correlation function for automatic selection of
the effective correlation area and the extraction of a signature
bullet profile, the correlation results showed a 9.3% higher
accuracy rate than current commercial systems. Although this
work improved the ranking of correct matches, the developed
software could only distinguish the impression quality along
the longitudinal (bullet axis) direction.

Lu et al. implemented a 3D laser color scanner (3DLCS)
to scan bullets and map a 3D model of the bullet on a
2D plane [17]. They fired nine bullets—three bullets from
three different barrels—and further classified the bullets into
different groups. The unwrapped images were then prepro-
cessed by various method, including image enhancement,
edge detection, binarization, thinning and denoising. Then,
different algorithms were applied to extract the individual
characteristics of the bullets. Their results showed that there
was a high similarity between the bullets fired from the same
barrel, one group exceeding 90% similarity [17]. However,
their experimental results were based on a few data points,
suggesting the possibility of an inaccurate algorithm if imple-
mented in larger data samples.

Xie et al. developed a measurement system based on a
Talyrond 365 roundness/cylindricity system [25]. Their 3D
system consists of a rotary stage that allows the collection of
all facets of 3D surface topography information; moreover,
this system is composed of a small and shapeable smart stylus
sensor that can measure form deviations [18]. In addition to
the use of a novel measurement system, feature extraction
of bullet marks based on surface topography techniques has
been implemented [22], [25]. They extracted class charac-
teristics through surface segmentation, effectively separating
the bullets into regions. On the other hand, individual fea-
ture extraction was completed through surface abstraction,
wavelet filtering, and comparison. After initially identifying
the bullets, firearm examiners suggested the best matches out
of the whole list [22].

In addition to image processing, recent works have imple-
mented machine learning methods for bullet identification.
Petraco and Chan used multivariate statistical analysis and
machine learning for toolmark impression pattern recognition

78238 VOLUME 8, 2020



P. Pisantanaroj et al.: Automated Firearm Classification From Bullet Markings Using Deep Learning

and bullet identification [26]. Striation patterns were viewed
as mean profiles, a form of multivariate feature vectors.
Along with the use of standard multivariate machine learning
methods, these mean profiles were used to estimate iden-
tification error rates by using a combination of principal
component analysis (PCA), canonical variate analysis (CVA),
and support vector machines (SVMs). Their experimental
results showed low identification error rate estimates, with a
general error rate of 1%with 95% confidence intervals. Many
pieces of software were developed for the visualization of
toolmark surfaces in the database; however, the analysis of 3D
impression patterns and incomplete toolmarks from striation
patterns proved to be too complicated for software analysis.

Banno also used a machine learning approach, wherein
they developed a neural network to process binary signals
obtained from striation images of ten unidentified bullets
and ten database bullets [27]. After inputting two signals
into the network, the network evaluates the similarity of the
signals and produces a score that indicates the similarity of
the bullet striations. Even though the neural network was able
to correctly pair the unidentified bullets and database bullets,
the number of bullets in the dataset used to train the algorithm
proposed was small, and a final decisionmust still bemade by
a forensic scientist. Changmai applied the k-nearest neighbor
(k-NN) machine learning algorithm to classify data based on
similar features of the sample data [28]. Six real bullets were
tested and classified into three classes. The k-NN algorithm
can correctly classify 86.67% of firearms on average.

Although previous studies have used image processing and
machine learning to identify bullets from bullet markings,
the corresponding feature selections are time consuming and
require a high level of expertise to accurately compare the bul-
lets. In this paper, we have incorporated the implementation
of deep learning for firearm classification, since deep learning
has resulted in significant improvements in classifications
such as object detection, face recognition, and speech recog-
nition [29]–[32]. To the best of our knowledge, deep learning
has never been used for bullet identification or firearm clas-
sification. Therefore, in this paper, we will develop a deep
learning algorithm to classify panoramic images of markings
on 9 mm bullets (the most commonly used bullet size in
Thailand) collected from crime scenes into eight classes:
Beretta, Browning, CZ, Glock, Norinco, Ruger, Sig Sauer,
and Smith & Wesson (the most commonly used firearm
brands in Thailand). Table 2 summarizes the advantages and
disadvantages of previous and our approaches.

First, we developed portable hardware and used a mobile
phone to record an immersive video from which a panoramic
image of the bullet markings can be obtained. Second, all
of the data from the discharged 9 mm bullets were collected
at the Firearms and Ammunition Subdivision of the Central
Police Forensic Science Division in Thailand, a division that
issues firearm-carrying permits and investigates physical evi-
dence from crime scenes. Then, the collected data were pre-
processed and augmented prior to deep learning development.
These steps will be explained in Section II. The top three

performing deep learning algorithms tested on ImageNet [33]
were used in this paper. These algorithms will be summarized
in Section III. The hyperparameter settings of these three deep
learning algorithms, five-fold cross validation, and evaluation
will be explained in Section IV. The experimental results and
statistical significance of these algorithms are presented in
Section V. The findings of this paper will be concluded and
discussed in SectionVI. Finally, futureworkwill be discussed
in Section VII.

II. DATA ACQUISITION AND PREPARATION
The cylindrical-based surface of a bullet contains charac-
teristic marks, such as grooves, thread patterns, and micro-
scopic details, made by the specific gun barrel used to fire
the bullet. These unique characteristic marks are crucial
inputs for bullet identification, so close-up panoramic detail
of the bullet surface is required as raw digital data for
further computational analysis. The instrument incorporates
a bullet rotating mechanism and an illuminating system to
capture high-quality images of the bullet markings with a
smartphone. Moreover, the aspherical plano-convex lens was
attached over the smartphone camera to shorten its focal
length; as a result, the smartphone was able to capture close-
up particular details on the bullet surface.

A. HARDWARE DEVELOPMENT
Our developed hardware was mainly made of 10-mm thick
polymethyl methacrylate (PMMA), a clear plastic, as shown
in Fig. 3 (a)–(c). This hardware was prototyped by laser cut-
ting, 3D printing, and a computer numerical control (CNC)
machine, and all the parts were fastened together with bolts
and nuts to enhance precision and avoid blurring effects from
the evaporated solvent of the adhesive. Two white light LED
lamps were placed on both sides of the bullet to illuminate
the surface details without contrast generated by grooves
and thread patterns. They were set at 30–45 degrees to the
horizontal plane (the angle depends on the material, e.g.,
copper and lead) to obtain the highest intensity and the least
reflection on the surface where the lens is focused (along the
green line shown in Fig. 3 (a)). Additionally, the illumination
system provides stable light to obtain a similar condition of
white balance in each captured image.

A 9.0mmdiameter BK-7 glass plano-convex lens was used
(Fig. 3 (b)) and embedded into the smartphone case with
the planar side facing the smartphone camera; its back focal
length was 15.0 mm. Consequently, the distance between the
lens and the bullet surface was fixed at 15.0 mm, and the
design of the whole instrument was mainly dependent on
this parameter. During use, the smartphone is placed on a
stationary platform that is parallel to the horizontal plane,
where the camera faces the bullet and the smartphone screen
faces the user. The user is able to place the smartphone on-off
the platform without clamping the smartphone, making this
platform compatible for every smartphonemodel. This design
decreases the amount of stray light that can interfere with the
white balance of the camera. A driving thread is rotated by
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TABLE 2. Summary of the advantages and disadvantages of previous and our approaches.

a knob, as shown in Fig. 3 (b), to bring the sliding jaw into
close contact with the bullet; as a result, the jaw is able to
move along with the motor.

A 28BYJ-48 stepper motor combined with its ULN2003
driver (Amazon, United States) was selected for the bullet
rotating system because it operates with 5 V DC, which
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TABLE 2. (Continued) Summary of the advantages and disadvantages of previous and our approaches.

can be directly controlled by an Arduino UNO microcon-
troller (Amazon, United States). The motor consists of 4
magnetic stepping poles and a driving gear system, as shown
in Fig. 3 (b), which takes 512 steps to complete one full rota-
tion. The speed of the motor was fixed by the delay time (time

taken for the stepper motor to move from the current step to
the next step) of 121 milliseconds; hence, one full rotation
took 62 seconds. On the other hand, the motor is attached
to the ‘‘static jaw’’. An O-ring is used to connect the motor
shaft to a plastic cylindrical jaw, which has a 6 mm inner
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FIGURE 3. The developed hardware used to take panoramic images of
fired bullets: (a) top view, (b) side view, and (c) front view.

diameter and a 2 mm round thickness at the end. This jaw was
designed to fit the bullet head tightly because the bullet has to
be rotated along with the motor without slippage; therefore,
this jaw is called the ‘‘static jaw’’, as shown in Fig. 3 (c). The
‘‘sliding jaw’’ is a plastic cylinder, with one flat end designed
to push the bottom of the bullet and the other end designed to
connect to a 15 mm bearing that is aligned concentrically to
the motor shaft, as shown in Fig. 3 (c). The ‘‘sliding jaw’’ can
translate along the Y-axis (parallel to the axis of the center of
the bullet).

B. MOBILE APPLICATION
An iPhone8 was used to record the video of the markings on
the rotating bullet. The 9 mm bullet rotates at 62 seconds per
revolution. Thus, the angular velocity of the rotating bullet
is 5.81 degrees per second, and the translational speed at
the surface is 0.46 mm per second. Taking into account the
shutter speed of the iPhone8 camera, the experimental results
indicate that rotation at this speed produces images at the
optimal quality. The 80-second long videos cover 30% more
than one revolution, which ensures that all the surface details
were recorded. The videos were recorded at a resolution
of 1,080p with a frame rate of 30 frames per second.

To further aid forensic science examiners, we designed
a mobile application to increase the convenience and effi-
ciency of bullet identification. The mobile application can
be installed on various smartphones. Using the smartphone
camera and the developed hardware, the mobile applica-
tion can record a video of a bullet specimen. The video
recorded has a resolution of 1,080p (columns) at 30 frames
per second, meaning that 30 pictures of the rotating bullet
specimen are taken per second. This is the standard num-
ber of frames per second for most videos captured on a
smartphone. Each frame is cropped from 1,920 × 1,080
pixels (1,920 rows×1,080 columns) to 1,920 × 2 pixels
(1,920 rows×2 columns), i.e., one pixel from the middle of

FIGURE 4. Illustration of each component of our developed bullet
classification on the mobile application: (a) video capture preview,
(b) horizontal grids, (c) vertical grids, (d) middle grid, and (e) real-time
panoramic image preview.

the frame to the left and to the right, respectively. This is the
size that fits with the rotational speed of the bullet specimen.

Figure 4 illustrates each component of our developed bul-
let classification on the mobile application. The smartphone
displays the video of the bullet specimen as it is recorded,
as shown in (a). The red grid lines in the mobile application
are shown on the smartphone screen, which allows the user
to check whether the height of the bullet specimen can be
recorded. The top red line is placed below the top of the
bullet because the parts that were excluded did not have any
useful striations that can be used to identify the firearm brand.
Since the mobile application is created to classify 9 mm
bullets, the size of the red grid lines can be used to check
whether the size of the bullet is appropriate for classification.
The user can check whether the height of the bullet specimen
can be recorded, as shown in (b). The red line allows the user
to check the width of the bullet specimen, as shown in (c). The
user can also check if the bullet striations are placed in the
middle, which is the correct position for evaluation, as shown
in (d). While a video of the bullet specimen is recording,
the video is converted into a panoramic image, as shown in
(e), where the yellow arrow indicates the direction of the
panoramic image being taken. This process was performed
to reduce the file size for each bullet specimen, decreas-
ing the time taken to transfer data to obtain the predicted
firearm brand. Then, the developed algorithm will analyze
the panoramic images of the bullet specimen to identify the
firearm brand in 62 seconds.

C. DATA COLLECTION
The data were collected at the Firearms and Ammunition
Subdivision of the Central Police Forensic Science Divi-
sion in Thailand, a division that issues firearm-carrying
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permits and investigates physical evidence collected from
crime scenes. The data collected for this paper were bul-
lets acquired from real crime cases, which are presented
in Table 3. The table shows that the number of copper bullets
is significantly higher than the number of lead bullets. As the
bullet passes through the barrel, bullets that are not covered
with a copper jacket cannot withstand the increased friction,
resulting in fouling [13]. For this reason, most people prefer
bullets with a copper jacket in semiautomatic guns. Thus,
most of the bullets collected from crime scenes are copper-
jacketed bullets.

TABLE 3. Number of collected copper and lead bullets fired from eight
commonly registered firearms in Thailand.

D. PREPROCESSING
To process the images of bullet markings, a panoramic
image must be obtained; however, not every smartphone can
take panoramic images. To solve this problem, we devel-
oped a mobile application that allows videos to be taken
from smartphones that lack the ability to capture panoramic
images. By converting these videos and generating panoramic
images in our mobile application, the control points of the
sequence of images taken as a subset of a single video
can be extracted; this technique is similar to panoramic
stitching in various software packages [34]. As shown
in Fig. 5, the recorded video was first split into 1,860 frames
(62 seconds×30 frames), then the images were cropped at
the middle of the frame (1,920 × 2 pixels), as shown in the
calculation below, and the background images were removed.

E. DATA AUGMENTATION
Data augmentation is a technique to increase the size of a
dataset to avoid overfitting. The features of the dataset are
spiral grooves with a degree of rotation and left-hand/right-
hand circular rotation; therefore, a flip or rotational method
cannot be implemented. Thus, the data were augmented by
implementing the shifting method. The original image, a 360-
degree panoramic image of a fired bullet, was shifted by
10 degrees until the same panoramic image as in the begin-
ning was obtained (10 × 36 = 360 degrees). As shown
in Fig. 5, the shifting method augmented the dataset from
898 to 32,328 panoramic images in total (4,176 Beretta,

1,728 Browning, 8,136 CZ, 7,776 Glock, 2,592 Norinco,
2,052 Ruger, 2,844 Sig Sauer, and 3,024 Smith & Wesson).

III. DEEP LEARNING ALGORITHMS
The goal of this section is to investigate the performance of
different deep learning algorithms in classifying panoramic
images of bullet markings into eight different firearm brands.
To accomplish this aim, we selected deep learning algorithms
that have one of the smallest sizes and produce one of the
most accurate results among the deep learning algorithms
using Keras, which were tested on the ImageNet dataset. The
three deep learning algorithms with the highest performance
and the lowest number of layers were chosen because we
would like our developed model to be lightweight yet accu-
rate. This study used three models, residual neural network
(ResNet50) [35], densely connected convolutional network
(DenseNet121) [36], and Xception [37], which were pre-
trained on the ImageNet dataset. Specifically, the pretrained
weights were used as the initial weights. Then, these weights
were further updated in the training set until the local opti-
mum was reached for each model. These three deep learning
algorithms are summarized hereinafter.

A. RESIDUAL NEURAL NETWORK
Residual neural network (ResNet) [35] is one of the first
architectures that can handle sophisticated deep learning
tasks. In the past, attempts have been made to increase the
number of layers of deep neural networks for extracting high-
level features to obtain a higher understanding of the data and
make better predictions. As the number of neural network
layers increases, the gradient of the loss function decreases
and becomes too small for effective training, since the weight
and biases of the initial layers will not be able to update
effectively in each training session. Although renormalization
and the rectified linear unit (ReLU) activation function might
be able to resolve the vanishing gradient problem, they are
not the best alternatives when the depth increases due to the
emergence of the degradation problem. As neural networks
start to converge, the accuracy becomes saturated, leading to
a higher training error [35].

He et al. [35] proposed ResNet to alleviate the vanishing
gradient and degradation problems using skip connections,
allowing the model to successfully train many layers of a
network by feeding the output of one layer as the input of the
subsequent layers to reconstruct information required from
previous layers. Consequently, the skip connection forms an
alternate shortcut path that reduces the vanishing gradient
problem and degradation problem. Furthermore, the skip con-
nection allows the model to learn an identity function that
ensures that higher layers work as good or better than the
lower layers [35]. In this paper, ResNet50 was used.

B. DENSELY CONNECTED CONVOLUTIONAL NETWORK
The densely connected convolutional network (DenseNet)
has a convolutional neural network architecture that is the
state-of-the-art according to the classification results with
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FIGURE 5. Preprocessing workflow. (a) Diagram of the portable hardware developed to allow users to directly capture a video of a discharged bullet
found at a crime scene directly from a smartphone. (b) A panoramic image of the discharged bullet was generated (1,920×3,720 pixels) and then cropped.
(c) After generating and cropping the panoramic images (1,200 × 3,720 pixels), they were divided into two datasets: training data (90%) and testing data
(10%). (d) Each training panoramic image was circularly augmented 10◦, providing a 36-fold increase in the number of training data for each bullet.

the ImageNet validation dataset. Huang et al. [36] used a
direct connection from each layer to every other layer in a
feed-forward direction. Each layer in the network receives
concatenation of the feature maps produced in the previous
layers as inputs and implements nonlinear functions such as
batch normalization, ReLU, and convolution or pooling.

After the nonlinear function operation, the product feature
maps of each layer are used as inputs to every subsequent
layer. The concatenation operation is not effective when the
size of the feature maps varies; therefore, the pooling oper-
ation is important by changing the size of the feature maps.
To facilitate the pooling operation, the architecture is divided
into multiple blocks, i.e., densely connected dense blocks,
and the layers between dense blocks are transition layers
that perform batch normalization, convolution, and pooling
operations.

Generally, each function produces k feature maps, a hyper-
parameter called the growth rate. The growth rate determines
how many feature maps in each layer contribute to the
network. The feature maps can be accessed anywhere in
the network once they are contributed. Unlike traditional

architecture, there is no need to replicate one layer to another.
Each layer in the network produced k feature maps and
typically has many inputs. For this reason, a [1 × 1] convo-
lution was used in the bottleneck layer to reduce the number
of input feature maps to 4k . Another merit of DenseNet is
compactness: the ability to reduce the number of feature
maps at transition layers. If a dense block contains m feature
maps, the number of feature maps will change to θm after
the transition layer, where 0 < θ ≤ 1 is referred to as the
compression factor. In addition to compactness, the architec-
ture of DenseNet has several advantages: alleviating the van-
ishing gradient problem, strengthening feature propagation,
and reducing the number of parameters [36]. In this paper,
DenseNet121 was used.

C. XCEPTION
Xception [37] is a convolutional neural network that was
developed by Google, and the model was the 1st runner up
in ILSVRC 2015. Xception has been shown to outperform
VGGNet [38], ResNet, Inception-v3 and Inception-v4 [39].
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FIGURE 6. Classification workflow. Diagrams of panoramic images derived from preprocessed training data and preprocessed testing data (Fig. 5) were
fed as inputs to the DenseNet121 model to automatically extract features and classify bullet markings into 8 different classes: Beretta, Browning, CZ,
Glock, Norinco, Ruger, Sig Sauer, and Smith & Wesson.

Xception works using depthwise separable convolution and
shortcuts between convolution blocks. Depthwise separable
convolution involves twomain processes: depthwise convolu-
tion and pointwise convolution. This approach has the advan-
tages of efficiency in terms of computation time. In depthwise
convolution, a convolution of size n × n is applied. Unlike
depthwise convolution, pointwise convolution is a [1 × 1]
convolution that is applied to change the dimension. Another
process that is a part of Xception is the skip connections
found in ResNet; therefore, Xception is an improvement of
ResNet [37].

IV. EXPERIMENTAL SETUP
After data augmentation, all of the marking images from
the discharged bullets in the training dataset were used to
train DenseNet121, ResNet50, and Xception. The Adadelta
optimization algorithm [40] was used to iteratively update
the network with the training data, and the hyperparameters
used in the training process were set as follows: a dropout rate
of 0.50, a minibatch size of 32, and 30 epochs of training. The
initial weights were the weights of a model pretrained with
the ImageNet dataset [41]. After passing a panoramic image
of the discharged bullet as an input to the models, the features
were automatically extracted, resulting in a feature vector
with 1,024 dimensions; the model weights were updated at
the end of each learning rate cycle. The feature vector was fed
as an input to the softmax classifier [42] and classified into
one of eight classes: Beretta, Browning, CZ, Glock, Norinco,
Ruger, Sig Sauer, and Smith & Wesson. The experiments
were run on a system with the following specifications: a 44-
core CPU, 64GB of RAM, anNvidia Telsa P40GPU, Tensor-
Flow 1.4.0, Keras 2.1.5, and Python 3. Figure IV illustrates
one of three classification workflows (DenseNet121), where
panoramic images derived from preprocessed training data

and preprocessed testing data (Fig. 5) were fed as an input
to the DenseNet121 model to automatically extract features
and classify bullet markings into 8 different classes: Beretta,
Browning, CZ, Glock, Norinco, Ruger, Sig Sauer, and
Smith & Wesson.

A. FIVE-FOLD CROSS-VALIDATION
There are a total of 898 bullets from 266 guns in the dataset:
116 Beretta bullets, 48 Browning bullets, 226 CZ bullets,
216 Glock bullets, 72 Norinco bullets, 57 Ruger bullets,
79 Sig Sauer bullets, and 84 Smith & Wesson bullets. These
bullets provide a total of 32,328 images in the training dataset:
4,176 images of Beretta bullets, 1,728 images of Brown-
ing bullets, 8,136 images of CZ bullets, 7,776 images of
Glock bullets, 2,592 images of Norinco bullets, 2,052 images
of Ruger bullets, 2,844 images of Sig Sauer bullets, and
3,024 images of Smith & Wesson bullets. Panoramic images
of the bullets were distributed such that all images from bul-
lets fired from the same gun have to be in the same fold. It is
worth mentioning that in each fold, there are approximately
the same number of images.

Panoramic images of bullets from the development dataset
were split into five folds, where each fold is composed
of 53 guns, corresponding to 6,408−6,552 images (median
6,444). Subsequently, four folds were taken as the training
dataset, and one fold was taken as the validation dataset.
The testing dataset consists of 12 images of Beretta bullets
(12 bullets from four guns), three images from Browning
bullets (three bullets from one gun), 20 images from CZ bul-
lets (20 bullets from six guns), 16 images from Glock bul-
lets (16 bullets from five guns), seven images from Norinco
bullets (seven bullets from one gun), four images from
Ruger bullets (four bullets from one gun), six images from
Sig Sauer bullets (six bullets from two guns), and seven
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images from Smith & Wesson bullets (seven bullets from
two guns). After the five-fold cross-validation was per-
formed, the overall sensitivity, specificity, accuracy, and
area under the receiver operating characteristic (ROC) curve
(AUC) for each experiment were calculated.

B. EVALUATION
The efficiency of the models in classifying fired bullet images
as Beretta, Browning, CZ, Glock, Norinco, Ruger, Sig Sauer,
and Smith & Wesson were evaluated by graphing the ROC
curves. The performance of each model was evaluated by
calculating the AUC. Because CZ has the most registered
firearms in Thailand, we focused on the classification of CZ.
The model with the highest AUC was selected to be tested on
the testing dataset.

C. SIMILARITY SCORES
The experimental setup was designed for classification
among 8 firearm brands. Then, the confusion matrix was
obtained. The similarity score and the perceptual distance
for each brand pair were systematically derived from the
confusion matrix based on a method proposed by [43]. The
similarity score between each pair of firearm brands was
calculated from the confusion matrix:

Sij =
Pij + Pji
Pii + Pjj

, (1)

where Sij is the similarity between brand i and brand j and
Pij is an element of the confusion matrix when given with
brand i (row) and classified as brand j (column). Finally,
the perceptual distance (Dij) is derived from the similarity
score as follows [43]:

Dij = − ln Sij. (2)

V. EXPERIMENTAL RESULTS
After performing 5-fold cross-validation, ROCs were plotted,
and AUCswere calculated. Figure 7 illustrates all 15 ROCs of
DenseNet121 (five red curves), ResNet50 (five blue curves),
and Xception (five green curves) for CZ classification eval-
uated on the validation dataset. The thick red, blue, and
green curves represent the ROCs with the highest AUCs of
DenseNet121, ResNet50, and Xception, respectively. Simi-
larly, the results of Glock and Smith & Wesson are shown
in Figs. 8 and 9. The ROCs of Beretta, Browning, Glock,
Norinco, Ruger, and Sig Sauer are not shown here due to the
space limitations in this paper.

As previously stated, we focused on CZ classification.
From the results shown in Table 4, DenseNet121 yielded
the highest average AUC for CZ classification (the most
registered firearm brand in Thailand) of 0.9780± 0.0130 SD;
the corresponding values for ResNet50 and Xception are
0.9640 ± 0.0195 SD and 0.9640 ± 0.0084 SD, respec-
tively. Furthermore, the chosen DenseNet121 model with
the highest AUC for the CZ classification has an AUC on
the validation set of 0.99 and provided an AUC of 0.94 for

FIGURE 7. Fifteen receiver operating characteristic curves (ROCs) of
DenseNet121 (five red curves), ResNet50 (five blue curves), and Xception
(five green curves) for CZ classification evaluated on the validation set,
where the thick red, green, and blue curves represent the ROC with the
highest AUC of DenseNet121, ResNet50, and Xception, respectively.

FIGURE 8. Fifteen receiver operating characteristic curves (ROCs) of
DenseNet121 (five red curves), ResNet50 (five blue curves), and Xception
(five green curves) for Glock classification evaluated on the validation set,
where the thick red, green, and blue curves represent the ROC with the
highest AUC of DenseNet121, ResNet50, and Xception, respectively.

Beretta classification, 0.81 for Browning classification, 1 for
Glock classification, 0.91 for Norinco classification, 0.92 for
Ruger classification, 0.96 for Sig Sauer classification, and
1 for Smith & Wesson classification. Moreover, the best
performance of ResNet50 for CZ classification has an AUC
of 0.99 and provided an AUC of 0.97 for Beretta classi-
fication, 0.85 for Browning classification, 0.99 for Glock
classification, 0.86 for Norinco classification, 0.89 for Ruger
classification, 0.93 for Sig Sauer classification, and 1 for
Smith &Wesson classification. Finally, the best performance
of Xception for CZ classification has an AUC of 0.97 and
provided an AUC of 0.9 for Beretta classification, 0.89 for
Browning classification, 1 for Glock classification, 0.89 for
Norinco classification, 0.92 for Ruger classification, 0.89 for
Sig Sauer classification, and 0.99 for Smith & Wesson clas-
sification.

Two-factor balanced ANOVA was applied to determine
whether there were any significant differences among the
three CNN models and any interaction effect between the
CNN model and the firearm brand. Therefore, we considered
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FIGURE 9. Fifteen receiver operating characteristic curves (ROCs) of
DenseNet121 (five red curves), ResNet50 (five blue curves), and Xception
(five green curves) for Smith & Wesson classification evaluated on the
validation set, where the thick red, green, and blue curves represent the
ROC with the highest AUC of DenseNet121, ResNet50, and Xception,
respectively.

TABLE 4. Average AUC ± SD for DenseNet121, ResNet50, and Xception
(highest average AUC of each firearm brand shown in bold).

two independent variables, the CNN model (DenseNet121,
ResNet50, and Xception) and the firearm brand (Beretta,
Browning, CZ, Glock, Norinco, Ruger, Sig Sauer, and
Smith & Wesson), and one dependent variable: AUC. The
experimental results showed that the three CNN models
are significantly different [F(2, 96) = 6.28, p = 0.0027].
DenseNet121 provided the highest average AUC, and post
hoc analysis showed a statistically significant higher AUC
than that of ResNet50 (p = 0.0018) and a higher AUC than
that of Xception (p = 0.2547). In addition, there are no
interaction effects between the two independent variables
(CNN model and firearm brand) on AUC [F(14, 96) = 1.45,
p = 0.1447]. When considering the AUC of DenseNet121 in
classifying firearm brands from bullet markings, the average
AUC from six firearm brands—Beretta, CZ, Glock, Ruger,
Sig Sauer, and Smith & Wesson—are significantly higher
than that of Browning.

DenseNet121 was the model chosen for firearm clas-
sification from bullet markings in this paper. The accu-
racy, sensitivity, and specificity of each firearm brand
tested on the test set are shown in Table 5. From the
results, DenseNet121 has very high accuracy for all gun
brands, ranging from 91.18% (Beretta and CZ), 96.88%

TABLE 5. Sensitivity, specificity and accuracy for the testing dataset.

(Browning and Norinco), and 98.41% (Glock, Ruger, Sig
Sauer, Simth & Wesson). DenseNet121 has 33.33% sensitiv-
ity for Browning; 71.43% and 75.00% sensitivity for Norinco
and Ruger, respectively; and 83.33%, 83.33%, and 88.24%
sensitivity for Beretta, Sig Sauer, and CZ, respectively. Inter-
estingly, DenseNet121 has 100% sensitivity for both Glock
and Smith &Wesson. Finally, DenseNet has very high speci-
ficity: 92.16% for CZ, 92.86% for Beretta, 97.87% for Glock,
98.21% for Smith & Wesson, and 100% for Browning, Nor-
inco, Ruger, and Sig Sauer. More specifically, Glock and
Smith & Wesson both have 100% sensitivity and 97.87%
and 98.21% specificity, respectively, and both have 98.41%
accuracy, which are the highest performance metrics among
the other firearm brands. On the other hand, Browning has
only 33.33% sensitivity but has 100% specificity, resulting
in 96.88% accuracy.

The confusion matrix of DenseNet121 on the testing
dataset is shown in Table 6, where the row is the ground truth
and the column is the predicted class. Each number represents
raw data, whereas its normalized percentage is represented
in parentheses. For Beretta, ten of twelve fired bullets were
correctly classified, but two fired bullets were misclassified
as CZ. For Browning, only three fired bullets were available
in the test set: one fired bullet was correctly classified, but
two were misclassified as Beretta. For CZ, 15 of 17 fired
bullets were correctly classified, whereas one fired bullet each
was misclassified as Glock and another was misclassified as
Smith & Wesson. Impressively, bullets fired from Glock and
Smith & Wesson were all correctly classified. For Norinco,
five fired bullets were correctly classified, but one fired bullet
was misclassified as Beretta and another was misclassified as
CZ. For Ruger, three fired bullets were correctly classified,
and one fired bullet was misclassified as CZ. For Sig Sauer,
five fired bullets were correctly classified, and one bullet
was misclassified as Beretta. Among all misclassified fired
bullets, fired bullets were misclassified as Beretta and CZ
most frequently (four bullets each). Specifically, among the
four fired bullets misclassified as Beretta, two bullets were
fired from Browning, one bullet was fired from Norinco and
one from Sig Sauer. For the four bullets misclassified as CZ,
two bullets were fired from Beretta, one bullet was fired from
Norinco and one from Ruger. In addition, one fired bullet
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TABLE 6. Confusion matrix of DenseNet121 to classify firearms from bullet markings in the testing dataset.

TABLE 7. Distance scores between pairs of eight firearm brands.

was misclassified as Glock and another was misclassified as
Smith &Wesson. These will be discussed in the next section.

Table 7 presents the distance scores between pairs of eight
firearm brands, which were calculated from Eq. (2) using the
percentage values in Table 6. The shorter the distance score
is, the higher the similarity between a pair of firearm brands
(based on bullet markings). From the results, Beretta and
Browning are most similar with the shortest distance score
(0.2513). This can be visualized from the bullet markings
shown in Fig. 2 (a) and (b). CZ and Ruger are ranked second
most similar, with a distance score of 1.8763. In addition,
Beretta and Sig Sauer (2.3026), Beretta and CZ (2.3316),
Beretta and Norinco (2.3826), and CZ and Norinco (2.4138)
have higher distance scores. Finally, CZ and Glock, CZ and
Smith & Wesson have the same distance score of 3.4657.

VI. DISCUSSION AND CONCLUSION
We have developed a highly accurate automated firearm clas-
sificationmethod. The proposedmethod uses computer-aided
approaches to provide fast and accurate firearm brand clas-
sifications of eight firearm brands from panoramic images
of fired bullets. As the first firearm brand classifier on a
mobile application to use deep learning, the classification of
the most common registered firearms in Thailand can bring
convenience and accelerate bullet identification processes for
many forensic science examiners by narrowing down the list
of suspects.

In Thailand, many criminals often use the same brand of
high-quality hand guns because many firearms are expen-
sive. Therefore, the classification of firearm brands can help
identify criminals that have been involved in repeated crimes,
regardless of where the crime is committed. Most impor-
tantly, the use of the mobile application is relatively cheap
and is accessible for all officers without a high level of exper-
tise in examining physical evidence collected from crime
scenes. The proposed firearm brand classifier decreases the
time required for forensic science investigations, increasing
the likelihood of identifying and arresting criminals for gun
violence.

To avoid overfitting of bullets with similar features that
were fired from the same barrel, five-fold cross-validation
was applied during data partitioning so that every bullet image
fired from the same firearm was categorized as one subject
and every foldwas partitioned by subject. As a state-of-the-art
classification approach, deep learning results benefit from the
transfer of learning from pretrained networks that have a large
dataset. For this reason, we chose the top three CNN models
that have the highest accuracy and the fewest number of lay-
ers. According to a two-factor balanced ANOVA performed
on the average AUC for all three models, as shown in Table 4,
DenseNet121 outperformed ResNet50 and Xception, among
which the performance differences were statistically signif-
icant. No interaction effects were found between the CNN
model and firearm brand, suggesting that the performance
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metrics of all three CNN models were not influenced by any
firearm brands.

The proposed models using DenseNet121, ResNet50, and
Xception involved the Keras and TensorFlow backends.
The reason behind the model selection is that we selected
models have high accuracy scores and as few layers as possi-
ble; thus, DenseNet121 and ResNet50 were selected herein.
We suggest that several advantages of DenseNet, including
alleviating the vanishing gradient problem, strengthening fea-
ture propagation, and reducing the number of parameters
[36], are the main reasons that it outperformed ResNet50 and
Xception.

In addition, the dense connectivity pattern of DenseNet
requires fewer parameters than ResNet and does not need to
relearn redundant feature maps. In fact, ResNet contributes
to the information that passes from its preceding layer to the
subsequent layer but needs very little preservation and can
be randomly dropped during training. Normal deep learning
architectures use depthwise convolution followed by a point-
wise convolution method, whereas the Xception architecture
uses pointwise convolution followed by a depthwise convo-
lution method, a distinction from other architectures that is
worth exploring.

Out of all firearm brand classifications, Glock classifica-
tion achieved the highest results, mainly because of its differ-
ence in rifling from the other seven firearm brands. Glock is
the only firearm brand in the dataset that has a 6-groove right-
hand twist and polygonal rifling, as shown in Fig. 2(d). On the
other hand, other firearm brands have a 6-groove right-hand
twist and conventional rifling, as shown in Fig. 2. Similarly,
Smith & Wesson bullets were rarely misidentified because
the Smith & Wesson barrel has a 5-groove right-hand twist,
which is different from other the firearm brands used in this
experiment, as shown in Fig. 2(h).

There were a few drawbacks to the dataset, since there
was a limited number of bullets available for data collection
at the Firearms and Ammunition Subdivision of the Central
Police Forensic Science Division in Thailand. First, the col-
lected discharged bullet samples were composed of different
materials because the dataset was collected from crime cases,
which is related to the popularity of firearm brands used
by criminals in Thailand. The Browning training dataset has
48 fired bullets from 14 guns, whereas the CZ has 226 fired
bullets from 68 guns; consequently, the differences in the
number of firearms and bullets fired from each firearm brand
may affect the learning of the models.

In the experiment, an unequal number of lead bullets with
and without copper jackets were used to train and test the
model. The number of lead bullets without copper jackets
collected was considerably lower than the number of lead
bullets with copper jackets. Second, the number of discharged
bullet samples from each firearm brand was unbalanced,
which may lead to bias in the models. In our dataset, there
was an overwhelming number of CZ bullets: 226 bullet fired
bullets from 68 CZ guns. This could potentially affect the
classification of other bullets fired from other firearm brands

that have similar bullet markings as CZ, such as Beretta,
Norinco, Ruger, and Sig Sauer. On the other hand, bullets
with different markings from CZ, such as those produced
by the barrel rifling types and number of twists of Glock
and Smith & Wesson, seemed unaffected by the unbalanced
data, i.e., the lead bullet samples in the Browning brand
were included from only two firearms containing lead bullets
(1 already partitioned into the test dataset), which cannot be
partitioned 5-fold. However, this drawback was addressed by
putting the mentioned firearm in every training set five-fold
while leaving the validation set with no lead bullets.

VII. FUTURE WORK
Since the iPhone 8 was used to take videos of the rotating
bullets, the optimal rotational speed of the motor was found
based on trial-and-error. In our future work, we will use
position markers placed on the two concentric shafts of our
hardware to not only identify the width of the bullet specimen
but also to calculate the optimal speed of the rotatingmotor so
that it corresponds with the shutter speed of the smartphone
used to take the videos.

In the future, we hope to develop our algorithm further
to enable classification of more class characteristic subjects,
such as the firearm model and serial number from bullet
markings. Furthermore, we also aspire to expand our dataset
so that damaged bullets can be classified, since our current
dataset consists of undamaged bullets. Taking this limitation
into consideration, we will crop out sections of a fewer num-
ber of pairs of lands and grooves from bullet images and then
use the cropped images to train our model instead of using
the whole panoramic image as our input.
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